人教版九年级数学知识点总结

数学是考试的重点考察科目,数学知识的积累和解题方法的掌握,需要科学有效的复习方法,同时需要持之以恒的坚持。下面是小编给大家整理的九年级数学知识点,希望对大家有所帮助。

九年级数学知识点整理

等腰三角形的判定方法

1.有两条边相等的三角形是等腰三角形。

2.判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。

角平分线:把一个角平分的射线叫该角的角平分线。

定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

性质定理:角平分线上的点到该角两边的距离相等

判定定理:到角的两边距离相等的点在该角的角平分线上

标准差与方差

极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值-最小值。

计算器——求标准差与方差的一般步骤:

1.打开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。

2.在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。

3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。

4.当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;

5.标准差的平方就是方差。

初三数学下册知识点归纳

1.解直角三角形

1.1.锐角三角函数

锐角a的正弦、余弦和正切统称∠a的三角函数。

如果∠a是Rt△ABC的一个锐角,则有

1.2.锐角三角函数的计算

1.3.解直角三角形

在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

2.直线与圆的位置关系

2.1.直线与圆的位置关系

当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

直线与圆的位置关系有以下定理:

直线与圆相切的判定定理:

经过半径的外端并且垂直这条半径的直线是圆的切线。

圆的切线性质:

经过切点的半径垂直于圆的切线。

2.2.切线长定理

从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

切线长定理:过圆外一点所作的圆的两条切线长相等。

2.3.三角形的内切圆

与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。

3.三视图与表面展开图

3.1.投影

物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。

可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

3.2.简单几何体的三视图

物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

主视图、左视图和俯视图合称三视图。

产生主视图的投影线方向也叫做主视方向。

3.3.由三视图描述几何体

三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。

3.4.简单几何体的表面展开图

将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。

圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。

圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。

初三数学学习方法技巧

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。我去佛山一中开家长会时,一中校长的一番话使我感触良多。他说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。当然,校长是谦虚的,但他说明了一个道理,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

人教版九年级数学知识点总结相关文章

一键复制全文保存为WORD