作为一无名无私奉献的教育工作者,时常需要用到教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那要怎么写好教学设计呢?这次帅气的小编为您整理了倒数的认识教学设计【优秀8篇】,希望大家可以喜欢并分享出去。
一、教学内容:九年义务教育六年制第九册第二单元《倒数的认识》
二、教材分析:
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、教学目标:1.理解倒数的意义,掌握求倒数的方法。
2、能熟练地写出一个数的倒数。
3、结合教学实际培养学生的抽象概括能力。
四、教学重点:理解倒数的意义,掌握求倒数的方法。
五、教学难点:熟练写出一个数的倒数。
六、 教学过程:
(一)、谈话
1、交流
师:我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么联系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的联系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存联系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存联系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2、导入今天,我们继续来研究数学中具有相互依存联系的现象的有关知识。
(二)、学习新知
对数游戏
1、学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。
师:4是3的4/3,
生:3是4的3/4
师:7是15的7/15;生:15是7的15/7。
……
提问;看我们做游戏的结果,你们有没有发现什么?
生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。
生2:两个分数的分子、分母相互调换了位置。
生2:两个分数的乘积是1。
提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识
提问:那么怎样的两个数才是互为倒数呢?指导看书。
思考:(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗。请举例
评析:回答问题
理解“互为”的意义。怎样的两个数互为倒数。
找朋友游戏(课前每位同学发一张数字卡片)
练习
(!)出示卡片 (六位同学举着卡片依次站在黑板前)
7/911/41/5086/599
(2)规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队
提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?
3教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/37/41/591/7/80.4
小组讨论指名板演
提问:1.你是怎么找出2/3的倒数的?
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2。
2、你是怎么找出7/4的倒数的?
……
提问:我们怎样才能很快地找到一个数的倒数?为什么?
4、练习请剩下的没有找到朋友的同学继续找倒数
5、讨论:1的倒数是谁?0的倒数呢?
生:1的倒数是1
师:能说明一下理由吗?
生1:因为1与1的乘积还是1。
生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。
师:0的倒数呢?
生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。
生2:因为0与任何数相乘都得0,所以0的倒数是任何数。
生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
生4:0可以写成0/1,0/1的倒数是1/0。
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。
6、完善求一个数的倒数的方法
三、巩固练习
(一)填空
1、因为5/3XX/5=1,所以()和()互为();
2、因为15XX/15=1,所以()和()互为();
3.4/7与()互为倒数;
4、()的倒数是6/11
5、()的倒数是2
6.1/8的倒数是()
7.1/2/7的倒数是()
8.0.3的倒数是()
(二)判断
1、得数是1的两个数互为倒数。()
2、互为倒数的两个数乘积必定是1。()
3.1的倒数是1,所以0的倒数是0。()
4、分数的倒数都大于1。()
(四)思考
4/5XX)=()XX
四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?
五、布置作业
学习内容:人教版义务教育教科书数学六年级上册P28—29
学习目标:
(1)理解倒数的意义及倒数的特点,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)采用自主探究与合作交流的方法,进一步培养学生的自主学习能力,提高学生观察、比较、归纳、概括以及合作学习的能力。
(3)通过亲身参与探究活动,体验数学学习的乐趣,激发积极的学习情感,培养学生学会与人合作,愿与人交流的习惯。
学习重点:倒数的意义、特点和求倒数的方法。
学习难点:1和0的倒数的求法。
学习过程:
一、创设情境,激趣导学。
1.出示算式,找特征。
先计算,再观察,看看有什么规律。
×=1×=15×=1×12=1
问:“你发现了什么?”
2.引出倒数的定义。让学生看书。
3.揭题:今天我们就来学习“倒数的意义”(板书课题)。
二、独学质疑,合作探究。
1.初步理解
我们知道×=1,那么我们可以说:“因为×=1所以和互为倒数”
这句话还可以怎么说?的倒数是,的倒数是。
你能照样子,结合黑板上的例题,说说算式中两数之间的。关系吗?
2.判断,加深理解
(1)判断正误,并说明理由。
a.和7都是倒数。(关注到了倒数的概念中关键的词语“互为”)
b.+=1,所以和互为倒数。(关注了倒数概念中关键的词语“乘积是1。”)
c.××=1,所以、、互为倒数。(关注了倒数中的关键词“两个数”)
小结:对于概念的学习,应该充分关注概念中的关键词语。
(2)请任意写出三个数的倒数,要求,写完整:谁的倒数是谁?
三、点拨互动,应用提升。
1.出示例2,找一找哪两个数互为倒数?
2.学生汇报找的结果,并说说怎样找的?
(1)看两个数的乘积是不是1。
(2)看两个数的分子与分母是否交换了位置。
3.根据寻找出的结果,探究倒数的特点。
4.这两种方法,哪一种比较快?
5.设问:1和0有没有倒数?如果有,是多少?
(1)分组讨论。(2)学生汇报。
四、检测诊断,总结评价。
1.基本练习:完成教科书P28的做一做,然后集体订正。
2.加深练习:倒数一定比它本身要小吗?探究什么数的倒数比它本身要大,什么数的倒数比它本身要小。
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,。.。.。.不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,。.。.。.但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
教学目标:
1、理解倒数的意义,掌握求倒数的方法。
2、提高观察、比较、概括的能力。
3、感悟“变通”的数学思想。
教学重点:
倒数的意义与求法。
教学难点:
理解“互为”的意义,明确倒数只是表示两个数间的关系。
教学准备:
卡片(6条规律),练习纸(课后习题4),比赛用纸。
教学过程:
一、游戏比赛
1、学习之前,让我们先来个“设计接力”赛,怎么样?
比赛内容:请你设计有两个因数相乘的算式,并使乘积为1。
比赛规则:每人每次设计一式,写完后按顺序立即传给小组内其他成员。
比赛时间:1分钟。
比赛结果评定标准:写得又对又多的为胜。(重复的只能算一个)
2、组织评议:实物投影,每组一位学生读算式,全班监督是否正确。根据数量评选出优胜小组。
二、倒数的意义
1、短短一分钟,大家就设计了这么多的算式,如果再给你们一些时间,你们还能写吗?能写多少个?
所有这些算式中,两个因数的乘积都为1,像这样,乘积是1的两个数互为倒数。(板书乘积是1的两个数互为倒数,重点标“互为”)。
2、理解“互为”。
(1)问:“互为”是什么意思?(互相)
一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。
(3)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说谁是倒数吗?
(4)想一想,在我们学过的数的概念中,哪些数也不能单独表示一个数?(因数、倍数、互质数)
(5)选择一个算式,跟你的同桌说说谁是谁的倒数。
三、倒数的写法、
1、刚才,你们设计这些乘法算式时有什么窍门吗?(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)
为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)
(若有小数乘法。问:0.25X4=1这道算式,我怎么没看出分子分母倒一下呢?)
(0.25就是,分子分母倒过来是,就是4)所以0.25的倒数是4。
2、根据你的经验,你能说出它们的倒数吗?(显示:6)
第一个:应该怎样规范的书写呢?请你在自备本上试一试。指名板演。最后两个说说是怎样想的。
3、你觉得应该怎样求一个数的倒数?(把分数的分子分母调换位置)
4、一个数的倒数你会求了吗?谁愿意上来考考大家?你说一个数,我们说出它的倒数。在报数中得出:1的倒数是它本身。0没有倒数。卡片出示,分别分析为什么。(有可能有学生报小数或带分数,集体探讨怎样求小数或带分数的倒数。)
四、深化认识
1、小组合作
请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。
2、交流发现:
师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。
(3/4的倒数是4/3,2/3的倒数是3/2,7/8的倒数是8/7,这组分数都是真分数,它们的倒数都是假分数。)
师:是不是所有真分数的倒数都是假分数?
(出示卡片:所有真分数的倒数都是假分数)
师:谁来说说第二组
(6/5的倒数是5/6,7/2的倒数是2/7,3/8的倒数是8/3,这组分数都是假分数,它们的倒数都是真分数。)
师:是不是说所有假分数的倒数都是真分数?
(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)
师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?
(都是大于1的假分数。)
所以——(卡片出示:大于1的假分数的倒数都是真分数。)
师:第3组呢?
(这组分数的倒数都是整数。)
这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)
(卡片出示:分数单位的倒数都是整数)
师:第四组呢?
(这组都是整数,整数的倒数都是分子为1的真分数。)
师:是不是所有整数的倒数都是分数单位?
(出示:非零整数的倒数都是分数单位)
师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。
3、现在,你认识倒数了吗?真的认识了?那就请你来辨一辨。(课件显示)
(1)得数是1的两个数互为倒数。
(2)9的倒数是9/1。
(3)1的倒数是1,0的倒数是0.
(4)1/6是倒数。
(5)因为x×y=1(x≠0,y≠0),所以x和y互为倒数。
(6)所有假分数的倒数都是真分数。
4、今天这节课,我们学习了……你觉得最令你高兴的收获是什么?
关于倒数,你还想知道些什么呢?
思考一:1的倒数是多少?你觉得应该怎样求一个带分数的倒数?
思考二:小数有倒数吗?如果有,该怎样求?
五、学科融合
最后,让我们轻松一下。我们来看看语文中有趣的“倒数”现象。(课件显示)
如汉字“吴——吞”,“杏——呆”;很有趣吧!
接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。
教学目标:
(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。
(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维
(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。
教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。
教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。
教学准备:写有数的纸片。
教学过程:
一、导入新课。
请同学们观察下面两组字:杏–呆,吴–吞。
师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。
学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。
师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?
学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。
师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)
二、新知探究。
(一)小组验证互为倒数的两个数的特点。
师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。
师:你们刚才写的所有算式都有怎样的共同点?
学生:我们写的每组数的分子与分母的位置是调换了的。
师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)
板书:第一组:3/2+2/3=9/6﹢4/6=13/6
6/5+5/6=36/30+25/30=61/30
第二组:3/2-2/3=9/6-4/6=5/6
6/5-5/6=36/30-25/30=11/30
第三组和第四组:3/2×2/3=16/5×5/6=1
师问:互为倒数的两个数相加、相减、相乘有何特点?
学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。
师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)
指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……
2、试下面数的倒数。
2的倒数是0。2的倒数是0。25的倒数是
让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。
明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。
(二)课堂练习:求一个数的倒数。
1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。
2、师:完成教材P45“填一填”
5/87/462/310.8(补充)
让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。
3、讨论:0有倒数吗?学生交流。
板书:0和任何数相乘都不能得到1,所以0没有倒数。
4、完成P47课堂活动的对口令。
汇报时让学生说一说谁是谁的倒数。
(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
5、出示判断:
(1)得数为1的两个数互为倒数。()
(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()
(3)互为倒数的两个数乘积一定是1。()
(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )
(5)a是1/a的倒数,1/a是a的倒数。()
(6)a/b是b/a的倒数,b/a是a/b的倒数。()
6、探索求真分数和假分数的倒数的特点。
学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。
师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。
【教材依据】
倒数的认识是义务教育课程标准试验教科书北师大版小学五年级数学(下册)第三单元中的第一节课内容。
【设计思路】
1、指导思想:
让学生通过文字游戏感受民族语言文字的美,激发学生学习新知的热情,进一步利用同桌关系让学生理解“互为”的含义。自然地引领学生进入到数学王国,理解倒数的概念。利用倒数的概念学会找一个数的倒数的方法。
2、设计理念
本节课内容与学生以前所学的知识联系不大,学生也很容易接受和理解,因此在设计本节课内容的时候,主要从学生的生活实际出发,利用游戏来调动学生学习的积极性,让学生在玩游戏的过程中掌握本节课的知识点,尽量分散难点,突出重点,这样学生容易接受。 3、教材分析
本节课的内容是倒数的认识,主要是让学生了解倒数的概念,能正确的找一个数的倒数,知道1的倒数是1,0没有倒数。会找小数和带分数的倒数。因此在设计教学的时候,我是一步一步进行深入的,先引导学生认识倒数的概念,理解倒数具备的条件,会找一个数的倒数。(真分数和整数的倒数),紧接着在学生练习的过程中引入小数和带分数,引导学生理解如何找小数和带分数的倒数,从而让学生熟练的掌握找小数和带分数倒数的方法。
【教学目标】
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出一个数的倒数。
(2)能力目标:引导学生学会观察、归纳,培养学生学会在小组内与人交流,与人合作的意识。从而提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:培养学生学习数学的兴趣,探寻数学知识的欲望以及良好的学习习惯。
【教学重点】:倒数的意义与求法。
【教学难点】:1、0的倒数,小数、带分数倒数的求法。
【教学过程】:
一、 创境导课、激发兴趣。
1、 文字游戏:
师:同学们,我们在学习新课之前,来做个文字颠倒游戏,比如老师说:“人小”,大家可以说“小人”,好不好,有情趣没有?
生:(大声喊道)好!
师:学科
生:科学
师:人人为我,
生:我为人人。
师:上海自来水,
生:水来自海上
师:同学们,刚才的文字颠倒游戏好玩不?
生:好玩。
师:那我们再来玩一种文字游戏,大家听好了,老师说“秦少坤是朱倩倩同学的同桌”,还可以怎么说呢?
生:还可以说“朱倩倩是秦少坤同学的同桌。”
师:老师能不能理解为“秦少坤和朱倩倩同学互为同桌呢?
生:开始有些迟疑,然后回答到“可以”。
板书“互为”
2、 数字游戏:
师:同学们,我们的民族语言文字有这样的美妙,其实在数学王国也存在着这样的美,我们不妨来试试。老师比如说“3/4,大家就来说4/3.
师:6/7
生:7/6
师:8/9
生:9/8
师:像这样6/7和7/6的两个数就互为倒数。
师问:那么什么是倒数呢?谁知道?
生:没人回答。
师:既然大家不知道什么是倒数?我们就先来看一下几道练习题。
二、 探究新知:
(一) 倒数的概念:
1、出示下列习题。
4/5×5/4= 6/7×7/6= 1/8×8= 2/3×3/2= 5×1/5= 2/9×9/2=
(1) 指名学生回答。
(2) 学生观察这些算式有什么特点?
(3) 小组内进行交流。
(4) 各组汇报交流的情况。
(5) 师总结归纳:
①
② 这些算式的乘积都是1. 这些算式中分子和分母都打颠倒了。
2、 学生齐读倒数的概念,理解倒数具备的条件。
(二)、找一个数的倒数的方法:
师:那么我们刚才认识了倒数的概念,如何去找一个数的倒数呢? 生:交换分子和分母的位置就可以了。
师:好,老师现在给大家出几道练习题,大家试试看,能不能正确地找出一个数的倒数。
生:欢呼雀跃(表现出极其热情的表情)。
师:4/5的倒数是( ),5/6的倒数是( ),
0.2的倒数是( ),1 1/2的倒数是( )。
生:相互交流,然后每个小组派出一个代表来汇报交流的结果。 学生汇报:
生A:4/5的倒数是5/4, 5/6的倒数是6/5。
生B:0.2的倒数是1/0.2, 1 1/2的倒数是2. 板书:像这样乘积是1的两个数互为倒数。
生C:我和上面的同学答案一样。
师:老师可以明确的告诉大家同学B的回答是错误的,那么正确的答案又是多少呢?小数和带分数如何去找它们的倒数呢?
生:叽叽喳喳,没人敢回答。
师:既然大家都不会,老师来告诉大家:小数在找倒数的时候,首先要将这个小数化成分数,然后将分数的分子和分母的位置交换即可。带分数在找倒数的时候,要将带分数先化成假分数,然后交换分子和分母的位置即可。大家会了吗?
生:(齐声回答)会了。
生:再次将刚才做错的题目纠正过来。
师:同学们,老师碰到了一个难题,有人问老师数字0和数字1的倒数是多少?老师有点不知道,大家能帮老师这个忙吗?帮老师找到这个答案,好不好?
生:好
生:小组内交流,然后汇报交流结果。
(二) 特殊数字的倒数:
生1:我们小组一致认为数字0没有倒数,因为0×0=0,根
据倒数的概念判断,乘积是1的两个数才互为倒数,所以我
们认为0没有倒数。
生2:我们小组大家都认为数字1的倒数的1,因为1×1=1,
根据倒数的概念进行判断,乘积是1的两个数互为倒数。所
以1的倒数是1.
师:同学们,你们刚才的表现太棒了,大家说的一点都没错,
看来大家对倒数的概念已经理解了,老师很欣慰。
板书:1的倒数是1,
0没有倒数。
三、 巩固练习:
1、 3/5的倒数是( ), 0.5的倒数是( )。
2、判断:
①、 1没有倒数。( )。
②、0的倒数是0( )。
③、0.4的倒数的2/5( )。
四、 拓展练习:
列式计算:
1、4/7乘以它的倒数是多少?
2、1/6乘以2/3的倒数,积是多少?
五、课堂小结:
师:同学们,本节课即将结束,大家在本节课中学到了那些知识?请你用:“我最高兴的是??,令我最思索的是??,令我最想说的是??,令我最满意的是??”中的一句或者多句对本节课进行总结一下。
生1:令我最高兴是本节课我认识了新的一种数-----倒数。 生2:令我最满意的是本节课我不但认识了一种新的数—倒数,而且我学会了找一个数的倒数的方法。
??
五、 作业:
板书设计:
倒数的认识
像这样乘积是1的两个数互为倒数。
1的倒数是1, 0没有倒数。
【有效反思】:
本节课教学自己感觉成功之处是:
1、学生对倒数的概念理解了,知道倒数必须具备的条件是什么,会找一个数的倒数。
2、学生课堂上参与率高,在小组内能和大家相互讨论、相互交流,学会了与人合作的能力。
不足之处是:
1、学生对找小数和带分数的倒数的方法掌握的不够熟练,全班有。
1/3的学生没有很好的掌握这个知识点,需要课后及时进行辅导。
2、本节课在设计练习题的时候没有照顾到学困生的学习,这是本节课不足之处。
一、教学内容:
九年义务教育六年制第九册第二单元《倒数的认识》
二、教材分析:
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、教学目标:
1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
四、教学重点:理解倒数的意义,掌握求倒数的方法。
五、教学难点:熟练写出一个数的倒数。
六、教学过程:
(一)、 谈话
1.交流
师: 我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
(二)、学习新知
对数游戏
1.学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。
师:4是3的4/3,
生:3是4的 3/4
师:7是15的7/15;
生:15是7的15/7。
提问;看我们做游戏的结果,你们有没有发现什么?
生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。
生2:两个分数的分子、分母相互调换了位置。
生2:两个分数的乘积是1。
提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识
提问:那么怎样的两个数才是互为倒数呢?指导看书。
思考:(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗。请举例
评析:回答问题
理解“互为”的意义。怎样的两个数互为倒数。
找朋友游戏(课前每位同学发一张数字卡片)
练习
(!)出示卡片 (六位同学举着卡片依次站在黑板前)
7/9 11/4 1/50 8 6/5 99
(2) 规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队
提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?
3教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/3 7/4 1/5 9 1/7/8 0.4
小组讨论 指名板演
提问:1.你是怎么找出2/3的倒数的?
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。
2.你是怎么找出7/4的倒数的?
……
提问: 我们怎样才能很快地找到一个数的倒数?为什么?
4.练习 请剩下的没有找到朋友的同学继续找倒数
5.讨论:1的倒数是谁?0的倒数呢?
生:1的倒数是1
师:能说明一下理由吗?
生1:因为1与1的乘积还是1。
生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。
师:0的倒数呢?
生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。
生2:因为0与任何数相乘都得0,所以0的倒数是任何数。
生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
生4:0可以写成0/1,0/1的倒数是1/0。
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。
6.完善求一个数的倒数的方法
三、 巩固练习
(一)填空
1.因为5/3*3/5=1,所以()和()互为();
2.因为15*1/15=1,所以()和()互为 ();
3.4/7与()互为倒数;
4.()的倒数是6/11
5.()的倒数是2
6.1/8的倒数是()
7.1/2/7的倒数是()
8.0.3的倒数是()
(二)判断
1.得数是1的两个数互为 倒数。()
2.互为倒数的两个数乘积一定是1。()
3. 1的倒数是1,所以0的倒数是0 。()
4.分数的倒数都大于1。()
(四)思考
4/5*()=()*8
四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?
五、 布置作业
简评:
一、自主学习中让学生勇于创新
新课程标准 指出:“学生是学习的主人。”“有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践,自主探索,合作交流是学生学习数学的重要方式。”因此,教师在课堂上应相信学生、大胆放手,引导学生主动地进行自学、思考、讨论、合作交流等活动,发现规律,掌握知识,提高能力。让学生在讨论交流中力图创新,学习创新。本案里例中“你有没有发现什么?”“怎样求一个数的倒数”“1的倒数是几,0的倒数呢?”等处的交流促进了学生对知识的感悟与理解。特别是对“0的倒数呢?”一问的回答,学生各抒几见,有的用推理的方法解释0的倒数是谁;有的用旧知识来解决新问题;也有的用反证法来阐述理由。虽然有对也有错,但用不同的方式或不同的角度来思考问题,无疑体现了学生学习方法上的创新,进而实现知识上的统一。
二、在游戏活动中实现新知的推进
游戏是小学生喜闻乐见的活动方式。游戏可以使学生的注意力更持久,积极性更高。可以让学生在轻松愉快的气氛中学到知识。这节课设计的两个游戏贯穿了新授内容的始终。第一个对数游戏让学生通过听一听,想一想,说一说来感受倒数的特征,即互为倒数的两个数分子与分母调换了位置。为后面学习“求一个数的倒数的方法“打下基础。第二个找朋友游戏,首先,让学生通过找朋友巩固了怎样的两个数互为倒数这一知识点;其次,在剩下的数中选取典型让学生通过讨论想办法找到朋友。并概括出求一个数的倒数的一般方法。这样使学生在不知不觉中接受新知;再次,在剩下的数中继续找朋友,起到了“做一做”的效果;最后,想办法找1和0的朋友,完善找一个数的倒数的方法。本节课上设计的游戏不仅在教学上实现了合理、自然的过度,而且让学生学到了知识,还使学生品尝到游戏带来的快乐。
教材分析:
教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:知道倒数的意义和会求一个数的倒数
教学难点:1、0的倒数的求法。
教具准备:课件
教学过程:
一、课前谈话:
师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。
生:好!
师:那你想怎样表述我们的关系?
生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。
二、揭示倒数的意义
师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始??
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
(生读,师有选择的板书在黑板上。 )
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个
出示例7
师:那请你们来帮帮忙,找出乘积是1的两个数。
(学生个别回答)
师:你们找的这些与之前写的所有算式都有怎样的共同点?
生:乘积都是1。
师:你知道吗?揭示意义教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)
师:3/8和8/3互为倒数!我们还可以怎么说呢。
生:3/8的倒数是8/3;8/3的倒数是3/8。
师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?
师:2/5和5/2的积是1,我们就说??(生齐说)
师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。
(学生活动)
(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
探索求一个倒数的方法
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的两个数分子和分母调换了位置。
师:同意吗?
生:同意。
师:根据这一特点你能写出一个数的倒数吗?
生:能
师:试一试!
师在黑板上出示3/5 7/2 ,写出它们的倒数。
师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?
生:把5看成是分母是1的分数,再把分子分母调换位置。
求小数的倒数的方法:小数 求带分数的倒数的方法:带分数
三、 分数倒数。 倒数。 假分数
师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)
0的倒数呢?
师:为什么?
生1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3把这此分数的分子分母调换位置后。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1 的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。 )
四、巩固练习
1、打开书,阅读课本P34,把你认为重要的划起来。
2、完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(4/11=11/4)
生:不可以!
师:为什么?
生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。
(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
3、小游戏:同桌互相出一题,对方说出答案。
4、先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是( ) (2)9/7的倒数是( )
2/5的倒数是( )10/3的倒数是( )
4/7的倒数是( ) 6/5的倒数是( )
(3)1/3的倒数是( ) (4)3的倒数是( )
1/10的倒数是( )9的倒数是( )
1/13的倒数是( )14的倒数是( )
由学生说出各数的倒数。然后
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。
生4:我发现分子是1的分数。
4、填空:
7×( )=15/2×( )=( )×3又2/3=0.17×( )=1
五、课堂小结
1、小结:今天我们学习了什么???
2、学了倒数有什么用呢?
大家课后可去思考一下。
板书设计
倒数的认识
乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。
0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。
(0.1=1/10) (5=5/1) (1又1/8=9/8)
求小数的倒数的方法: 求带分数的倒数的方法:带分数
分数假分数 倒数。 倒数。