数学是考试的重点考察科目,数学知识的积累和解题方法的掌握,需要科学有效的复习方法,同时需要持之以恒的坚持。下面是小编给大家整理的九年级数学知识点,希望对大家有所帮助。
第一章证明
一、等腰三角形
1、定义:有两边相等的三角形是等腰三角形。
2、性质:1.等腰三角形的两个底角相等(简写成“等边对等角”)
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(“三线合一”)
3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
4.等腰三角形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(可用等面积法证)
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴
3、判定:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
特殊的等腰三角形
等边三角形
1、定义:三条边都相等的三角形叫做等边三角形,又叫做正三角形。
(注意:若三角形三条边都相等则说这个三角形为等边三角形,而一般不称这个三角形为等腰三角形)。
2、性质:⑴等边三角形的内角都相等,且均为60度。
⑵等边三角形每一条边上的中线、高线和每个角的角平分线互相重合。
⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线。
3、判定:⑴三边相等的三角形是等边三角形。
⑵三个内角都相等的三角形是等边三角形。
⑶有一个角是60度的等腰三角形是等边三角形。
⑷有两个角等于60度的三角形是等边三角形。
二、直角三角形全等
1、直角三角形全等的判定有5种:
(1)、两角及其夹边对应相等的两个三角形全等;(ASA)
(2)、两边及其夹角对应相等的两个三角形全等;(SAS)
(3)、三边对应相等的两个三角形全等;(SSS)
(4)、两角及其中一角的对边对应相等的两个三角形全等;(AAS)
(5)、斜边及一条直角边对应相等的两个三角形全等;(HL)
2、在直角三角形中,如有一个内角等于30o,那么它所对的直角边等于斜边的一半
3、在直角三角形中,斜边上的中线等于斜边的一半
4垂直平分线:垂直于一条线段并且平分这条线段的直线。
性质:线段垂直平分线上的点到这一条线段两个端点距离相等。
判定:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。
6、角平分线上的点到角两边的距离相等。
7、在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
8、角平分线是到角的两边距离相等的所有点的集合。
9、三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
10、三角形三条中线交于一点,交点为三角形的重心。
11、三角形三条高线交于一点,交点为三角形的垂心。
特殊值的形式
①当x=1时 y=a+b+c
②当x=-1时 y=a-b+c
③当x=2时 y=4a+2b+c
④当x=-2时 y=4a-2b+c
二次函数的性质
定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
正无穷);②[t,正无穷)
奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数 。 周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。
重视构建知识网络——宏观把握数学框架
要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考[微博]考查的重点。因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类、定义、性质和判定,并会应用这些概念去解决一些问题。
重视夯实数学双基——微观掌握知识技能
在复习过程中夯实数学基础,要注意知识的不断深化,重视强化题组训练——感悟数学思想方法
除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
重视建立“病例档案”——做到万无一失
准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。
九年级数学知识点上册相关文章: