比例的应用(比例尺) 教案教学设计(人教新课标六年级下册(7篇)

作为一名辛苦耕耘的教育工作者,时常需要用到教学设计,借助教学设计可以提高教学效率和教学质量。那么优秀的教学设计是什么样的呢?问渠那得清如许,为有源头活水来,以下是编辑帮大家分享的7篇比例的应用(比例尺) 教案教学设计(人教新课标六年级下册,欢迎参考阅读。

比例的应用 篇1

教学目标

1.使学生能正确判断应用题中涉及的量成什么比例关系。

2.使学生能利用正、反比例的意义正确解答应用题。

3.培养学生的判断推理能力和分析能力。

教学重点

使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题。

教学难点

利用正反比例的意义正确列出等式。

教学过程

一、复习准备。(课件演示:)

(一)判断下面每题中的两种量成什么比例关系?

1.速度一定,路程和时间。

2.路程一定,速度和时间。

3.单价一定,总价和数量。

4.每小时耕地的公顷数一定,耕地的总公顷数和时间。

5.全校学生做操,每行站的人数和站的行数。

(二)引入新课

我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题。这节课我们就来学习。

教师板书

二、新授教学.

(一)教学例1(课件演示:)

例1.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

1.学生利用以前的方法独立解答。

140÷2×5

=70×5

=350(千米)

2.利用比例的知识解答。

(1)思考:这道题中涉及哪三种量?

哪种量是一定的?你是怎样知道的?

行驶的路程和时间成什么比例关系?

教师板书:速度一定,路程和时间成正比例

教师追问:两次行驶的路程和时间的什么相等?

怎么列出等式?

解:设甲乙两地间的公路长 千米。

2 =140×5

=350

答:两地之间的公路长350千米。

3.怎样检验这道题做得是否正确?

4.变式练习

一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

(二)教学例2(课件演示:)

例2.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?

1.学生利用以前的方法独立解答。

70×5÷4

=350÷4

=87.5(千米)

2.那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的路程是一定的,_________和_________成_________比例。

所以两次行驶的_________和_________的_________是相等的。

3.如果设每小时需要行驶 千米,根据反比例的意义,谁能列出方程?

4 =70×5

=87.5

答:每小时需要行驶87.5千米。

4.变式练习

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行87.5千米,需要几小时到达?

三、课堂小结。

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

四、课堂练习。(课件演示:)

(一)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

(二)同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

(三)先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答。

1.王师傅要生产一批零件,每小时生产50个,需要4小时完成,_______,_______?

2.王师傅4小时生产了200个零件,照这样计算,_______?

五、课后作业 .

1.一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

2.用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本。如果每本16张,可以装订多少本?

3.某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?

六、板书设计。

教案点评:

本节课通过对正、反比例意义的全面应用,使学生加深了正、反比例意义的认识。

在学生对正、反比例意义理解的基础上,把所获得的理性认识返回到实践中去,从而拉近了数学知识与学生生活实际的距离,减少了学生的陌生感、降低了难度,使学生感到正、反比例关系就在自己的身边。

探究活动

鱼池有多少条鱼?

活动目的

1.培养学生应用所学知识解决实际问题的能力。

2.培养学生的判断推理能力和分析能力。

活动形式

以小组为单位讨论。

活动题目

养鱼场有很多鱼池,要知道一个鱼池有多少条鱼。渔业人员想出了一个巧妙的办法,他们先在一个鱼池里捞起30条鱼来,给每条鱼做个记号,然后把它们放回鱼池里。鱼回到水里,向四面八方游开了,过了几天,这30条鱼就平均分布在鱼池的各个地方。渔业人员又在这个水池里捞起50条鱼来,如果其中有2条带记号的鱼,就可以算出这个池里大约有多少条鱼。为什么?

活动过程

1.学生分小组讨论原因。

2.学生汇报讨论结果。

3.讲述生活中应用比例知识的事例。

参考答案

解:设水池里面共有 条鱼。

=750

答:水池里面共有750条鱼。

《比例的应用》教学设计 篇2

教学目标:

1.初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。

2.使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。

教学重点:

会根据正比例的意义判断两种相关联的量是不是成正比例。

教学难点:

会根据正比例的意义判断两种相关联的量是不是成正比例。

预习指导:

一、自学教材。

阅读教材第62~63页。

二、检查学习。

1.怎样两个量成正比例?

2.完成"试一试"。

教学准备:

课件和口算题。

教学过程:

一、导入

谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

二、教学例1 1.课件出示例1的表

⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?

⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。

2.那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。

3.我们可以写出这么几组路程和对应时间的比。

⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?

⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律

⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

课件出示:路程和时间成正比例。

⑷现在你能完整地说一说表中路程和时间成什么关系吗?

4.刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目,教案《正比例意义教学设计》。

⑴课件出示"试一试"

⑵请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?

课件出示表中的数据。

⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。

集体交流:

⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的比=0.3、=0.3…它们的比值相等,你写对了吗?

⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。

小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。

⑹你能完整地这样说给你的同桌听一听吗?

⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?

课件出示课题。

⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?

指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。

5.完成"练一练"

⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?

⑵生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。

小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的`量是否成正比例的方法了吗?

三、练习

1.完成练习十三第1题。

请大家继续看课本66页第1题

2.完成练习十三第2题

⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?

⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。

3.完成练习十三第3题(课件出示题目)

⑴课件出示放大后的三个正方形、

⑵大家看一看,你是这样画的吗?

⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。

校对学生做的情况。

⑷请大家根据表中的数据讨论下面两个问题。

①正方形的周长与边长成正比例吗?为什么?

②正方形的面积与边长成正比例吗?为什么?

四、总结。

通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。

板书设计:

正比例的意义

路程和时间是两种相关联的量,

时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,

我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

比例尺的应用 篇3

教学内容:教科书第49页的例7,完成随后的“练一练”和练习十一的第3、5题。

教学目标:

1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。

教学重点、难点:能按给定的比例尺求相应的实际距离或图上距离;感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。

教学准备:教学光盘、了解家到学校的大概距离

教学过程

一、复习导入。

1、什么叫比例尺?求比例尺时要注意哪些问题?

2、在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?

二、教学新课

1、教学例7。

(1)出示例7,明确题意,找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)

(2)说一说比例尺1:8000所表示的意义。

(3)根据对1:8000的理解让学生尝试练习。

(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。

重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?

注意:最后的单位要换算成“米”作单位的数。

2、做“试一试”。

(1)独立算出学校到医院的图上距离。

(2)讨论怎样把医院的位置在图上表示出来。

(3)在图中表示医院的位置。

三、巩固练习。

1、做“练一练”先独立解题,在组织交流

2、做练习十一第4题

重点知道学生在地图上测两地之间的距离和在地图上如何找比例尺。

3、  做练习十一第5题。重点帮助学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

4、  将下列各题做在课堂作业本上。

(1)北京到天津的距离是140千米,在一幅比例尺是1:2000000的地图上,两地间的距离是多少厘米?

(2)在一幅比例尺是1:500000的地图上,量得甲、乙两城的距离是12.5厘米。甲、乙两城实际相距多少千米?          0       40       80     120千米

(3)在一幅比例尺为                           的地图上,小丽量得某省会城市与北京的距离是32.5厘米。这个城市与北京相距多远?

(4)做练习十一第3题。

(5)学生阅读“你知道吗”,选择两个比例尺说说它们的实际意义。

四、全课小结。

通过本课的学习,你又掌握了什么新的本领?

五、课堂作业

完成补充习题的相关练习

板书设计:

比例尺的应用

5×8000=40000(厘米)       解:设明华小学到少年宫的实际距离是x厘米。

40000厘米=400米              5:x=1:8000

x=40000

40000厘米=400米

答:明华小学到少年宫的实际距离是400米。

课前思考:

这节课是学生在掌握了比例尺的含义的基础上展开的,让学生根据比例尺的意义来求实际距离或者是图上距离。解决这类问题学生会有不同的方法,应该允许他们按照自己的思考方法进行解答。在引导学生进一步理解不同算法时,特别要引导学生理解和掌握用比例式求实际距离的方法,帮助学生把握不同算法之间的联系。

根据比例尺=图上距离:实际距离以及学生的不同解法,可以归纳如下:

图上距离=实际距离×比例尺

实际距离=图上距离÷比例尺

在计算的过程中关键还是要让学生注意单位的统一。在用解比例的方法求实际距离时,要和学生强调解设中单位还应该是厘米,因为图上距离的单位就是厘米,所以要统一。

课前思考:

对比例尺意义的理解是解答这类问题的关键,在理解比例尺时,一定要结合图形的放大与缩小,这样有助于学生对解题方法的掌握。

教材上介绍了3种解题思路,但我觉得前两种的思考方法是一样的。且第2种思路中“比例尺1:8000,也就是图上1厘米,表示实际距离80米”,这样的理解有跳跃性,我觉得还是让学生理解为“图上1厘米,表示实际距离8000厘米”,最后让学生看问题所求的单位名称与计算结果是否一致,如果不一样,需要统一单位,这样学生比较好理解。

用比例的方法来解答这类问题,可能学生对这样的解法和方程解有一样的感觉,怕麻烦!但作为一种新的解题思路,必须让学生掌握,所以今天的课堂教学中,我准备让学生这两种思路都掌握。在以后的练习中,如果题目没有要求解题方法,那么学生可以用自己喜欢的方式来解答。

沈老师提出对比例尺的变式,我觉得不要介绍的好,学生只要用比例尺意义来理解,要么体会到是放大与缩小,用倍数来解答,要么根据比例尺列比例式解答。因为在变式中是将比例尺看作一个数来理解了,但学生印象中的比例尺是一个比。这个思维的跳跃太大了!我在前几年六年级教学中使用过这种方法,效果不好!

课前思考:

潘老师设计的教案总体的教学思路是非常清晰的,我基本采用这一教学设计。由于刚放过三天假期,所以我想大部分学生对于放假前学习的“比例尺”这一部分知识应该遗忘得差不多了。那么在课始部分我们就可以借助复习题帮助学生复习比例尺的意义,以及两种不同的比例尺的意义。

教学例题7时,学生们一般都喜欢根据比例尺的意义用算术方法来求出实际距离。而用列比例式求实际距离的方法,学生不太容易想到。课上需要教师引导学生思考,这里要关注学习困难生的学习情况,当列出比例式后,可以再让学生说说比例式中的两个比分别是表示哪两个数量的倍比关系,为什么它们可以组成比例式等。

练习十一的第5题是让学生自己确定比例尺,课前需要学生了解自己家离学校大约有多少千米,还需要指导学生量一量教材上第5题的这个长方形的长、宽分别是多少,然后再确定比例尺。

练习十一的第4题也需学生自己去准备一张中国地图,可以让学生自己来编一道实际问题。由于学生所准备的中国地图的比例尺是不同的,图上测得的上海到北京的距离也是不同的,但通过计算学生会发现上海到北京的实际距离却是相同的。

课后反思:

上完这节课,感觉自己课前的准备工作做的不够充分,没有仔细阅读教材。虽然解决这类问题学生会有不同的方法,而且学生基本上都会用计算。但是这节课还是在于引导学生进一步理解和掌握用比例式求实际距离或图上距离的方法。从学生完成的作业质量来看,一开始很有必要让学生用比例式来求实际距离或者图上距离。因为尽管课上一再强调在解设的时候一定要注意单位,但是在练习中仍然有很多学生没有注意。在学生熟练了以后,接下来的练习就让学生选择自己喜欢的方法去完成。

其次,我本来认为根据比例尺的定义可以得出:图上距离=实际距离×比例尺 ;实际距离=图上距离÷比例尺这两个公式,正如高教导所说上完两节课后,感觉在实际解决问题的过程中根本不需要学生去记忆,学生自己理解了比例尺的含义之后,自然而然会解决。如果强行让学生去记忆,太匡死学生的思维了。

在练习的过程中有时候需要求长方行草坪的面积或者是操场的实际面积,但是题中却没有明确具体的单位,有的学生用平方厘米做单位,有的学生用平方米做单位,我和学生讨论后的想法是是因为没有明确要求,两种答案都可以,但是与实际生活联系起来,用平方米做单位更恰当些,不知道这样的处理是否恰当。

课后反思:

应该说现在的教材中关于比例尺的应用凸显了比例尺的含义的理解,当学生对比例尺的含义真正理解了,那么他们就会灵活运用比例尺的含义来解决相关的实际问题。课堂上在学习例题7时,两个班中的大部分学生都马上想到了根据比例尺1:8000,说明图上距离是实际距离的8000倍,那么从题中已知的明华小学到少年宫的图上距离是5厘米就可以指导实际距离是5厘米的8000倍,所以很多学生都用5乘8000来计算。这样的计算方法比较简便而且容易理解。如果老师不规定他们用比例来解的话,一般学生都不会去主动选择这种方法。课上,我也没有特别强调后一种方法,但在作业中我请学生用解比例的方法来解决其中一题。结果发现在设实际距离时出现单位名称不统一的情况,也就是说将两个单位名称不一致的数组成了比。这一问题要及时解决,还是要引导学生从比例尺的意义来分析错在什么地方。还有不少学生直接根据图上距离和实际距离的倍比关系来列算式计算,应该说这种方法是最简便的,但在书写格式方面可能存在一些问题,如150千米除以5厘米等于30千米,这样的表达值得探讨。不知这样书写的学生是否真的理解这一算式的实际意义是图上1厘米表示实际30千米。

沈薇老师谈到的操场的实际面积的单位名称,我想结合生活实际学生们能理解应该用平方米比较合适,只是在解答时往往由于懒于改写单位名称就出现了用平方厘米表示操场的实际面积,这样做不能算错,但显然不合适。

课后反思:

今天的课上得很郁闷,不知道是不是由于是假期后的第一节课,课堂气氛比较沉闷,有的环节出现了包办代替的现象,这是本节课的最大遗憾。

在今后的教学中,一定要真正让学生参与到教学中来,把属于学生的时间还给学生,让学生有充足的时间去思考、交流、合作,使学生由知识的被动接受为自主探究,从而获得知识。

课后反思:

在课堂教学时,加强了对比例尺的意义的理解。在例题教学中,正如我课前预计的那样,学生都是根据图上距离与实际距离的倍数关系来列式解答的,并且两种想法就是教材上介绍的方法,学生的第2种解法比教材上更完整(先单位换算,统一单位后再进行计算)。没有学生想到用比例解答。于是在我的引导下,马上有部分头脑灵活的学生首先认识到第3种方法。于是我接着就强调了比例解的书写格式与注意点,提出用比例解的必要性。在巩固练习中,我要求学生用两种方法解其中必须有一种是比例解,所以在解答时花费了很多时间,但我觉得这个时间花得值得。因为有了两种不同的解题思路的训练,学生对每种列式的依据比较清晰。

课后与同组老师谈论了孙老师提出的疑义,我认为是正确的,学生对比例尺的含义理解到位,这样的解法是最简便的。

小学数学六年级《比例的应用》教案 篇4

教学目标:

1.使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

3.培养学生的判断分析推理能力。

教学重点:

使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:

学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

一、旧知铺垫

1.下面各题两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从甲地到乙地,行驶的速度和时间。

(3)每块地砖的面积一定,所需地砖的块数和所铺面积。

(4)书的总本数一定,每包的本数和包装的包数。

过程要求

①说一说两种量的变化情况。

②判断成什么比例。

③写出关系式。

2.根据题意用等式表示。

(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

二、创设情境引入内容

1.出示例5

画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?

学生回答后引出求水费的实际问题。

你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。

引入:这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

明确

因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

学生讨论交流

演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式==1.6,右式==1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

问题:王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?

要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。

2.出示例题6的场景。

同样先让学生用已学过的方法解答,然后学习用比例的知识解答。

师:想一想,如果改变题目的条件和问题该怎样解答?

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。

让学生演示解题过程,集体修正。

3.完成做一做,直接让学生用比例的知识解答

问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。

总结应用比例知识解答问题的步骤

(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。

(2)依据正比例或反比例意义列出方程。

(3)解方程(求解后检验),写答。

《比例尺》的教学设计 (人教新课标六年级上册 篇5

张鸿森供稿

【教学内容】《义教课标实验教科书  数学》(人教版)六年级下册第48-49页比例尺及应用。

【教学目标】

1、学生理解和掌握图上距离、实际距离和比例尺三者之间的关系:图上距离∶实际距离=比例尺或 图上距离实际距离 = 比例尺。掌握求比例尺、实际距离、图上距离的计算方法。

2、让学生学会使用电子地图,包括会使用电子地图上的放大、缩小、漫游、测距等工具,根据需要找到目的点。通过查看电子地图了解所居住地周围的环境,学会使用网上的电子地图解决实际问题。

【教学重点】比例尺的意义。

【教学难点】设未知数时长度单位的使用。

【教学准备】多媒体课件

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做比例尺?

一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2、怎样求比例尺?

求图上距离和实际距离的最简整数比。

3、一栋楼房东西方向长40m,在图纸上的长度是50cm。这幅图纸的比例尺是多少?

(1)学生尝试独立求比例尺。

(2)汇报交流

50cm:40m=50cm:4000cm=1:80

(3)你是怎么想的?

二、关键点拨

1、求比例尺。

(1)怎样求一幅图的比例尺?

先写出图上距离与实际距离的比,再化成最简整数比。

(2)比例尺有什么特点?

比例尺是前项或后项为1的比。

(3)比例尺可以怎样表示?

数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

2、求实际距离。

(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10cm,这两地之间的实际距离大约是多少?

(2)学生尝试独立列比例解答。

(3)汇报交流

解:设这两地之间的实际距离大约是x厘米。

=5000000

5000000cm=50km

(4)你觉得在求实际距离时要注意什么问题?

实际距离一般用千米做单位。

3、求图上距离

(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

(2)学生尝试画操场的平面图。

(3)汇报交流

你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】

三、巩固练习新课标第一网

1、课本第53页练习八第1题求比例尺。

2、课本第52页做一做第1题。

3、课本第52页做一做第2题。

四、分享收获  畅谈感想

这节课,你有什么收获? 听课随想

反思与体会:

比例的应用 篇6

教学目标

一、知识目标

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生能利用正、反比例的意义正确解答应用题。

二、能力目标

1、培养学生的判断推理能力。

2、培养学生的分析能力。

三、情感目标

1、引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。

2、对学生继续进行辨证唯物主义观点的启蒙教育。

3、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识。

教学重点

使学生能正确判断应用题中的数量之间存在什么样的比例关系,并能利用正反比例的意义来列出含有未知数的等式,从而正确利用比例知识解答应用题。

教学难点

利用正反比例的意义正确列出等式。

教学步骤

一、铺垫孕伏(课件演示:)

判断下面每题中的两种量成什么比例关系?

1、速度一定,路程和时间。

2、路程一定,速度和时间。

3、单价一定,总价和数量。

4、每小时耕地的公顷数一定,耕地的总公顷数和时间。

5、全校学生做操,每行站的人数和站的行数。

二、探究新知

(一)引入新课:我们已经学过了比例,正比例和反比例的意义,还学过了解比例,应用这些比例的知识可以解决一些实际问题。这节课我们就来学习。(板书:)

(二)教学例1(课件演示:)

例1、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

1、学生利用以前的方法独立解答。

140÷2×5

=70×5

=350(千米)

2、利用比例的知识解答。

思考:这道题中涉及哪三种量?(路程、时间和速度三种量)

哪种量是一定的?你是怎样知道的?(“照这样的速度”就是说速度一定。)

行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系。)

教师板书:速度一定,路程和时间成正比例

教师追问:两次行驶的路程和时间的什么相等?(比值相等)

怎么列出等式?

解:设甲乙两地间的公路长x千米。

2x=140×5

x=350

答:两地之间的公路长350千米。

3、怎样检验这道题做得是否正确?

4、变式练习

一辆汽车2小时行驶140千米,甲乙两地之间的公路长350千米,照这样的速度,从甲地到乙地需要行驶多少小时?

(三)教学例2(课件演示:)

例2  一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果要4小时到达,每小时要行多少千米?

1、学生利用以前的方法独立解答。

70×5÷4

=350÷4

=87.5(千米)

2、那么,这道题怎样用比例知识解答呢?请大家思考讨论:(投影出示)

这道题里的路程是一定的,__________和__________成__________比例。所以两次行驶的__________和__________的__________是相等的。

3、如果设每小时需要行驶x千米,根据反比例的意义,谁能列出方程?

4x=70×5

答:每小时需要行驶87.5千米。

4、变式练习

一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。如果每小时行87.5千米,需要几小时到达?

三、全课小结

用比例知识解答应用题的关键,是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

四、随堂练习(课件演示:)

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)

2、同学们做广播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

3、先想一想下面各题中存在着什么比例关系,再填上条件和问题,并用比例知识解答。

(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成,__________,__________?

(2)王师傅4小时生产了200个零件,照这样计算,__________?

五、布置作业

1、一台拖拉机2小时耕地1.25公顷,照这样计算,8小时可以耕地多少公顷?

2、用一批纸装订成同样大小的练习本,如果每本18张,可以装订200本。如果每本16张,可以装订多少本?

3、某种型号的钢滚珠,3个重22.5克,现有一些这种型号的滚珠,共重945千克,一共有多少个?

六、板书设计

例1 140÷2×5 例2 70×5÷4

=70×5 =350×4

=350(千米) =87.5(千米)

速度一定,路程和时间成正比例 路程一定,速度和时间成反比例

解:设甲乙两地之间的公路长x千米 解:设每小时需要行驶x千米

4x=70×5

2x=140×5

x=350 x=87.5

答:甲乙两地之间的公路长350千米。 答:每小时需要行驶87.5千米

比例的应用 篇7

教材分析

小学数学十二册比例的应用,本节课是在学生理解了正、反比例的意义并学会解比例的基础上进行教学的主要包括正、反比例的应用题,这是比和比例知识的综合运用,教材通过两个例题,讲解正、反比例应用题的解法通过讲解使学生掌握正、反比例应用题的特点以及解题的步骤。

用正、反比例解应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量中是否成正(或者反)比例,然后设未知数X,比例解答,判断过程也是正反比例意义实际应用的过程。

数学目标

一、知识目标

1、使学生能正确判断应用题中涉及的量成什么比例关系

2、使学生能利用正、反比例的意义正确解答应用题

二、能力目标

1、培养学生的判断推理能力

2、培养学生的分析能力

三、情感目标

引导学生利用已有的知识,自己探索,解决实际问题,培养学生的勇于探索的精神。

教学生点、难点

正确判断题中数量成何比例,根据相等关系等式

教学方法

引导探究,合作学习

教学手段

多媒体辅助教学

教学流程

复习导入

本节课的教学内容是正、反比例的应用,因此通过本小节的教学,使学生加深对正、反比例的。意义的理解,能正确判断成正、反比的量。

二、探究新知

学习例题正、反比例的应用题学生在已学过的四则应用题中,实际已经接触只是用归一,归总的方法来解答,因此有教学中先让学生用已学过的方法解:

答:再引导运用新知做这样用移类。

比的转化思想进行教学,使新知识不新,旧知识不旧,激发学生学习兴趣。

首先让学生用以前方法解答,然后问:这道题里有哪两种量成什么比例关系?为什么?引导生判断两种量的比例关系,再根据比例的意义列出等式解答,这样加深对比例的理解,又揭示了与旧知识的联系。

三、新课小结

通过例题的讲解,学生总结用比例解答应用题关键?

四、练习提高

1、基础练习

2、判断说理不解答

由学生打手势表示,增添了教学的趣味性,又增大了学生的参与面把握学生学习的效果。

3、变成练习

五、全课小结

六、布置作业

请同学们课后讨论我们学过的归一、归总应用题分别是哪种比例的应用题。

七、效果预测

本节课学会找两种相关联的量,并学会判断这两种是否成正反比例关系,在解决实际问题的过程中,学生能积极主动参与,发挥了学生的主体地位。

一键复制全文保存为WORD