作为一名为他人授业解惑的教育工作者,通常需要准备好一份教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写呢?以下是人见人爱的小编分享的《加法结合律》的教学设计优秀9篇,如果能帮助到您,小编的一切努力都是值得的。
教学目标:
1、理解并掌握加法结合律,并能够用字母来表示加法结合律。
2、经历探索加法结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算定律。
3、在具体情境中体会应用加法结合律进行简便计算的实际意义,感受到加法结合律的价值,与日常生活的密切联系,形成一定得应用意识。
教学重点:
理解并掌握加法结合律,能用字母来表示加法结合律。
教学难点:
经历探索加法结合律的过程,发现并概括出运算定律。
教学过程:
一、复习。
根据加法交换律在( )里填上恰当的数。
20+34=( )+( )
a +100= ( ) + ( )
二、板书课题:加法结合律
三、出示学习目标。
1、理解和掌握加法结合律。
2、培养学生观察、归纳、概括的能力。
四、出示自学指导。
1、认真看课本29页的例2。想想(88+104)+96先算什么?后算什么?88+(104+96)先算什么?后算什么?为什么“104+96”要加小括号?
2、(88+104)+96与88+(104+96)可以用什么符号连接起来?观察后比较(88+104)+96
与88+(104+96)有什么相同点和不同点?
3 你发现了什么规律?用自己的话说一说。
五、检测。
1、根据自学指导检测。
2、习题。
(1)根据加法结合律填空。
(136+157)+143=136+( + )
(288+495)+105=288+( + )
(○+□)+△= ○ + ( + △ )
(a+ )+ = +(b+c)
(2)运用加法交换律和结合律填数。
53 + 36 + 6 4 = ( ) + ( + )
4 8 + 2 7 + 6 2 = ( )+ ( + )
8 9 + 1 2 5 + 1 1 =( + ) +( )
3 5 0 + 3 7 4 + 6 5 0 = ( + ) +( )
(3)不用计算,把左右两边得数相等的算式用线连起来
a: 76 +1 8 + 2 2 1、( 2 7 + 7 3 )+ 4 6
b: 4 2 + 2 4 + 5 8 2、 7 6 +( 1 8 + 2 2 )
c: 3 1 + 1 9 + 6 7 3、 2 4 +( 4 2 + 5 8 )
d: 2 7 + 4 6 + 7 3 4、( 3 1 + 1 9 )+ 6 7
(4)哪个算式计算最简便,就把表示哪个算式编号的字母填在□内。
78 +157 + 22 □
A 78 + (157 + 22)
B 157 + (78 + 22)
C (78 + 157)+22
1.挑山工主题教学设计
2.小班冬天到主题教学设计
3.找春天主题教学设计
4.儿童节主题班会教学设计
5.端午主题班会教学设计
6.金蝉脱壳主题教学设计
7.消防安全教育主题教学设计
8.小学毕业主题班会教学设计
9.小学元旦主题班会教学设计
10.爱眼日主题班会教学设计
教学目标:
1、理解并掌握加法结合律,并能够用字母表示,初步感受应用加法结合律可以使一些计算简便,发展应用意识。
2、经历探索加法结合律的过程,发展学生的分析、比较、抽象、概括能力,渗透符号意识。
3、感受数的运算与日常生活的密切联系,获得探究的乐趣和成功的体验,初步形成独立思考、合作交流的意识和习惯。
学习目标:
1、理解并掌握加法结合律
2、能用符号表示加法结合律。
3、会运用加法结合律进行简便计算。
学习任务:
1、理解并掌握加法结合律。
2、能用符号表示加法结合律。
3、会运用加法结合律进行简便计算。
教学重点:经历运算律的探索过程,发现规律,概括规律
教学准备:课件
教学流程:
一、激情导入
1、导入课题:口算下面两题50+70+30 240+105+95
说说你是怎样算的,针对先算70+30和105+95提出质疑:这样算对吗?有什么依据吗?这节课我们就来学习加法结合律。板书课题:加法结合律
2、明确目标:出示学习目标,齐读一次。
3、效果预期:关于加法计算,我们已经有了那么多的经验,这些经验能帮助我们很好的认识加法结合律。
二、民主导学
任务一、认识加法结合律
1、任务呈现:
(1)、出示例2主题图,学生说图上的信息并提问,学生对提出的题进行解答,师引导学生研究问题“这三天一共骑了多少千米?”请学生自己尝试列式,并想想为什么这样列式,教师巡视指导。学生回答,教师有意识地板书,并说出自己的想法。
(88+104)+96=288(千米) 88+(104+96) 88+104+96 104+96+88
再针对这两个算式开展研究:(88+104)+96 88+(104+96)
(2)、猜一猜:这两个式子相等吗?怎样证明?
观察思考:比较两个算式,什么变了?什么没变?
通过这两个式子,你作什么猜想?怎样证明你的想法?
2、自主学习
小组合作探究,按照任务要求认真完成。
3、展示交流
说说你有什么猜想?怎样证明你的想法?
学生自己归纳出“三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。”
任务二、能用符号表示加法结合律。
1、任务呈现:你会用符号表示加法结合律吗?
2、自主学习:独立完成。
3、展示交流:展示学生的各种表示方法,重点介绍图形表示法和字母表示法。
任务三、会运用加法结合律进行简便计算。
1、任务呈现:你会用加法结合律进行简便计算吗?
出示题组,请学生独立完成。
A、用简便方法计算下面各题。
(1)32+93+68 (2)154+46+79+121
B、你能在( )里填上合适的数吗?
96+35=35+(45+36)+64=45+( + )
560+(140+70)=( + )
2、自主学习:独立完成。
3、展示交流。
三、检测导结
1、出示检测题,要求8分钟内独立完成。
①、你能在横线上填出合适的数吗?
(45+36)+64=45+(36+□)
(72+20)+□=72+(20+8)
560+(140+70)=(560+□)+□
②、你能把得数相同的算式连一连吗?
⑴ 72+16 A、( 75+25)+48
⑵ 45+(88+12) B、 16+72
⑶ 75+(48+25) C、(45+88)+12
2、出示正确答案,同桌互相检查,指出其中的错误并改正。
3、反思总结:你有什么新的收获?有什么想和大家交流一下吗?
让学生回顾今天所学的内容,并将其内化为自己的知识。
四、板书设计:
教学内容:
人教版教材第97页“20以内进位加法”例5
教学目标:
-§ 1、培养学生的应用意识和解决问题的能力。
2、初步感受解决问题的思考过程,体验同一个问题可以从不同角度去思考,用不同的方法解决。
3、感受数学在日常生活中的作用
教学重点:
引导学生掌握“同一个问题可以从不同的角度去思考,用不同的方法来解决”的学习方法。
教学难点:
培养学生用数学的能力。教学准备:多媒体课件、口算卡片
教学过程:
一、学习准备:课前谈话交流
二、探索研究:“学新知”
1、课件出示图片:让学生初步感受“从不同的角度观察同一个物体,看到的物体形状是不同”。(引出课题)
2、(出示主题图)看,一(3)班小朋友参加了一次文艺汇演。瞧!他们来了。提问:
①从图中知道了什么?
②同一幅图,为什么观察到的信息不一样呢?
③问题是什么?把知道了什么和问题是什么连起来说一说。
3、解题。提问:求一共有多少人?
①要求一共有多少人?该怎么样解决这个问题呢?
②学生独立思考。
③学生把自己的想法与小组同学说一说,小组讨论解决问题的方法。
④汇报:A、数出前后两排的。人数,再加起来。---------后排有8人。---------------前排有7人。所以,8+7=15(人),一共有15人。B、按性别数,将男生和女生的人数加起来。
1(男生有9人)(女生有8人)所以,9+6=15(人),一共有15人。
4、提问:这两种解答方法有什么不同?有什么相同的地方?为什么两个算式的结果都是15人呢?我们是怎样解决这个问题的?
5、小结:从不同的角度观察这幅图,提取了不同的数学信息,但都是把这两部分合起来,所以用加法。
三、巩固练习:“我能行”
1、求一共有多少只猴子?(课件出示)问:
①从图中你知道了什么?
②要求的问题是什么?
③你想怎么解答?
④还可以怎么解答?
⑤都是求“一共有多少只猴子?”,两种解答方法有什么不同?
2、教材第97页“做一做”。求:一共有多少只天鹅?(课件出示)问:
①从图中你知道了什么?
②要求的问题是什么?
③你想怎么解答?
④还可以怎么解答?
⑤都是求“一共有多少只天鹅?”,两种解答方法有什么不同?
3、想一想。问:这几道题目有什么相同的地方?小结:这几个题目都是求“一共有多少”,表示把它们都合起来。(都用加法计算)
四、盘点收获:“我很棒”今天的学习,我学会了?
五、布置作业。
1、本节课中力求让学生经历探索加法运算律的过程,理解并掌握加法结合律,会用字母来表能够运用所学的运算定律进行简算。
2、在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。
3、让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。
上课过程中,池老师注意了以下几方面的问题:
课堂上教师把学生的思考放在了第一位,通过教师的引导,让孩子们从思考中获得了快乐,从运用中得到了启示。
其次,注意渗透数学的学习方法,即让学生踏踏实实经历了“列式计算——观察思考——猜测验证——得出结论”这一数学知识研究的基本过程。学生自己想,自己说,自己举例,自己得出规律,积极主动的探究活动贯穿始终,充分体现了学生的主体地位。
由于加法结合律是本课教学难点。教学中安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你想到了些什么”引发学生由三个例子的共同特征联想到是否具有普遍性。从而得到猜想:是不是所有的三个数相加都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。
本课围绕“观察猜想——举例验证——得出结论”这一数学方法展开,从学生的学习情况来看,通过本课的学习不但掌握了加法结合律的知识,更重要的是学会了数学方法,所以到课尾出现了学生由加法运算律联想到减法、乘法、除法运算中,是否也存在一定的规律呢这一想法。并产生运用这一数学方法进行探索的愿望和热情。这些数学方法是学生终身学习必备的能力。
加法结合律就要让学生尝试运用这种方法自己去探索规律了。由于加法结合律一个教学难点,教学中安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你想到了些什么”引发学生由三个例子的共同特征联想到是否具有普遍性。从而得到猜想:是不是所有的三个数相加都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。
通过教师的引导,让孩子们从思考中获得了快乐,从运用中得到了启示,所以整堂课学生注意力都是高度集中的。鼓励学生用自己喜欢的方法表示规律。学生思维的浪花又一次激起,有图形表示的,有文字表示的,也有字母表示的,既是对加法交换律的概括与提升,又能发展符号感。
我还注意让学生在交流共享中充实学习材料,比如说:让学生再写这样的算式进一步验证,增强结论的可靠性。注意渗透数学的学习方法,即让学生踏踏实实经历了“列式计算——观察思考——猜测验证——交流合作——得出结论”这一数学知识研究的基本过程。学生自己想,自己说,自己举例,自己得出规律,积极主动的探究活动贯穿始终,充分体现了学生的主体地位。
总的来说,这堂课取得了较好的效果,但是自我感觉不是很好,由于我的心理素质的问题,在课堂上一紧张,个别环节不够紧凑,这也是本人的教学机智不够灵活,缺乏经验,还应该在今后的教学中不断地探索、总结、完善自己。
【《加法结合律》教学反思(精选5篇)】
教学目标:
1、使学生探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,发展运用意识。
2、学会用字母表示运算律,初步培养符号感和归纳、推理的能力。
3、在数学活动中,增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重难点:
理解并掌握运算律,并进行运算。
教学方法:
主动探索法
教学用具:
挂图、卡片
教学过程:
一、情景导入
1、谈话:同学们喜欢玩吗?玩什么?(师生做游戏进入新课)
2、出示情景图,仔细看图,读懂图中的信息。
(1) 同桌间说信息,提加法问题。
(2) 展示学习成果(师相机贴出问题卡)
(3) 教师小结进入课题并板书:加法运算律
二、探索加法交换律
1、解决问题“跳绳的。有多少人?”
(1) 学生自练,展示学习成果。(指两名用不同方法计算的'同学展示)
(2) 说说自己的发现。(同桌交流,展示)
(3) 师小结并板书28+17=17+28
(4) 让学生举例(自练)展示教师相机板书
2、讨论交流:
A每组中的两个算式的异同。
B这几组算式是不是都具有这样的特点?
C说说自己发现的规律。(用自己的话或用自己喜欢的方式表示)
D用字母a、b表示两个加数,怎样表示?(师生交流总结并板书)
E a+b=b+a(说说字母各表示什么?)
3、练习
357+218(计算并验算)
三、探索加法结合律
(1) 出示问题二“参加活动的一共有多少人?”(学生自己练习,师巡视指用不同方法
计算的同学上台板演)
(2) 让学生观察比较得出结果,师板书:(28+17)+23=28+(17+23)
交流自己的发现
(3) 出示两组算式,观察并探索其中的规律。
用学习例1的方法总结出加法结合律,说说其中的字母及识字的含义。
四、巩固理解运算律
卡片出示课后“想想做做”中的练习题(自练,指名说)(同桌交流,展示)
五、总结提高
1、这节课我们学习了加法的哪两个运算律?说说自己的收获。
2、教师小结:
加法交换律和加法结合率都是加法运算中存在的规律,涉及到的数都是加数。加法交换率涉及到的加数只是交换了位置,和不变;加法结合率涉及到的加数位置不变,只是改变了运算顺序,和也不变。
六、布置作业
完成课后未完成的题目 板书
运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
教材分析:
本教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经理运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。
“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算律的理解;接着通过题组对比和凑整等练习,为学习简便计算作适当渗透。
教学目标:
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:
使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:
使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。
教学准备:
配套课件。
教学过程:
一、课前谈话。
有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。
设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。
二、教学加法交换律。
1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?
你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人?
④参加活动的一共有多少人?
设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。
2、今天这节课,我们就一起来研究其中的这两个问题:
在黑板上张贴:参加跳绳的一共有多少人?
参加活动的一共有多少人?
我们先来解决第一个问题:参加跳绳的一共有多少人?
3、你们能马上口头列式并口算出结果吗?
指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)
为什么这两个算式的结果一样?
4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28
仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?
5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?
6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?
教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?
7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。
8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。
小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。
9、练习:
完成想想做做第一题前面两小题。
设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。
三、学习加法结合律。
1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?
2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。
3、学生回答,教师有意识地板书:
(28+17)+23=68(人)
28+(17+23)
(28+23)+17
28+(23+17)
(23+17)+28
23+(17+28)
让回答的同学说说这么列式是怎么思考的?
下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)
设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的`联系,并很好地引导到需要的算式。
4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:
(28+17)+23=28+(17+23)
5、电脑出示:下面的Ο里能填上等号吗?
(45+25)+13Ο45+(25+13)
(36+18)+22Ο36+(18+22)
学生回答,教师板书:(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。
7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。
板书:(a+b)+c=a+(b+c)
教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。
8、完成“想想做做”第1题的后面两个小题。
设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。
四、巩固练习。
1、完成“想想做做”第2题。
第4小题引导学生发现是运用了加法交换律和加法结合律。
2、完成“想想做做”第3题第1行。
3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。
4、完成“想想做做”第4题。
使学生初步感受应用加法运算律可以使计算简便。
设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。
五、课堂总结。
通过本节课的学习,你有什么新的收获?
设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。
板书设计: 运算律
加法交换律 加法结合律
28+17=45(人) 17+28=45(人) (28+17)+23 28+(17+23)
28+17=17+28 =45+23 =28+40
(学生说的算式) =68(人) =68(人)
(28+17)+23=28+(17+23)
(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
a+b=b+a (a+b)+c=a+(b+c)
本节教材的例题,都是由主题图引出的。教学时,应充分利用主题图的故事性,逐步生成连贯的情境,逐步生成后续的问题,使本节课的教学在内容与表现形式上形成一个有机的整体。
教学时,也应遵循由个别到一般,由具体到抽象的认识过程,引导学生由感性认识上升到一定的理性认识。
4.在整个环节中教师是教学的组织者和引导者,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力,充分调动他们的自信心和自豪感。
学生虽能较快的体会出这两种加法的运算定律,但在总结、交流加法的结合律时,学生的语言表达能力较差,教师应适当的进行指导和帮助。同时要鼓励学生用自己最喜欢的方法记忆加法的运算律,提高学生掌握能力。学生的记忆方法过于单调,教师应在开发学生思维上多下功夫。
加法结合律教学反思
今天教学加法的运算定律,因为教学内容比较简单,学生在以前奥数课上已经初步运用其进行简算,所以我课前让学生自学课本例题,课堂上直接提问什么是加法的。交换律?
学生举例说明。
学生举了很多例子,能将这些例子归纳起来,用一句话概括地说一说加法交换律吗?(引导学生概括,主要是促进学生从生活语言到数学语言转化,体会数学语言的简洁和严密。)
检查学生预习加法结合律时,学生提出来:(A+B)+C=A+(B+C),还可以等于(A+C)+B,我首先肯定了学生的思路,并引导学生理解这实际综合运用了加法的交换律和结合律。并进一步启发学生:如果有4个数或者更多的数相加,该怎样表示?例如:A+B+C+D+E,学生根据刚才的经验,拓展了思路,写出一系列的算式。我进一步引导学生:能用数学语言将我们的发现也概括出来吗?
学生尝试:几个数相加,可以任意将其中的两个数相加,再与其它数相加,和不变。
我想这部分内容对于学生而言,根据原有的知识和经验的基础,采取有意义的接受教学,并在此基础上有所拓展也未尝不可。