初中数学答题时间分配技巧

中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,待定系数法、判别式法等操作性较强的数学方法。那么接下来给大家分享一些关于初中数学答题时间分配技巧,希望对大家有所帮助。

初中数学答题时间分配技巧

第一,充分利用考前五分钟。

按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是这五分钟可以看题。发现很多考生拿到试卷之后,就从第一个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

学生拿着数学卷子,不要看选择,不要看填空,先看后边的六个大题。这六个大题的难度分布一般是从易到难。我们为了应付这样的一次考试,提前做了大量的习题,试卷上有些题目可能已经做过了,或者你一目了然,感觉很轻松,我建议先把这样的大题拿下来。大题一般12分左右,这12分如囊中取物,你就有底气了,心情也好了。特别是要看看最后那个大题,一看那个题目压根儿就不是自己力所能及的,就把它砍掉,只想着后边只有五个题,这样在做题的时候,就能够控制速度和质量。如果倒数第二题也没有什么感觉,你就想,可能今年这个题出得比较难,那么我现在最好的做法应该是把前边会做的题目踏踏实实做好,不要急于去做后边的题目,因为后边的题目不是正常人能做的题目。

第二,进入考试阶段先要审题。

审题一定要仔细,一定要慢。数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。

第三,一定要培养自己一次就做对的习惯。

现在有些学生,好不容易遇到一个会做的题目,就快速地把会做的题目做错,争取时间去做不会做的题目。殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生以为前边题目的分数不值钱,后边大题的分数才值钱,不知道这是什么心理。所以希望学生在考试的时候,一定要培养自己一次就做对的习惯,不要指望腾出时间来检查。越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在那些难题里面出不来,抬起头来的时候已经开始收卷了。

第四,要由易到难。

一般大型的考试是要有一个铺垫的,比如说前边的题目,往往入手比较简单,越往后越难,这样有利于学生正常的发挥。1979年的高考,数学就吓倒了很多人。它第一个题就是一个大题,很多学生就被吓蒙了,于是整个考试考得一塌糊涂,就出现一些心态的不稳。所以后期,就因为这样的一些事故性的试题的出现,不能让一个学生正常发挥,我们国家在命题的时候一般遵循由易到难的规律,先让学生慢慢地进入状态,再去慢慢地加大难度。有些学生自以为水平很高,对那些简单的题目不屑一顾,所以干脆从最后一个题开始做,这种做法风险太大。因为最后一个题一般来讲,难度都很大,你一旦在这个地方卡壳,不仅耽误了你的时间,而且会让你的心情受到很大的影响,甚至影响整场考试的发挥。

当然由易到难并不是说从第一题一直做到最后一个,以数学高考题为例,一般数学高考题有三个小高峰:第一个小高峰出现在选择题的最后一题,它的难度属于难题的层次;第二个小高峰是填空题的最后一题,也是比较难的;第三个小高峰出现在大题的最后一题。我说由易到难,是说要把握住这三个小高峰。

第五,控制速度。

平常有学生问我:“我在做题的时候多长时间做一个选择题,多长时间做一个填空题,才是比较合理的呢?”

这个不能一概而论,应该说你平常用什么样的速度做题,考试的时候就用什么样的速度,不要人为地告诉自己,考试的时候要加快速度。其实你考试的时候,速度要是和平常训练的速度差距比较大的话,很可能因为你速度一加快,反而导致了质量的下降。一场大型的考试,你会做的题目本身就那么多,如果你加快速度,结果把会做的题目做错,而你腾出的时间去做后边的难题,又长时间地解不出来,那么很可能造成会做的题目得不着分,不会做的题目根本不得分。不要担心“做慢了,做不完”,把握住一点,一个学生的正常考试,如果始终在自己会做的题目上全神贯注的话,这场考试一定是正常发挥的,甚至是超水平发挥。

你一直投入到会做的题目中,按照你平常训练的速度,踏踏实实地往前推进。即使你发现时间到了,后边还有题目可能会做但来不及了,不认为这是一个令你后悔的结果。最后结果出来你会发现,你最后得到的分数往往会比你的实际水平要高。所以考试的时候要控制速度,这是考试技巧的一个很重要的方面。

数学常用解题方法技巧

熟悉化方法

所谓熟悉化方法,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

常用的途径有:

(一)、充分联想回忆基本知识和题型:

按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

(二)、全方位、多角度分析题意:

对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

(三)恰当构造辅助元素:

数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

简单化方法

所谓简单化方法,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

1、寻求中间环节,挖掘隐含条件:

在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。

因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

2、分类考察讨论:

在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

3、简单化已知条件:

有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

4、恰当分解结论:

有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

直观化方法

所谓直观化方法,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

(一)、图表直观:

有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。

对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。

(二)、图形直观:

有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。

(三)、图象直观:

不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。

如何提高解题的正确率

很多同学考试发下卷子后,总是难免要一声叹息或者几声叹息。“这个问题我怎么没想到?!”,“这么简单的计算我怎么居然算错了?!”,“我怎么草稿纸上算对了,卷子上却写错了?!”……

很多同学都把正确率的欠缺归结为考试时自己的不小心、粗心,并且还在心里有意无意地把因为这种原因被扣掉的分加上去,心里想着我的水平应该是多少多少分。如果你常常这样做,那就大错特错了。因为,你会发现,等到下次考试,你努力地想要细心仔细地做每一道题时,发下卷子,还是会出现本该会做的题做错了的情况。如果是这样,那就表示,你还存在一个学习上的缺点或弱点:正确率没有保证!这不是仅仅靠考试时的极力小心所能解决的。

下面我们就对解题错误率高的几种情况进行分析。

现象一:一听就会,一做就错,总是在看到答案后恍然大悟。

很多学生在看到题目时觉得面熟,能肯定自己以前做过原题或类似的题目,但就是想不起来该怎么做,越是回忆以前做过的类似题目越是没有思路,等看到答案才大喊一声,哇,原来是这样的啊。于是再做,发现还是不能独立的把题目完整的做出来,于是再看答案,再做。。。。。。

原因:原来在做题目时没有真正理解题目的解法,只能跟着老师的思路把题目抄下来,没有自己动手整理,导致自己觉得会做了,其实只是在当时把题目背过了,一段时间以后就只记得题目不记得解法了。所以,“背题”是万万要不得的,考试的题目千千万,背的过来么?

解决方法:在做完一道题目后,两个同学结成小组,互相讲解给对方听,让同学帮你检查你对这个题目的理解还有什么欠缺,发现问题立即问老师,力争当堂把题目理解透彻。家长可以在一两周之后把这道题目的数据换一下,再让孩子做一遍,这样就能做到让孩子彻底的掌握这种类型题目的解法,还能达到举一反三的效果。

现象二:会做,但总是粗心,不是抄错题就是算错数

很多家长都反应说自己的孩子很粗心,经常把会做的题目算错,甚至有家长说孩子期末考试考了96分,丢掉的那四分全是粗心算错的,并对这个成绩很满意,还有很多学生也说,这道题目我会做就可以了,这次算错了没关系,到考试时能算对就可以了。其实,作为有多年教学经验的老师,我们告诉各位家长,会做做不对才是最可怕的。

原因:粗心的原因有两个,一是心态问题,这个问题后面会详细的说。第二个原因就是对知识掌握的不牢固,模棱两可,错误总是在你掌握不牢固的地方出现,那些看似是粗心犯的错,其实都是因为在应用知识的时候不熟练,导致出错。

解决方法:有选择的多做题目,在数学学习中,我们反对搞题海战术,但是要想学好数学,不做题目不进行针对性训练是无法把学到的知识掌握牢固的。但是也不能盲目的去做题,有数量不等于有质量,会做的题目就是做上一千道也没有进步。老师和家长要引导孩子挑战自己不会的题目,只有不断地去挑战才能不断的进步。

现象三:心态不端正,觉得做不对无所谓,会做就行了

很多学生都觉得只要会做就行了,平时算不对,到考试时注意力会高度集中,就能算对了。其实这种看法是不对的,

原因:学生学习的目的除了要掌握知识,掌握解决问题的方法,还要在学习的过程中养成良好的学习习惯,良好的学习习惯是成功的一大法宝。而在学习中心态不端正,长此以往,会形成浮躁的性格,这是学习的大忌。

解决方法:端正态度,养成良好的学习习惯。准备一个错题本,把每天自己做错的题目记下来,要将因为不会而做错和因为粗心做错的题目分开记,每周都将错题本上的该周做错的题目再做一遍,就会对自己犯过的错误印象深刻,就能避免再犯同样的错误。

总之,要想提高解题的准确率,就要本着端正的学习态度,去做一定量的有针对性的题目,在做题时认真思考,要全神贯注,心无旁骛。真正的去理解解题方法,做完一道题目之后当堂回顾,把解题思路复述出来,并将做错的题抄在错题本上,经过一段时间的努力,一定能将解题的错误率降低,并养成良好的学习习惯。所以,我们经常说,学数学很容易,秘诀就是:会做的做对,错过的不要再错!


初中数学答题时间分配技巧相关文章

一键复制全文保存为WORD