初中生数学学习方法

数学学习做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。下面给大家分享一些关于初中生数学学习方法精选,希望能够对大家有所帮助。

初中生数学学习方法【篇1】

注意事项一:切勿思想松懈

刚刚经历了中考的学生,精神感觉疲惫,往往认为高一可以放松一些,到高三突击也来得及,但是高中数学内容的深度和广度是容不得轻视的,尤其是高中数学内容之间存在很大的关联性,任意一个方面的忽视都会为后期的学习带来困难。

注意事项二:切勿产生依赖

很多同学进入高中后仍然象初中阶段一样,有很强的依赖心理,如果没有良好的学习习惯(制定计划→课前预习→课后复习→作业练习→总结反思),只是单纯完成老师安排的任务,在高中学习中会处处被动。

注意事项三:切忌学不得法

学生最常见的三种行为:背概念、赶作业、套题型。然而这些都是被动型的学习方法。如果学生能够主动的进行概念研究,同时形成一套科学的审题方法,严谨的答题习惯,学习效率必然会十分惊人。

注意事项四:切勿忽视基础

忽视对基础知识(概念、原理、公式)、基本技能、基本方法和基本思想的学习和训练,不追求理解知识的内涵外延,仅一味追求所谓的难题,将很难取得理想的学习效果。

注意事项五:切勿轻视细节

高中考试中多数丢分,不是题目不会做,而是解题步骤不够严谨导致的。

初中生数学学习方法【篇2】

方法一:直接法

所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.

方法二:特例法

特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.

注意:

在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.

方法三:排除法

数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.

注意:

排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重.

方法四:数形结合法

数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.

方法五:估算法

在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.

方法六:综合法

当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.

初中生数学学习方法【篇3】

1、先看专题一,整数指数幂的有关概念和运算性质,以及一些常用公式,这公式不但在初中要求熟练掌握,高中的课程也是经常要用到的。

2、二次函数,二次方程不仅是初中重点,也是难点。在高中还是要学的内容,并且增加了一元二次不等式的解法,这个就要根据二次函数图像来理解了!解不等式的时候就要从先解方程的根开始,二次项系数大于0时,有个口诀得记下:“大于号取两边,小于号取中间”。

3、因式分解的方法这个比较重要,高中也是经常用的,比如证明函数的单调性,常在做差变形是需要因式分解,还有解一元多次方程的时候往往也先需要分解因式,之后才能求出方程的根。

4、判别式很重要,不仅能判断二次方程的根有几个,大于零2个根;等于零1个根;小于零无根。而且还能判断二次函数零点的情况,人教版必修一就会学到。集合里面有许多题也要用到。

初中生数学学习方法【篇4】

1.函数与方程思想

函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

2.数形结合思想

数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。

解题类型

①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。

②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。

③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。

3.分类讨论思想

分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。

解决分类讨论问题的关键是化整为零,在局部讨论降低难度。

常见的类型

类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;

类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;

类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;

类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。

类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。

初中生数学学习方法【篇5】

1.转化与化归思想

转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。

转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。 常见的转化方法

①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;

②换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;

③数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;

④等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;

⑤特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;

⑥构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;

⑦坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。

2.特殊与一般思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

3.极限思想

极限思想解决问题的一般步骤为:①对于所求的未知量,先设法构思一个与它有关的变量;②确认这变量通过无限过程的结果就是所求的未知量;③构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

一键复制全文保存为WORD