《组合图形的面积》教学设计(优秀10篇)

作为一无名无私奉献的教育工作者,就难以避免地要准备教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。怎样写教学设计才更能起到其作用呢?的小编精心为您带来了《组合图形的面积》教学设计(优秀10篇),希望大家可以喜欢并分享出去。

组合图形的面积教学设计 篇1

教学过程:

一、认识组合图形。

1、师生谈话导入:什么是组合图形?

(1)出示火箭模型的平面图。观察一下,你有什么发现?

(2)像长方形、三角形、梯形等这些都是我们已经认识的简单的平面图形,那么这个图形与它们有什么关系呢?

(3)揭示名称与含义:组合图形是由几个简单的平面图形组合而成的。

2、在我们身边有不少物体表面的形状是组合图形。说一说,这些组合图形是由哪些图形组成的?

3、学生自己试举例说明。

二、计算组合图形的面积。

1、揭示课题。

(1)出示中队旗,计算它的面积。

80cm

20cm

30cm

30cm

(2)谈话:中队旗是什么形状?要求做一面队旗要多少布就是求它的什么?怎样求组合图形的面积,下面我们一起来研究这个问题。(出示课题:组合图形的面积)

2、学生尝试。

(1)学生讨论算法。

(2)独立计算。鼓励用不同的做法。

演板:

(80-20+80)×30÷2 80×(30+30)-(30+30)×20÷2

= 4200(平方厘米) = 4200(平方厘米)

(80-20)×(80-20)+30×20÷2×2

= 4200(平方厘米)

(3)比较:哪种方法比较简便?

2、小结:用哪些方法可以计算组合图形的面积?

三、巩固练习。

1、计算花坛的面积。

让学生感受:不是任何分解都可以计算的,要根据条件进行分解。

2、求火箭平面图的面积。

3、选一个求字母“l”和“n”的面积。

四、总结。

你有什么感受?

五、作业。(略)

六、板书:

组合图形的面积

(80-20+80)×30÷2 80×(30+30)(80-20)×(80-20)

= 4200(平方厘米) -(30+30)×20÷2 +30×20÷2×2

= 4200(平方厘米) = 4200(平方厘米)

课后反思:

学生的经验和活动是他们学习空间图形的基础。他们对组合图形的认知是通过观察获得的,关于组合图形的面积计算又是建立在认知的基础上。因此本课的教学设计,是根据数学新课标的基本理念,铺设学习情境,让学生主动参与,灵活运用积累的经验解决问题,体现了数学学习是“经验”、“活动”、“思考”、“再创造”的特点。

一、 导入——铺设学习情境。

《数学课程标准》在课程实施建议中明确指出:“数学活动要紧密联系学生的生活实际,创设各种情境,为学生提供从事数学活动的机会,激发对数学的兴趣,以及学好数学的愿望。”学生的学习,往往带着浓厚的感情色彩,在熟悉的情境中,他们就能够自觉地、顺利地参与到学习中来。在本节课中,先让学生观察火箭模型的平面图,让他们说说有什么发现,激活他们已有的知识经验,通过感受由几个简单图形的组合,揭示组合图形的含义。再让他们分析身边物体表面中的组合图形,把数学与生活紧密联系起来,激发学习的兴趣。

二、尝试——开启创造之门。

弗莱登塔尔认为,学生学习数学是一个有指导的再创造。数学学习的本质是学生的再创造。在本课的教学过程中,有意识的为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。课堂中采取了这样一些策略:设计富有挑战性的问题,激发学生主动思考和创造的愿望。为学生提供比较充足的探索与创造的时间、空间,让学生尽量释放创造的潜能。如:计算中队旗的面积时,要求学生先仔细观察这个图形,然后这样设问:“你能自己试着来解决这个问题吗?”学生经过自主的思考,能创造出不少的方法来计算组合图形的面积。课堂上学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。还有一个学生在其他不同的方法后,又提出他独特的观点:把组合图形分成两个梯形,再把两个梯形拼成一个长方形来计算它的面积。他的想法恰恰运用了“出入相补”的原理。这正是知识、方法融会贯通的体现。

“给我一个杠杆,我可以撬起地球”,我们还有什么理由不相信学生惊人的创造力呢?

三、练习促进动态生成。

让学生体会到数学的价值,力求人人学有价值的数学,以满足学生适应未来学习、生活的需要。在练习的设计中,我安排了这样三个层次:第一、只列式不计算。让学生明确求组合图形的面积,要根据数据进行分解,不是所有的分解都能进行计算的。第二、解决具体问题,计算火箭模型的平面图的面积。第三、解决实际问题,练习设计打破学科界限,让学生喊出英文单词“lion”,然后在英文乐曲中,选择计算“l”或“n”的面积。学生学得趣味

《组合图形的面积》教学设计 篇2

一、教学目标

1、在自主探索的活动中,归纳计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法进行解答,并能解决生活中相关的实际问题。

3、培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。

二、教材分析

在本节课之前,学生已经学习了长方形、正方形、平行四边形、三角形、梯形五种图形的面积计算方法,本课时在此基础上学习组合图形面积的计算,是前面所学知识的发展和应用,也是日常生活中经常需要解决的问题。

三、学校及学生状况分析

我校是一所全国知名大学的附属小学,生源主要是北京理工大学教职工子弟,学生整体素质比较高。我所任课的班级学生在数学学习方面尽管有一定的差异,但整体素质较好,思维比较活跃,对学习、探索数学问题有比较浓厚的兴趣。

四、教学设计

(一)情境导入。

师:同学们玩过七巧板吗?

(学生举手示意,几乎所的学生都玩过。)

(评析:学生从幼儿园时代就开始接触七巧板,教师从七巧板入手,容易激发学生的学习兴趣。)

师:(电脑出示以下图形)这些就是用七巧板拼出的图形,你觉得分别像什么?

生:图1像一个人。

生:图2像一条鱼。

师: 你能看出他们分别是由哪些图形拼成的吗?

生:图1是由5个三角形、一个平行四边形、一个梯形拼成的。

生:图2也是由5个三角形、一个平行四边形、一个梯形拼成的。

(二)认识组合图形。

师:我们已经学习了五种平面图形,请同学们从这些简单的平面图形中挑几个,拼成一个较复杂的图形,并想想你拼的图形像什么?

(学生独立拼摆。)

师:谁愿意把你拼的图形展示给大家?

(学生用实物投影展示拼出的图形,并说说像什么。)

(评析:让学生充分体会组合图形的形成,是由若干个简单的图形组成的,从而把复杂的问题简单化,易于学生学习。)

师:同学们展示的这些图形有什么共同特点呀?

生:我发现这些图形都是几个图形拼出来的。

生:这些复杂的图形都是用几个简单图形拼成的。

师:我们把这样的图形叫做组合图形。(板书:组合图形)

(三)探索简单组合图形面积计算方法。

师:你能算出自己拼出的组合图形的面积吗?

生:用三角形的面积加上长方形的面积就行了。

……

师:同学们用的方法有什么相同之处?

生:都是把几个简单图形的面积加起来。

教师出示下列图形( 单位:米):

师:这是小华家客厅地面的平面图,现在准备在客厅铺上木地板。小华的爸爸说:“你已经上四年级了,算算至少要买多少平方米的地板吧。”小华接受任务就开始思考,可他发现客厅的形状不是学过的平面图形。我们同学能想办法帮小华算出客厅的面积吗?

师:请同学们小组合作,计算出这个图形的面积,看哪些组的方法又多又巧。

(学生合作讨论计算,教师巡视。)

师:哪个组能给大家介绍你们的方法,并说一说为什么这样做?

(学生利用实物投影展示分割方法和计算过程,陈述思考的过程)

生:我们把这个图形分成两个长方形,再把这两个长方形的面积相加。

师:为什么要分成两个长方形呀?

生:我们会计算长方形的面积,分成的两个长方形的面积加起来就是这个图形的面积。

生:我们分成了两个梯形,把这两个梯形面积加起来就行了。

生:……

学生介绍不同的方法,如下图所示:。

(评析:分割的方法不同,但思路是一样的,把复杂的图形简单化。)

师:我们同学采用的方法有什么共同的特点呀?

师:为什么要进行分割?

师:同学们采用的就是人们计算组合图形面积常用的一类方法,叫做分割法。

(板书:分割法)

(评析:这一环节使学生明白,对组合图形分割的意义,以及分割的必要性。同时,让学生体会到,分割的方法不同,但思路都是把复杂的图形转化为简单图形。)

师:除了分割法外,还有没有别的方法可以计算这个组合图形的面积呢?

(学生小组讨论。)

生:是不是可以补上一块,成为我们学过的图形。

生:我这样补上一个小长方形,成了一个大长方形。(见下图)

师:这样能计算原来组合图形的面积吗?

生:用得到的大长方形面积减去补上的小长方形面积就可以了。

师:我们班的同学真是太棒了,这就是计算组合图形面积的另一类方法,叫做添补法(板书:添补法)。

师:我们可以利用分割法或添补法计算组合图形的面积。

(四)巩固练习与应用

1、数学课本第76页练一练第1题的左边一题。

师:可以怎样求下列组合图形的面积?

(学生独立思考,画出辅助线)

师:谁可以把自己的想法告诉大家?

(学生利用投影演示分割或添补的过程,说出计算的思路。)

生1:我把第一个图形分割成一个三角形和一个长方形。

(学生分别介绍计算的方法后,选择自己喜欢的方法进行独立计算。)

2、出示数学课本第76页的试一试。

师:这个问题是求哪个部分的面积?

生:求粉色部分组合图形的面积。

师:你能用自己喜欢的方法独立解决这个问题吗?

(学生独立计算解答。)

师:谁来把自己的好方法介绍给大家?

生:我把粉色部分分割成三个长方形,再把他们的面积加起来。

生:我先把长方形硬纸板的面积算出来,再减去四个剪下的小正方形的面积。

(评析:同伴之间的交流,更有利于学生学习数学。)

(五)课堂总结

师:这节课你有什么收获?

生:我知道了什么是组合图形。

生:我会算组合图形的面积了。

生:我知道可以用分割法或添补法计算组合图形的面积。

师:同学们真是了不起,经过积极的思考,利用已经学过的知识解决了遇到的新问题,还想出了这么多巧妙的方法。

五、教学反思

在本节课的设计和实施中,我根据新课程的理念,进行了大胆的尝试,达到了良好的教学效果。主要有以下几点:

1、充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。

2、我认为本课时的重点是使学生发现理解掌握计算简单组合图形面积的方法和策略。所以在教学中,重点放在学生思考理解把简单组合图形分割或添补成已经学过图形的方法,明确计算组合图形面积的思路。本节课教学过程也说明,学生在理解发组合图形的计算方法时,实现了预期的教学效果。

六、案例点评

⒈情境引入自然简洁,贴近学生,很好地吸引了学生的注意、激发了学生的学习兴趣,同时发展了学生的想象力,使学生感受到数学中的美。

⒉学生获取新知识的过程,就是学生自主探索、合作讨论的过程。计算组合图形面积的方法几乎都是由学生发现并通过汇报交流获取的,教师只是学生自主学习的组织者,合作学习的参与者。

⒊在巩固应用时,突出本课时的重点。在教学过程中,师生的主要精力是用于观察、思考计算各种简单组合图形面积的方法和策略,使学生能根据各种组合图形的条件,有效地选择方法进行计算和解答。

组合图形的面积教学设计 篇3

教学内容:

苏教版小学数学第十册第106页例10及练一练,练习十九第6—9题。

教学设计构想:

在《圆》这个单元的教学中,圆是从生活中引入,进而探讨圆的特征及各部分名称,和生活中为什么很多物体都是圆形的等等,使学生感知圆在生活中无处不在,圆是美丽的。再探讨了求圆的周长计算方法和求圆的面积计算的方法后,并将之运用到生活中解决了很多生活中的实际问题,使学生体会到数学来源于生活,高于生活,再回归到生活中能帮助我们去解决实际问题,提高学习能动性。

《组合图形的面积》的设计理念依然是——由生活中的组合图形引入新课,进而回归到生活中去解决圆环形铁片的面积和窗户的面积以及光盘的面积。同时本节课的教学设计突出数学思想方法的渗透,让学生积极主动参与知识的形成过程,重视将解决问题的策略、技巧潜移默化的交给学生,让学生获得了数学思想方法,并培养了学生探索问题的能力。

教材分析:

本节课主要让学生利用已经掌握的圆的面积及其它图形面积公式计算组合图形面积。例题选择的素材是计算圆环铁片的面积。教材着重通过呈现解决问题的步骤引导学生掌握求圆环面积的基本思路。教材先让学生按步骤解答问题,然后启发学生联系学过的运算律探索简便计算方法。“试一试”和“练一练”中的组合图形都是由两个基本图形组合而成,计算这些组合图形的面积,有时需要计算两个基本图形的面积之差,有时需要计算两个基本图形的面积之和。

学情分析:

《组合图形的面积》是在学生认识了圆的特征、圆各部分名称、掌握了圆的周长计算和圆的面积计算方法的基础上,进行组合图形面积计算的教学的。

教学目标:

1、让学生结合具体情境认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。能正确计算简单的有关圆的组合图形的面积。

2、通过操作、探索、发现、交流等活动,培养学生独立思考、合作创新意识和灵活运用知识解决问题的能力,进一步发展学生的空间观念和交流能力。

3、在解决实际问题的过程中,提高学生对数学的好奇心和求知欲,感受数学的魅力,体会数学的应用价值。

教学重点:

探索并掌握组合图形的面积计算方法。

教学难点:

灵活地把组合图形转化为所学过的基本图形,正确计算。

教学准备:

PPT课件,圆规、硬纸、剪刀(学生也准备)

教学过程:

一、复习导入

1、师:前面学习了圆的面积计算,说说圆面积的计算公式?(板书)回顾一下我们还学习了哪些平面图形面积的计算公式?(板书)

2、引入新课:生活中我们不但能看到圆形的物体,还常常会看到由圆和其他图形组成的图形(出示课件),像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)组合图形在日常生活中有着广泛的应用,认识了生活中的组合图形,这节课我们将利用已有的知识一起来研究有关组合图形面积的计算(出示课题)。

[设计意图:在复习所学的基本图形面积计算的基础上,通过生活中的组合图形引入新课,使学在头脑中对组合图形产生感性的认识。为下面学习求组合图形的面积打下基础。]

二、探索新知

1、认识圆环

(1)出示圆环形铁片(课件)

问:知道这个铁片是什么图形吗?仔细观察:圆环有些什么特征呢,谁来向大家介绍一下(生介绍圆环)

师对学生的回答给与评价。明确:圆环是两个圆心相同、半径不相等的圆形所组成的宽度相等的图形。

(2)联系生活

同学们想一想:生活中哪些地方还有圆环?

2、做圆环

(1)谈话:我们认识了圆环,现在你能用准备好的材料动手做一个圆环吗?

指名学生展示自己做的圆环,并向大家介绍做圆环的方法。

(2)师拿出自己做的圆环并小结做圆环的方法。

请生指出圆环的面积是哪部分。

[设计意图:学生在认识了圆环的基础上,引导学生找生活中的圆环,并动手做出圆环,由具体的实物抽象出几何图形,不但让学生经历知识的形成过程,使学生能直观地发现、理解并掌握圆环面积计算方法,而且对数学知识与生活的紧密联系有了一定的认识。]

3、学习例10

(1)在圆环形铁片图的右边出示例10(课件)

请生读题,你获得了哪些信息?

问:求这个铁片的面积,就是求什么形状的面积?

师:会求这个铁片的面积吗?(生尝试做)指名板演,师巡视,发现有用简便做法的请上台板演(如果没有用简便方法做的,在第一种方法反馈之后,可启发学生有简便做法吗?)。

同桌交流求面积的方法。

(2)反馈第一种基本方法,请板演学生当小老师,说说自己的解题思路。

板书:外圆面积—内圆面积=圆环面积。

反馈第二种方法,请板演学生说说你是怎样想的?

两种方法有什么联系?(运用乘法分配律)

(3)师生共同小结:计算圆环面积的基本方法是从外圆面积中减去内圆面积,还可以进行简便计算。如果用R表示外圆半径,用r表示内圆半径,那么,求圆环面积的计算公式就是:S=πR2 —πr2或S=π(R2—r2)(板书)

[设计意图:让学生经历圆环面积的简便算法的形成过程,鼓励学生用不同的方法进行计算,并引导学生发现简便方法,体现两种方法之间的内在联系。]

4、对比,归纳方法

出示大小两圆拼成的新图形,与圆环图进行对比(课件),请学生说说这两题的联系与区别。归纳此类组合图形面积的计算方法(求面积之差)。

5、尝试“试一试”(出示课件)

(1)出示“试一试”,学生小组讨论:

窗户的形状是由哪些基本图形组合而成的?

要求窗户的面积就是求什么?

半圆和正方形有什么相关联的地方?

半圆面积该怎样求?

(2)再全班交流。

(3)学生尝试列式计算,指名板演。

(4)反馈,明确:正方形的边长就是半圆的直径。交流解题方法,重点强调半圆面积必须是用整圆的面积除以2(别忘了除以2)。

5、观察比较,小结方法

(1)讨论:例题中的圆环和“试一试”中的窗户,两题中的图形

都属于组合图形,两个图形的组合方式有什么不同的地方?窗户和圆环在求面积上有什么不同?你发现他们在解决问题的思路有什么相同的地方?有什么不同的地方?

(2)组织全班交流。(圆环是大圆里挖去小圆,窗户是半圆形和正方形两个图形拼加。求圆环面积是大圆面积减去小圆面积,求窗户面积是半圆形面积加上正方形面积。解题思路相同之处都是要先算出组合图形中的基本图形的面积,不同之处是一个是基本图形的面积相减,一个是基本图形的面积相加。)

(3)小结归纳组合图形面积计算基本方法。

师:圆、半圆或其它基本的平面图形组合在一起,产生组合图形,在计算组合图形面积的时候,先看清这个组合图形是由哪些基本图形组成的,再根据组合方式决定把基本图形的面积相加还是基本图形的面积相减。

[设计意图:引导学生充分讨论交流,根据讨论的结果,总结求组合图形的方法,注重将解决问题的策略、技巧潜移默化的交给学生,让每个学生都参与到数学活动中来。]

三、运用巩固

1、基本练习:练一练(课件出示)

思考:(1)下面的组合图形的需要计算哪些基本图形的面积?

(2)涂色部分面积怎样求?

(3)左图,两个基本图形有什么联系?右图呢?

学生先同位交流,再全班交流,(明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。)然后每人各选一题列式计算。

2、综合拓展练习:练习十九第6题(课件出示)

(1) 计算下面组合图形涂色部分的面积各需要需要哪些条件?

(2) 涂色部分面积怎样求?

学生先同位交流,再全班交流:说说计算需要测量哪些数据,再交流算法。

3、眼力大比拼:三个正方形涂色部分的面积相等吗?为什么?(练习十九第7题课件出示)

指名学生根据图形作出直观的判断,并说说判断的方法。

四、总结交流

今天我们一起学习了什么知识?你有哪些收获?在求组合图形的面积时一般需要注意什么?有什么宝贵的解题经验想和大家分享?

五、实践延伸

出示光盘,同学们你能想办法算出(自己家里的)光盘的面积吗?课后完成。

[设计意图:练习设计体现了针对性、层次性、综合性和实践性。最后的课外延伸环节,让学生计算自己熟悉的光盘的面积,可以提高学生运用数学知识解决实际问题的能力,感受到数学在生活中的应用价值和数学的魅力所在。]

附:板书设计

组合图形面积

基本图形的面积相加或相减

例:外圆面积—内圆面积=圆环面积。

S=πR2 —πr2

S=π(R2—r2)

《组合图形的面积》教学设计 篇4

组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。我校是佛山市南海区的一所学校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学。在教学中,合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。

案例:

(一)观察动画,复习旧知,引出新知

1、观察动画,分析引入(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)

师:观察这几幅图画,你发现了什么?(展示学生作品)

生:很多的基本图形,组成了很多的图形 [板书:基本图形]

师:是呀。这一幅幅美丽的图画都是由我们学过的基本图形组成的。这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]

2、复习基本图形面积公式

师:还记得我们都学过哪些基本图形吗?

问:那谁还记得这些基本图形的面积公式?

(随着学生回答,课件演示各个基本图形及公式)

师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积” )

(二)动手拼图,初探方法

1、自拼图形,分析要素

师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。(课件出示:

①请你从学具中任选两个或三个基本图形,拼出一个组合图形,粘在答题纸的方框内。

②拼好后与同桌说说:你拼的组合图形由什么基本图形组成的?

这些基本图形的要素是什么?怎么求你这个组合图形的面积呢?

(学生活动,教师巡视指导。)

2反馈,学生展示作品

生以“我的组合图形是由( )和 ( )基本图形组成的,它的面积就是( )+( )=( )”介绍自己作品

3.分割图形,再次探索方法

师:同学们说的真好,老师这里也有几个图形想请同学们帮忙看看它又是由哪几个基本图形组成的?(学生上台指图说,师课件演示分割过程)

4、展示图形,分析条件 师:现在,我们来看右面的组合图形(见右下图)。它是由哪几个基本图形组成的?

它是由一个三角形和一个正方形组成的。有一条边既做三角形的底又做真们正方形的边长,是公共边。 (课件演示)

(强调公共边:既做正方形的边长,又作三角形的底。)

师:怎样求这个组合图形的面积?

生1:分别计算三角形与正方形的面积,然后相加。

师:谁能说一说具体的计算过程?(学生叙述,教师板书计算过程。)

生2:看作两个梯形来计算(让生说说梯形的高、上底、下底根据学生讲述师课件演示。)

5.试着求出自己所拼的组合图形的面积。

问:如果要求你自己拼的组合图形的面积先要干什么?(画高、量出相关条件,再计算)

师:那就请你量出相关条件,求出你自己拼的组合图形的面积

(学生计算自己所拼的图形组合的面积,师选有代表性的学生自述进行交流。)

6.归纳总结方法。

师:刚才很多同学介绍了自己所拼组合图形的面积,那么,想一想这些图形的计算方法有什么共同的特点?

生:分别计算几个基本图形的面积,然后相加。(课件出示方法学生读)

(三)巩固训练,拓展方法,发展思维,

1.师:刚才同学们的回答特别精彩,想法也非常巧妙。现在,有个叫小华的同学他家里面要装修,计划在客厅铺地板(媒体出示课本第75页的客厅平面图)。

师:请你估计他家至少要买多大面积的地板。

师:请先在练习纸上画出解题的思路,然后进行计算。(学生画图分析,并计算。具体计算过程略)

师:请哪个同学来介绍,小华家的客厅面积是怎样计算的?(学生分别介绍不同的计算方法,)

3、归纳提高

师:请同学们想一想,上述四种计算方法中,哪些是相同的,哪些是不同的?

生:前三个图形都是将组合图形进行分割,然后再进行计算。而第四个图形是补上去一块。

师:为什么要补上一块呢?

生:补一块就成基本图形了。

师:这种方法叫添补的方法,将原图形补充为基本图形,然后求出整个儿图形的面积,然后再减去补充的部分的面积。

(五)小结:这节课你有什么收获?

《组合图形的面积》教学反思

《组合图形的面积》一课是以学生已经学习过的长方形、正方形、平行四边形、三角形和梯形等基本图形面积计算为基础,结合实际情境和具体的图形来解决组合图形面积的计算,不仅能够巩固这几种图形面积计算方法,培养学生的分析问题和解决问题的能力,而且也有利于发展学生的空间观念,在本节课的教学过程中注重从以下几个方面去思考:

1、创设情景,激发学习情感。好的开始等于成功的一半。本课一开始我就从生活入手,课件出示媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)让学生观察得出这些图形都是一些组合图形,使学生充分感受到数学与生活的密切联系,并感受到数学的美。这样设计更易激发学生的学习兴趣,使学生乐于学习本课知识。然后让学生亲自动手拼一拼,使学生在头脑中对组合图形产生感性认识,更为下一步探究组合图形的面积做好铺垫。

2、注重方法的指导与总结。授人以鱼,不如授人以渔。在本课的教学过程中,我注重分析、解题方法与策略的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,让学生体验成功的愉悦,在知识内在魅力的吸引和恰当指导下,主动投入到知识的发展过程中,自己悟出学习方法

3、运用现代化的教学手段,使学生多种感官同时受到刺激,激发了学生学习的积极性,同时把教学过程组织得更生动,形象,能启发学生进行总结归纳,抽象概括,主动参与知识的形成过程。

本节课的教学始终贯穿着学生的自主参与,我只是辅助学生参与到整个过程中,学生循序渐进的由探究到发现到总结,思维活跃,兴致勃勃。课堂成为师生、生生的互动过程,培养了学生自主探究、合作学习的能力,在数学知识技能的形成、情感态度的发展、思维能力的培养等方面均取得了较好的效果。

当然还有很多细节的地方需要改进,比如说教师语言的精练程度,学生操作时的方式,以及向全班汇报结果的形式等等,这都有待于在今后的教学中更多地去锤炼,进一步加以完善。

《组合图形的面积》教学设计 篇5

一,教学目标

1,使学生在自主探索的活动中,归纳计算组合图形面积的多种方法。

2,能根据各种组合图形的条件,有效地选择计算方法进行解答,并能运用所学知识解决生活中相关的实际问题。

3,培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。

二,教材分析

本节课是五年级上学期第五单元第一课时,在本节课之前,学生已经学习了长方形,正方形,平行四边形,三角形,梯形五种图形的面积计算方法,本课时在此基础上学习组合图形面积的计算,是前面所学知识的发展和应用,也是日常生活中经常需要解决的问题。

三,学校及学生状况分析

我校是一所新建学校,生源比较复杂,学生素质参差不齐。我所任课的班级学生在数学学习方面尽管有一定的差异,但整体素质较好,思维比较活跃,对学习,探索数学问题有比较浓厚的兴趣。

四,教学设计

(一)情境导入。

师:同学们玩过七巧板吗

(学生举手示意,几乎所的学生都玩过。)

(评析:学生从幼儿园时代就开始接触七巧板,教师从七巧板入手,容易激发学生的学习兴趣。)

师:(电脑出示以下图形)这些就是用七巧板拼出的图形,你觉得分别像什么

图1 图2

生:图1像一个机器人。

生:图2像一条金鱼。

师: 你能看出他们分别是由哪些图形拼成的吗

生:图1是由5个三角形,一个平行四边形,一个梯形拼成的。

生:图2也是由5个三角形,一个平行四边形,一个梯形拼成的。

(二)认识组合图形。

师:我们已经学习了五种平面图形,请同学们从这些简单的平面图形中挑几个,拼成一个较复杂的图形,并想想你拼的图形像什么 (课前准备学具袋)

(学生独立拼摆。)

师:谁愿意把你拼的图形展示给大家

(学生用实物投影展示拼出的图形,并说说像什么。)

(评析:让学生充分体会组合图形的形成,是由若干个简单的图形组成的,从而把复杂的问题简单化,易于学生学习。)

师:同学们展示的这些图形有什么共同特点呀

生:我发现这些图形都是几个图形拼出来的。

生:这些复杂的图形都是用几个简单图形拼成的。

师:我们把这样的图形叫做组合图形。(板书:组合图形)

(三)探索简单组合图形面积计算方法。

1,师:你能算出自己拼出的组合图形的面积吗

生:4个三角形的面积相加就是棋盘面积,或者直接计算正方形的面积。

生:长方形的面积加上三角形的面积再加上小梯形的面积就是房子面积。

……

师:同学们用的方法有什么相同之处

生:都是把几个简单图形的面积加起来。

2,教师出示下列图形( 单位:米):

师:这是小华家客厅地面的平面图,现在准备在客厅铺上木地板。小华的爸爸说:"你已经上五年级了,算算至少要买多少平方米的地板吧。"小华接受任务就开始思考,可他发现客厅的形状不是学过的平面图形。我们同学能想办法帮小华算出客厅的面积吗

师:请同学们小组合作,计算出这个图形的面积,看哪些组的方法又多又巧。

(学生合作讨论计算,教师巡视。)

师:哪个组能给大家介绍你们的方法,并说一说为什么这样做

(学生利用实物投影展示分割方法和计算过程,陈述思考的过程)

生:我们把这个图形分成两个长方形,再把这两个长方形的面积相加。

师:为什么要分成两个长方形呀

生:我们会计算长方形的面积,分成的两个长方形的面积加起来就是这个图形的面积。

生:我们分成了两个梯形,把这两个梯形面积加起来就行了。

生:……

学生介绍不同的方法,如下图所示:.(单位:米)

师:我们采用的方法有什么共同的特点呀

生:都把组合图形进行了分割。

师:为什么要进行分割

生:为了得到我们学过的平面图形。

师:同学们采用的就是人们计算组合图形面积常用的一类方法,叫做分割法。

(板书:分割法)

(评析:这一环节使学生明白,对组合图形分割的意义,以及分割的必要性。同时,让学生体会到,分割的方法不同,但思路都是把复杂的图形转化为简单图形。)

师:除了分割法外,还有没有别的方法可以计算这个组合图形的面积呢

(学生小组讨论。)

生:是不是可以补上一块,成为我们学过的图形。

生:我这样补上一个小长方形,成了一个大长方形。(见下图)

师:这样能计算原来组合图形的面积吗

生:用新得到的大长方形面积减去补上的小正方形面积就可以了。

师:我们班的同学真是太棒了,这就是计算组合图形面积的另一类方法,叫做添补法(板书:添补法).

小结:我们可以利用分割法或添补法计算组合图形的面积。

(评析:通过让学生自己动手操作,使学生理解并掌握了运用分割法或填补法计算组合图形面积,并知道了分割图形时,要考虑所给的条件和计算的方便。在交流多种方法的过程中,也培养了学生的发散思维能力)

(四)巩固练习与应用

1,数学课本第76页练一练第1题的左边一题。

师:可以怎样求下列组合图形的面积

(学生独立思考,画出辅助线)

师:谁可以把自己的想法告诉大家

(学生利用投影演示分割或添补的过程,说出计算的思路。)

生1:我把图形分割成一个三角形和一个长方形。

生2:我把图形分割成一个长方形和一个梯形。

生3:我把图形分割成一个三角形和一个梯形。

生4:我把图形补上一个梯形,成为一个大长方形。

生5:我把图形补上一个三角形,成为一个大梯形。

(学生分别介绍计算的方法后,选择自己喜欢的方法进行独立计算。)

2,出示数学课本第76页的试一试。

如图,一张硬纸板剪下4个边长是4厘米的小正方形后,这张硬纸板还剩下多大的面积

师:这个问题是求哪个部分的面积

生:求红色部分组合图形的面积。

师:你能用自己喜欢的方法独立解决这个问题吗

(学生独立计算解答。)

师:谁来把自己的好方法介绍给大家

生:我把红色部分分割成三个长方形,再把他们的面积加起来。

生:我先把长方形硬纸板的面积算出来,再减去四个剪下的小正方形的面积。

(评析:通过本环节的练习,使学生的思维得到提升,有利于同伴之间的交流与学习。)

(五)课堂总结

师:这节课你有什么收获

生:我知道了什么是组合图形。

生:我学会计算组合图形的面积了。

生:我知道可以用分割法或添补法计算组合图形的面积。

师:同学们真是了不起,经过积极的思考,利用已经学过的知识解决了遇到的新问题,还想出了这么多巧妙的方法。

五,教学反思

组合图形面积是学生学习了长方形,正方形,平行四边形,三角形,梯形的面积的基础上进行教学的,是这些知识的发展,也是日常生活经常需要解决的问题。在本节课的设计和实施中,我根据新课程的理念,进行了大胆的尝试,达到了良好的教学效果。主要有以下几点:

1,充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。

2, 我认为本课时的重点是使学生发现理解掌握计算简单组合图形面积的方法和策略。所以在教学中,重点放在学生思考理解把简单组合图形分割或添补成已经学过图形的方法,明确计算组合图形面积的思路。本节课教学过程也说明,学生在理解发组合图形的计算方法时,实现了预期的教学效果。

六,案例点评

⒈情境引入自然简洁,贴近学生,很好地吸引了学生的注意,激发了学生的学习兴趣,同时发展了学生的想象力,使学生感受到数学中的美。

⒉学生获取新知识的过程,就是学生自主探索,合作讨论的过程。计算组合图形面积的方法几乎都是由学生发现并通过汇报交流获取的,教师只是学生自主学习的组织者,合作学习的参与者。

⒊在巩固应用时,突出本课时的重点。在教学过程中,师生的主要精力是用于观察,思考计算各种简单组合图形面积的方法和策略,使学生能根据各种组合图形的条件,有效地选择方法进行计算和解答。

《组合图形的面积》教学设计 篇6

教学目标:

1、在自由探索的活动中,理解计算组合图形面积的各种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并正确解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

教学重点:能根据各种组合图形的条件,有效地选择计算方法,并进行正确的解答。

教学难点:如何选择有效的计算方法解决问题。

教学准备:图形卡片、题卡

教学过程:

一、激趣导入。

1、师:老师这里有一个神秘宝盒,你们想知道这里面藏着什么吗?请同学们来摸一摸。

生摸出图形,老师贴在黑板上,指名说说怎样计算这些图形的面积。

2、师:老师也为你们准备了礼物,快拿出来拼一拼,粘在白纸上,看谁拼的图案最漂亮。

生拿基本图形拼。

指名展示所拼图案,说说拼的是什么,是由什么图形拼成的。

3、揭示课题。

这些图形都是由两个或两个以上基本图形拼成的图形,叫做组合图形,这节课我们一起来探索组合图形的面积(板书课题:组合图形的面积)。

4、屏幕出示图形,这些分别是什么图形,这里面有你认识这些图形吗,你是怎样看出来的?

二、探究新知。

1、出示例题。

老师最近正在装修房子,可是遇到了困难,你愿意帮忙吗?

你老师打算在客厅铺上地板,地面的平面图如图,请同学们帮老师做一下预算,估计至少要买多大面积的地板,再实际算一算,并与同学们交流。

生先说估计值,并说出依据,教师在黑板右上角板书。

2、小组探索。

刚才我们只是估计一下,但实际在买的时候,买多了浪费,买少了还要去买,太麻烦,以我们必须求出实际的面积。我们没有学过这种图形的面积,怎么办呢?

生:我们可以把它转化成我们学过的图形再求面积。

小组合作探索,组长拿出工作表,小组同学分别说一说自己的想法,并在图中画出来,看看你们小组能想出几种简便易行的方法。

教师巡视指导。

3、全班汇报交流。

小组汇报,在投影上展示自己小组的做法,分别说说为什么这样分割,怎样求面积。其他小组长把和他一样的方法做上标记。

教师强调:为了和原线段区分开,后添加的线段要画虚线,这条虚线是为了辅助完成这道题的,所以叫做辅助线。

生共同探索所说的方法是否能求出面积,不合适的说出为什么。

把以上方法汇总,说说哪种方法最简单,为什么?

师:分割或添补的越简单,计算起来就会越简便。

4、教师贴出学生选出的

4种简便方法,用卡纸贴在黑板上。

生观察着几种方法,把它们分类。

师相应板书:分割法 添补法

这两种方法在计算时有什么不同吗?

6、选择一种你最喜欢的方法,计算出图形的面积。

指名板演。检查订正,写出答语。

把实际结果与估计结果比较,看看谁估计的比较准。

师:只要选择了简便易行的方法,我们求组合图形的面积才会又快又准确。

三、实际应用。

1、这里有两个鱼缸,请你选择最简便的方法把它们转化成我们学过的图形。

2、学校要粉刷教室,粉刷一面墙每平方米需用

0.15千克涂料,一共需要用多少千克涂料?

生在题卡上答题,师巡视指导。指名展示自己的方法,生判断哪种方法最简便。

3、学校要油漆

60扇教室的门的外面,(单位:米)。

(1)需要油漆的面积一共是多少?

(2)如果油漆每平方米需要花费

5元,那么学校共要花费多少元?

指名读题,说说完成这道题要注意什么?

生独立完成。汇报。

四、全课总结。

你说说这节课你有什么收获。

师:在我们的生活中,数学无处不在,运用我们学过的数学知识来解决身边的难题,那是多么快乐的一件事呀!让我们一起学好数学吧!

五、课外练习。

在你身边找出一到两处组合图形,先估计一下它们的面积,再选择你认为最简便或最适合自己的方法,实际算一算。

《组合图形的面积》教学设计 篇7

教学内容:

北师大版小学数学教材五年级上册第88—89页。

教材分析:

《组合图形的面积》是北师大版五年级上册第六单元的第一课,学生在三年级已学习了长方形与正方形的面积计算,在本册的第四单元又学习了平行四边形,三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题。

学情分析; 作为五年级的学生,通过之前的学习对于平面基本图形的感知和认识已有了一定的基础,也掌握了一些计算图形面积和解决图形问题的方法。但本班学生分析思考能力较差,基础较薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神,善于去交流思考,探索解决问题的策略。

教学目标:

1、在自主探索活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、进一步渗透转化的教学思想,提高学生运用新知识解决实际问题。

4、感受计算组合图形面积的必要性,产生积极学习的兴趣。

教具:多媒体教学课件 教学过程:

一、图形欣赏、激发兴趣

1、今天老师给大家带来了一个小动物,你们猜猜会是什么动物呢?课件出示由基本的平面图形组成的金鱼图形学生欣赏。

(设计意图:兴趣是最好的老师,学生怀着极大的兴趣是上好一节课良好的开端,兴趣是一种无形的力量,是学好数学的保证。)

2、美丽的金鱼是由哪几个基本的平面图形组成的?在学生回答的同时一并复习正方形、长方形、平行四边形、三角形、梯形的面积计算公式。

(设计意图:复习学过的五种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作铺垫,也为确保正确计算组合图形的面积夯实基础)

二、自主探索、合作交流

1、发现规律,初揭课题

拼图游戏:让学生用七巧板拼出自己喜欢的一个图案,学生一边拼图形,一边交流,教师巡视指导。选择2-3个有代表性的图形用实物投影展示出来。 师:请同学们仔细观察并思考,这几个图形有什么共同特征?

生:(观察思考回答)这些图形都是由几个简单的基本平面图形拼出来的。 师:对,我们就把像这样由两个或两个以上平面图形组合而成的图形叫做组合图形。(板书:组合图形)

(设计意图:“数学是思维的体操”,作为小学生思维能力训练的主阵地,数学课堂应开启学生的发现之旅,让学生练就一双善于发现的眼睛,同时游戏活动激发了学生学习的积极性和探究欲望。)

2、寻找图形,再揭课题

师:现实生活中存在着大量的组合图形,你能从我们生活中哪些物体的表面找到组合图形?

生:教室窗户由一个小长方形和两个大长方形组成、房子侧面由一个三角形和一个长方形组成、……

师:真不错!同学们都是生活的有心人,其实组合图形就在我们身边。

师:基本图形的面积计算同学们都是游刃有余!今天的关键是想求组合图形的面积,我们应该怎么办呢?

生:只要把组合图形中几个简单的平面图形的面积加在一起就行了。

师:真棒!这节课我们就一起来学习求组合图形的面积。(添加板书:的面积)

3、观察图形,估算面积

师:淘气家新买了住房,想把新房的客厅铺上地板,新房的客厅地板的面积有多大呢?同学们能帮他算算吗?(拿出老师发给同学们的客厅平面图)。

师:你能估一估这个不规则图形的面积吗?说说你是怎样想的? 生:进行估算。汇报。

(设计意图:这一环节的设计主要是想培养学生的估算意识。同时让学生理解这个图形不是简单图形,不能直接估计它的面积,让学生在估算的时候,潜移默化地运用添补和分割的转化思想,也为下一步计算组合图形面积做一个很好的铺垫)

4、独立探索,计算面积。

师:同学们都说出了自己估算的理由,那你估算的数据接近真实的数据吗?请同学们观察手中的客厅平面图试着寻找出计算这个图形的方法。

学生独立活动:解决组合图形面积计算问题。

5、合作交流,探索方法。

(1)小组合作,交流方法

师:老师刚才发现同学们的方法都很有自己独到的见解,那现在就请小组内同学互相交流一下自己的想法?

学生小组内互相交流,老师深入到小组当中去参与他们的活动,并给予适当的指导。(设计意图:直接让学生凭借已有的经验探索计算组合图形面积的方法,给了学生更大的自主探索的空间。)

(2)全班共享,提炼方法

师:哪个小组的同学愿意先来汇报你们的想法?

生:在图形里面画一条线,分成一个长方形和一个正方形,分别算出长方形和正方形的面积,再算面积之和。

师: 真好,这条线叫辅助线,是我们数学学习的好帮手,我们一般将它画成虚线,还有不同的方法吗?

学生汇报,课件适时出示不同的计算方法,在探讨的过程中引导学生给不同的计算方法命名。

师小结:刚才同学们在汇报的过程出现了两种方法,一种是分割法,一种是添补法,另一种是割补法,那这几种方法有什么特点呢?请小组内的同学讨论一下好吗?

小组内讨论并汇报。

师小结:

分割法:当我们用分割法时,分割的图形越简洁,其解题方法就越简单,要考虑到分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就不行了。用分割法计算时,要先算出各部分的面积,最后把它们加起来。(板书:分割法求和)

添补法:当我们添补上一块之后,能根据给定的条件求出添补之后图形的面积,那我们就可以尝试一下,否则这种方法就是行不通的。用添补法计算,记得把添上的这部分面积减去。(板书:添补法求差)

割补法:要求割下来的这部分能正好拼上。这种方法,既有分割,又有添补,(板书:割补法灵活计算)

师:同学们再观察一下,这些方法看似不同,但其实它们都有一个共同的特点,你能发现吗?

师小结:不论是分割或添补,目的都是——把不规则的图形——转化成——已学过的基本图形。(板书:转化)

(3)比较反思,选择方法

师:通过同学们刚才的回答,老师发现你们可以灵活的运用解题的方法真是太好了,那在本题当中你更喜欢哪一种方法呢?说说你的理由。

师小结:求一个组合图形面积的时候,因为分割、添补的方法不同,计算步骤也不同,但最后的计算结果应该是相同的。虽然求组合图形面积的方法是多样的,但我们还要根据所给的条件,灵活地选择合理、简便的方法进行计算。(板书:合理 、简便)

(设计意图:这里体现了多种学习方式并存,首先,学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。使学生在不断完善认识的过程中,学会倾听、学会吸纳他人的意见,享受积极思考获得的快乐。引导学生交流,引起思维的碰撞,使他们体会到解决问题方法的多样性。】)

三、 应用拓展,提高能力

1、练一练1,书中第1题下面的图形可以分成哪些已学过的图形?

(作业设计意图:每一幅图都有多种分法,课堂上应避免学生分得过于复杂化,鼓励学生选择合理 、 简便的分法。)

2、练一练2,书中第2题,认真观察图,选择有用的数据,你想怎样计算?把你的方法在小组里交流。指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。

(作业设计意图:这道题是对上一题的补充,拓展,同学们都能用分割法把这道解出来,但是用添补法到底能不能解决这道时,同学们就会发出疑问,可是当老师适当进行点拨之后,就会是另外一种情况,整体代法的介入不仅是对这道题的一个有效的补充,而且也为六年级求圆的面积埋下伏笔,同时也充分体现了算法多样化的教学理念。)

3、练一练3,书中第3题,计算这张硬纸板还剩多大的面积?

(作业设计意图:通过两个层次的分割,使学生明白在组合图形的分割中,需要根据所给的条件进行合理的分割,分割的图形越简洁,计算起来越简便。)

4、练一练4,书中第4题,学生自己独立思考并计算,然后说说自己的想法。

(作业设计意图:习题由浅入深、形式多样、难易适度,把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力,获得了更多的解决问题的策略,还通过上面的两道解决实际问题的练习,使学生感受到数学就在我们身边,生活中处处有数学。)

5、思考,计算下面图形中阴影部分的面积。多媒体出示。

四、总结收获,反思提升

师:同学们通过本节课的学习,你有什么收获呢? 引导学生说说学会了哪些?怎样学会的?还有哪些问题?。

(设计意图:总结的目的是让学生对本节课的内容进行一下回顾,让学生体会到独立思考和相互学习都很重要,做到在数学方法和数学思想方面都有所收获,有所提升。)

五、独立思考、完成作业

长江作业《组合图形的面积》

六、板书设计:

组合图形的面积

转化

分割法:求和

添补法:求差(特例除外) 割补法:灵活计算 合理 简便

(设计意图:本节课重点是掌握求组合图形面积的计算方法,设计这样的板书不仅可以直观地、简明扼要地展示本节课求面积的方法,便于学生理解、把握和选择,而且明显看出都是把组合图形转化为基本图形,感受“转化”这一数学思想方法,揭示了知识的内在规律及相互间的联系与区别,使学生在数学思想与方法上得到发展。)

《组合图形的面积》教学设计 篇8

一、教材分析:

这是小学数学人教版第九册第五单元的内容。学生已经学习了平行四边形、三角形、梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。本节课重点探索组合图形面积的方法。教材安排的内容除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。通过学生亲手的“拼”、“剪”,将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。

二、学情分析:

根据学生已有的生活经验,对组合图形的认识并不很难。学生已经系统的学过平行四边形、三角形、梯形的面积计算方法,对转化思想也有所渗透。对于方法的借鉴、交流、思考、创新都需要教师的引导和点拨。

三、教学目标

1、掌握组合图形面积计算的方法并正确计算。

2、能根据各种组合图形的条件有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,初步解决生活中组合图形的实际问题。

四、教学重点和难点

1、掌握组合图形面积的计算方法。

2、理解计算组合图形面积的多种方法,让学生学会这类题目的思考方法。

3、学会运用“分割”与“添补“的方法计算组合图形的面积。

五、教学过程

(一)、谜语激趣,以旧引新

(课前)将一些教学用具的纸片发给学生

1、谈话导入,课件出示谜语。

(①草地上来了一群羊。打一水果名称

②又来了一群狼。打一水果名称)

(1)思考:谜语的谜底是什么?

(①草莓

②杨(羊)莓(没))

设计意图:抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。

(2)提问:你们觉得哪个谜语好猜?为什么?(第二个,因为第二个问题有了第一个问题做基础,所以容易些。)

(3)学生回答后教师出示答案,从而导出新课,并板书课题。

设计意图:用猜谜语的形式让学生来明事理,从而导出新课。

2、课件出示各种学过的基本图形。(如长方形、正方形、平行四边形、梯形、三角形)

(1)同桌交流、讨论。(小动)

(2)代表回答。

(3)复习关于平面图形面积公式。

设计意图:巩固所学几种平面图形的面积公式及计算方法。

(二)、自主探究新知

1、小组合作,交流探讨。

(1)教师要求:拿出课前准备的图片从中任意选择两个图形,拼成一个新的图形。边做边思考,你拼的图形像什么,是由哪个基本图形拼成的,小组讨论这个图形的面积是怎样计算的。

(2)2人小组讨论并计算出图形的面积。(小动)

设计意图:以学生为主,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。

2、自主合作,探索方法。

课件出示例题:小华家买了新房,计划在客厅铺地板,请你估计他家至少需要买多少瓷砖铺地板,再实际算一算,并与同学交流。(有图例)

(1)让学生拿出课前准备的图片中组合图形的学具,与小组合作,先估一估,再通过自己喜欢的方法,计算出这个图形的面积。(学生合作讨论,教师巡视并作简单的提示和指导。(大动)

(2)学生动手剪一剪,拼一拼(沿虚线剪下,将组合图形分割成一个大长方形和小长方形或两个梯形或补一个小正方形等多种割补法。)计算图形的面积。

(3)根据学生的解法,教师进行分析、点评。

设计意图:让学生亲手参与学习,通过拼剪与讨论,明白能将组合图形进行多种分割或割补后再计算其面积。

(三)、联系实际,巩固拓展

1、课件出示课本中多种组合图形,学生辨别图形是由哪些平面图形组成的。

2、学生独立完成,代表发表自己的解题方法。

3、根据学生回答,教师点评:通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。

设计意图:让学生根据图形关系,推算出图中的隐藏条件,让学生明确解组合图形的面积方法不是唯一的。

(四)、回顾全课,小结

1、学生小结

2、教师总结

3、布置作业。

设计意图:让学生自己小结,教师再总结,即培养了学生的概括能力,又能将本堂课的内容进行了总结。最后布置作业来巩固本节课所学的内容。

六、板书设计

组合图形的面积

组合图形分割、添补基本图形

《组合图形的面积》教学设计 篇9

【教学内容】

人教版五年级上册第六单元《组合图形的面积》

【教材分析】

本课是五年级上册第六单元内容,是在学生学习了长方形与正方形。平行四边形。三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。

【设计理念】

儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。学生在解决问题的过程中,获得数学学习方法。在对学习过程与结果的反思中,提高解决问题的能力。

【教学目标】

1、能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

2、能运用所学知识解决生活中组合图形的实际问题。

3、自主探索,合作交流。养成认真思考,团结协作的能力。

4、通过找一找。分一分。拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”。“补”等方法来计算组合图形的面积。

【教学重点】

探索并掌握组合图形的面积计算方法

【教学难点】

理解并掌握组合图形的组合及分解方法。

【数学思想】

分类、化归

【教学过程】

一。创设情境,引出问题

教师活动

学生活动及达成目标

1、说一说:

(1)让学生快速说出老师出示的平面图形的名字(正方形。长方形。平行四边形。三角形。梯形)。

(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。

2、看一看:

老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。)

出示生活中常见的组合图形(如房子的侧面。风筝。七巧板拼图。中队旗等),问:要想知道做一面中队旗用多少布就是求什么?

3、揭示课题并板书:组合图形的面积

学生观察回答

让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。

二。共同探索,总结方法

教师活动

学生活动及达成目标

由张老师家新房的侧面平面图入手,设计让学生合作交流解决 “房子侧面积”这一生活问题。

教师利用多媒体演示。其他同学能清楚地与自己的思路进行比较,并及时发现错误并纠正过来。

总结组合图形面积的计算方法。

让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”和”添补法”的计算方法。让学生明确分割图形越简洁,解题方法越简单。与此同时,教师要适时提醒学生们要考虑到分割的图形与所给条件的关系,有些图形分割后找不到相关的条件就是失败的。这样做有利于突破本节课的教学重点和难点。

1、学生独立与小组合作交流解决组合图形面积计算问题。

2、小组汇报学习情况。

(1) 将组合图形分割成一个三角形和一个正方形

(2) 将组合图形分割成两个梯形

(3)将组合图形添补上两个小三角形,使它成为一个大长方形,再用大长方形的面积减去两个小长方形的面积。

在这一环节中我真正的转变了教师的角色,给学生足够的时间和空间,积极主动地参与到学习中,获取更多的解题方法。让他们都有成功的体验。

学生通过小组合作交流解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察。独立尝试。合作交流。为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法。

三。运用方法,解决问题

教师活动

学生活动及达成目标

同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。

出示课本104页1题,让学生独立完成,并说明自己人是怎样求出组合图形的面积的?

独立完成例5,

学生独立完成,并汇报自己的解决方法,让学生清楚的认识到拓展思维,可以从多角度分析解决问题,从而多方法解决问题。

四。反馈巩固,分层练习

教师活动

学生活动及达成目标

1、学生举例并结合学生自己举的例子解答讲解

2、分别出示求组合图形及阴影的面积?

让学生举出自己能够解决的例子,增强他们解决问题的自信心。

学生已经自己举例练习组合图形的面积了,教师再出不同形式的练习,既巩固了本课所学的知识,又培养了学生解决实际问题的能力。体现了数学于生活,应用于生活的教育理念。

五。课堂总结,提升认识

教师活动

学生活动及达成目标

通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?

通过本节课的学习,学生学会了求组合图形的面积,把自己的收获讲给大家听,也是对新知记忆和理解的又一次升华。

【板书设计】

组合图形的面积

把组合图形分割成已学过的简单图形,再算这些简单图形的面积的和,就是组合图形的面积。

分割法 添补法

《组合图形的面积》教学设计 篇10

教学目标:

1、巩固平行四边形、三角形、梯形、圆的面积公式及推导过程。

2、弄清各图形面积之间的联系,熟练掌握面积公式。

3、灵活运用割补法、拼全法解决组合图形的面积计算问题。

4、在知识的运用与迁移中让学生感受到数学的乐趣。

教学方法

探究式学习、闯关式练习

教学准备:

各种平面图形和组合图形卡片

教学过程:

一、课前交流

师生互问候并提出本课时教学期望及要求——智勇闯三关。

二、热身活动

1、出示各种平面图形,请同学说说用字母表示的面积公式。

2、说说平行四边形、三角形的面积推导过程。

(渗透各图形的面积计算过程中切割法和移补法运用的数学思想)

三、第一关

1、出示图形

A B

2、解析题目

A图:割补成一个长方形和一个圆。(长方形面积加上圆的面积)

B图;切割成一个正方形和半个圆。(正方形的面积加上半个圆的面积)

3、出示数据,学生任选一题进行计算。

4、做好的自行上台演板,再全班交流、评析。

5、小结闯关情况,体验闯关成功的喜悦,激发闯关斗志。

四、第二关

1、出示图形(求阴影部分的面积)

A B

2、解析题目

A图:割补成一个梯形和一个三角形(梯形面积减去三角形面积)

B图:移补成一个长方形。(长和宽都要减去空白处的宽度)

3、出示数据(A图梯形上底20㎝,下底40㎝),学生任选一题进行计算。

4、做好的自行上台演板,再全班交流、评析。

5、小结闯关情况及闯关成功诀窍,体验闯关成功的喜悦同时充分准备应对下一关的挑战。

五、第三关

1、出示图形,引导学生展开空间想象,刚才两关都是利用割补法把组合图形切割、移补成我们学过的平面图形再进行面积计算,那这两颗星形图又是从怎样的图形中割取下来的呢? A B

2、解析题目,并出示下图。

A图用三角形的面积减去半个圆的面积。 B图用正方形的面积减去一个圆的面积。

3、出示数据(A图三角形的底是20㎝,高是17㎝;B图正方形的边长是40dm),学生任选一题进行计算。

4、指名叫刚才想象出的同学上台演板,再全班交流、评析。

5、小结闯关情况,体验闯关成功的喜悦,鼓励学生大胆想象,学会运用所学知识解决数学问题。

六、全课总结

全班归纳闯关心得,并以此激发学生的学习数学的热情及优化学生的数学思想。

反思:

因为我运用了学生喜闻乐见的闯关形式开展本节练习课,故而课堂气氛活跃,学生学习积极性高。为了让全体学生都参与其中且体验到成功的喜悦之情,我设计了由易到难的三关,让学生运用所学知识经历一个推进、巩固、深化的过程。而且都是全班先交流解题思路,再任选一题进行计算,如此时间上也易掌控,又照顾到了那些学困生。整堂课下来,统计后发现有四分之三以上的同学闯过了三关。

一键复制全文保存为WORD