作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?
一、教学目标:
1.知识目标:使学生理解同类项的概念和合并同类项的意义,学会合并同类项。
2.能力目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。
3.情感目标:借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。
二、教学重点、难点:
重点:同类项的概念和合并同类项的法则
难点:合并同类项
三、教学过程:
(一)情景导入:
1、观察下面的图片,并将这些图片分类:
你是依据什么来进行分类的呢?
生活中,我
2、对下列水果进行分类:
(二)新知探究1:
1、对下列八个单项式进行分类:
a,6x2,5,cd,-1,2x2,4a,-2cd
这些被归为同一类的项有什么相同的特征?
2、揭示同类项的概念。
同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。
4.1从问题到方程:教案
【学习目标】
1、探索实际问题中的数量关系,并学会用方程描述;
2、通过对多种实际问题中数量关系的分析,初步感受方程是刻画现实世界的有效模型;
3、通过观察,归纳一元一次方程的概念。
【导学提纲】
1、左右两个图形中的天平都是平衡的,请回答以下问题:
(1)你能知道左图中的食盐有多少克吗?你是怎么知道的?
(2)右图中两个相同小球的质量相等,你能知道这两个小球的质量吗?
4.1从问题到方程:同步练习
1、(20xx?哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套。设安排x名工人生产螺钉,则下面所列方程正确的是( )
A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程。
【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得
1000(26﹣x)=2×800x,故C答案正确,
故选C
【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系。
《4.1从问题到方程》测试
1、某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为_____.
2、某项工程,甲队单独完成要30天,乙队单独完成要20天,若甲队先做若干天后,由乙队接替完成剩余的任务,两队共用25天,求甲队单独工作的天数,设甲队单独工作的天数为x,则可列方程为_____.
3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套。设安排x名工人生产螺钉,根据题意可列方程得_____.
4、某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,若设这件T恤的成本是x元,根据题意,可得到的方程是_____.
教学目标:
知识与技能
1、掌握直角三角形的判别条件,并能进行简单应用;
2、进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型。
3、会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论。
情感态度与价值观
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。
教学重点
运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论。
教学难点
会辨析哪些问题应用哪个结论。
课前准备
标有单位长度的细绳、三角板、量角器、题篇
教学过程:
复习引入:
请学生复述勾股定理;使用勾股定理的前提条件是什么?
已知△ABC的两边AB=5,AC=12,则BC=13对吗?
创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法。
这样做得到的是一个直角三角形吗?
提出课题:能得到直角三角形吗
讲授新课:
⒈如何来判断?(用直角三角板检验)
这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?
就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)
⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:
5,12,13;6,8,10;8,15,17.
(1)这三组数都满足a2+b2=c2吗?
(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
满足a2+b2=c2的三个正整数,称为勾股数。
⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角。工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?
随堂练习:
⒈下列几组数能否作为直角三角形的三边长?说说你的理由。
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角。
⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积。
⒋习题1.3
课堂小结:
⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。
⒉满足a2+b2=c2的三个正整数,称为勾股数。勾股数扩大相同倍数后,仍为勾股数。
(1)本周小张一共用掉了多少钱?存进了多少钱?
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
夯实基础
(1)序号为几的零件最接近标准?
④-(-) 0.025.
第2课时 加法运算律
教学目标:
知识与技能:
1、进一步熟练掌握有理数加法的法则。
2、掌握有理数加法的运算律,并能运用加法运算律简化运算。
过程与方法:
启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。
情感、态度与价值观:
1、培养学生的分类与归纳能力。
2、强化学生的数形结合思想。
3、提高学生的自学以及理解能力,激发学生学习数学的兴趣。
教学重点:
加法运算律的灵活运用,解决实际问题。
教学难点:
能运用加法运算律简化运算,加法在实际中的应用。
教学方法:
采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。
教学准备:
1、复习有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
2、口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8
教学过程:
(一)情境引入,提出问题:
鼓励学生通过自己的探索,交流、归纳,自主得出有理数加法的运算律。
1、叙述有理数的加法法则。
2、小学学过的加法的运算律是不是也可以扩充到有理数范围?
3、计算下列各组数的值,并观察寻找规律。
(1) (-7)+(-5) (-5)+(-7)
(2) [8+(-5)]+(-4) 8+[(-5)+(-4)]
(3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]
结论:在有理数运算中,加法交换律、结合律仍然成立。
(二)活动探究,猜想结论:
交换律——两个有理数相加,交换加数的位置,和不变。
用代数式表示:a+b=b+a
运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零。
在同一个式子中,同一个字母表示同一个数。
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
用代数式表示:(a+b)+c=a+(b+c)
这里a、b、c表示任意三个有理数。
(三)验证结论:
例1计算16+(-25)+24+(-32)
(引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便)
解:16+(-25)+24+(-32)
=[16+24]+[(-25)+(-32)] (加法结合律)
=40+(-57) (同号相加法则)
=-17 (异号相加法则)
例2计算:31+(-28)+28+69
(引导学生发现,在本例中,把互为相反数的两个数相加得0,计算比较简便)
解:31+(-28)+28+69
=31+69+[(-28)+28]
=100+0
=100
《2.4.1有理数的加法法则》同步练习
3、若两个有理数的和为负数,那么这两个有理数( )
A.一定都是负数B.一正一负,且负数的绝对值大
C.一个为零,另一个为负数D.至少有一个是负数
4、两个有理数的和( )
A.一定大于其中的一个加数
B.一定小于其中的一个加数
C.和的大小由两个加数的符号而定
D.和的大小由两个加数的符号与绝对值而定
5、如果a,b是有理数,那么下列各式中成立的是( )
A.如果a<0,b0
B.如果a>0,b0
C.如果a>0,b<0,那么a+b<0
D.如果a>0,b|b|,那么a+b>0
《2.4.2有理数的加法运算律》测试
7、张大伯共有7块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:kg):+320,-170,-320,+130,+150,+40,-150.则今年小麦的总产量与去年相比( )
A.增产20 kg B.减产20 kg C.增长120 kg D.持平
8、一口井水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却又下滑了0.15米;第四次往上爬了0.75米,却又下滑了0.2米;第五次往上爬了0.55米,没有下滑;第六次往上爬了0.48米,此时蜗牛有没有爬出井口?请通过列式计算加以说明
教学目的
让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。
重点、难点
1.重点:通过分析图形问题中的数量关系,建立方程解决问题。
2.难点:找出“等量关系”列出方程。
教学过程
一、复习提问
1.列一元一次方程解应用题的步骤是什么?
2.长方形的周长公式、面积公式。
二、新授
问题3.用一根长60厘米的铁丝围成一个长方形。
(1)使长方形的宽是长的专,求这个长方形的长和宽。
(2)使长方形的宽比长少4厘米,求这个长方形的面积。
(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?
不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。
(3)当长方形的长为18厘米,宽为12厘米时
长方形的面积=18×12=216(平方厘米)
当长方形的长为17厘米,宽为13厘米时
长方形的面积=221(平方厘米)
∴(1)中的长方形面积比(2)中的长方形面积小。
问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积呢?并加以验证。
实际上,如果两个正数的和不变,当这两个数相等时,它们的积,通过以后的学习,我们就会知道其中的道理。
三、巩固练习
教科书第14页练习1、2。
第l题等量关系是:圆柱的体积=长方体的体积。
第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。
四、小结
运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。
五、作业
教科书第16页,习题6.3.1第1、2、3
教学目标
1。使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;
2。会初步应用正负数表示具有相反意义的量;
3。使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4。培养学生逐步树立分类讨论的思想;
5。通过本节课的教学,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作—5℃;比海平面高8848米,记作8848米,比海平面低155米记作—155米。由这两个实例很自然地,把大于0的数叫做正数,把加“—”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
三、正数与负数概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“—”号的数是负数。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…—6,—4,—2,0,2,4,6…,不能被2整除的数是奇数,如…—5,—4,—2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
四、有理数的分类
整数和分数� 1)正整数、零、负整数�
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
5)到目前为止,所学过的数(除π外)都是有理数。
3、小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元。如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?
4、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负。某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)问收工时距A地多远?
(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?
第3课时 有理数的减法
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的。主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。
采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。
教学过程
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。
(二)探索规律,得出法则:
课件演示:(设置六个探究活动,以原点为起点,一只小狗在数轴上左右走动来表示情况,规定向左为正,向右为负)让学生体会两个数相加的规律。
(1)同向情况:
1.情景
探究1:一条狗先向右运动5米,再向右运动3米,那么两次运动后的总结果是什么?
探究2:一条狗先向左运动5米,再向左运动3米,那么两次运动后的总结果是什么?
2.探究问题:有理数两个负数相加的和该怎么确定符号?怎么确定绝对值?(学生主动思考,展开讨论)
3.猜一猜,说一说(分组概括两个负数的加法法则):
①两数相加,取相同的符号,并把绝对值相加;
②负数加负数,取负号,并把绝对值相加。
4.例:(-4)+(-5)
(2)异向情况:
1.情景:
探究3:一条狗先向右运动5米,再向左运动3米,那么两次运动后的总结果是什么?
如果将4换成-1,还有类似于上述的结论吗?
先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算。
计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,
又因为(-1)+(+3)=2 ②,
由①②有(-1)-(-3)=-1+(+3) ③,
即上述结论依然成立。
试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?
让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论。
再试:把减数-3换成正数,结果又如何呢?
计算9-8与9+(-8);15-7与15+(-7)
从中又能有新发现吗?
让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数。
归纳:由上述实验可发现,有理数的减法可以转化为加法来进行。
减法法则:减去一个数,等于加上这个数的相反数。
用字母表示:a-b=a+(-b)。
(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)
【学习目标】
1、掌握有理数的混合运算法则,并能熟练地进行有理数的加、减、乘、除、乘方的混合运算;
2、通过计算过程的反思,获得解决问题的经验,体会在解决问题的过程中与他人合作的重要性;
【学习方法】
自主探究与合作交流相结合。
【学习重难点】
重点:能熟练地按照有理数的运算顺序进行混合运算
难点:在正确运算的基础上,适当地应用运算律简化运算
【学习过程】
模块一预习反馈
一、学习准备
1、四则(加减乘除)混合运算的顺序:先算_______,再算_______,如有括号,就先算__________.同级运算按照从___往___的顺序依次计算。
2、有理数的运算定律:__________________________________________________.
3、请同学们阅读教材p65—p66,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。
《2.11有理数的混合运算》课后作业
9、用符号“>”“<”“=”填空。
42+32________2×4×3;
(-3)2+12________2×ok3w_ads("s002");
《2.11有理数的混合运算》同步练习
5、小亮的爸爸在一家合资企业工作,月工资2500元,按规定:其中800元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过500元的部分按5%的税率;超过500元不超过20__元的部分则按10%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?
【例】计算:
(1)(-3)-(-5); (2)0-7;
(3)7.2-(-4.8);(4)-3-5.
1、经历探索有理数减法法则的`过程,理解有理数减法法则。
2、会熟练进行有理数减法运算。
教学重点:有理数减法法则和运算。
教学难点:有理数减法法则的推导。
教与学互动设计
知识与能力:
1.使学生理解有理数的加减法法可以互相转化。2.使学生熟练地进行有理数的加减混合运算。
过程与方法:
1.体会有理数的加减法法可以互相转化的思想。2.培养学生的运算能力。
情感态度与价值观:
培养学生认真、仔细的良好学习态度。
重点准确迅速地进行有理数的加减混合运算。
教材提示:
本节课是学习有理数减法的第二课时,在教学过程中,教师应该首先通过探究的方式组织学生分组讨论,借助于已有知识,体会有理数的加减法法可以互相转化的思想,如何省略加号,并且还要正确掌握省略加号后它们表示的是哪些数的和,强化混合运算的准确性。
教学过程
一、自主学习
(一)、阅读教材23-24页。
(二)、导学练习[活动1]:学生课前自主完成。 1.减法法则: ,用字母表示为:
2.计算(1)1-5= (2)8-11= (3)6-9=
(4)9-(-9)= (5)(- )-(- )=
[活动2]:学生先课前自主,然后在课堂上一起和大家交流讨论。
1、红星队在4场足球赛中的战绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。红星队在4场比赛中总的净胜球数是多少?
2、一20十3十(十5)十(一7)(读作 , , , 的和 ) 3、 计算:(一20)十(十3)一(一5)一(十7). 注意:在进行有理数混合运算时,应该先将减法按规则统一成加法后再计算;第一个数前面的一常用括号括起来,但熟练后,第一个数带负号时,通常可以不用括号手起来。 4、 计算在做有理数运算时,易出 符号错误。
计算:(1)(一5)一(一4)一(十1)=(一5)十(一4)十(十1)
=(一9)十(十1) =一8
(2)(一7)一(十4) 十(一8)十(一3)一(一8) =一7十4一8一3一8 =一22. 以上两个小题均有错误,指出错在哪里,并改正。 [学法指导:有理数混合运算,只有将减法按规则统一成加法后,才能省略加号,而减号不能省略。在有理数加减混合运算中,当我们把减法转化为加法时,为了书写简便,常常省略加号和括号。] 5、分别指出下列两个式子的读法,表示那些数的和,并计算: (1)8一7十4一6 (2)(一8)一(十4)十(一7)一(十9)。
(三)自学疑难摘要:
自主学习小组长检查等级 等,组长签字
二、合作探究
计算:1、-5+3-2 +6+7-8-9; 2、-0.5-(-3 )+2.75-(+7 )
3、 4、
[学法指导:在完成以上计算题时,一定要注意当把 减号变为加号时,减数必须变为原数的相反数,再利用加法法则进行计算。在进行有理数的加减运算时,当减法转 化为加法后,可以用加法交换律和加法结合律,这样可以使运算简便。]
[小组活动:1.在进行小组交流时,各位组长一定要注意每一位组员,看他们是否掌握了减法法则,特别是交流一下如何把减数变为原来的相反数。2.特别小心在省略加号时是否正确。3.组长注意自己小组到黑板上交流的任务,安排好展示的人员,督促大家掌握本节课的学习任务。]
三、展示提升
1、每个同学自主完成二中的练习后先在小组内交流讨论。 2、每个组根据分配的任务把自己组的结论板 书到黑板上准备展示。 3、每个组在展示的过程中其他组的同学认真听作好补充和提问。
四、反馈与检测
1.计算:(1)(-41)-(-18)-(+39)-(-72) (2) 2.活动与探究:23. 1 D3 +5D7 +9D11++97D99= 。 [学法指导:这个环节的处理方式是第1题在课堂上完成,第2题在课外由组长主持,进行探究活动,进而对所学知识加以巩固。]
五、课后 反思
【教学目标】
1、经历探索去括号法则的过程,了解去括号法则的依据。
2、会用去括号进行简单的计算。
3、经历观察、归纳等教学活动,培养学生合作精神和探究问题的能力。
【重、难点】
理解去括号法则,熟练运用去括号法则。
【教学过程】
一、情境创设
在假期的勤工俭学活动中,小亮从报社以每份0。4元的价格购进a份报纸,以每份0。5元的价格卖出b份(b≤a)报纸,剩余的报纸以每份0。2元的价格退回报社,小亮赢利多少元?
思考:如何合并你算出的这个代数式中的同类项?
同步测试
1、七年级(1)班男生有a人,女生比男生的2倍少25人,男生比女生的人数多。试回答下列问题。(用代数式来表示,能化简的化简)
(1)女生有多少人?
(2)男生比女生多多少人?
(3)全班共有多少人?
测试
【拓展提优】
14、如果A是三次多项式,B是三次多项式,那么A+B一定是()
A、六次多项式
B、次数不高于3的整式
C、三次多项式
D、次数不低于3的整式
15、多项式(xyz2—4yz—1)+(—3xy+z2xy—3)—(2xyz2+xy)的值()
A、与x、y、z均有关
B、与x有关,而与y、z无关
C、与x、y有关,而与z无关
D、与x、y、z均无关
16、已知a=20xxx+20xx,b=20xxx+20xx,c=20xxx+20xx,那么(a—b)2+(b—c)2+(c—a)2的值等于()
A、4 B、6 C、8 D、10
17、当x=1时,代数式mx3+nx+1的值为20xx,则当x=—1时,代数式mx3+nx+1的值为()
A、—20xx B、—20xx C、—20xx D、—20xx
18、若M=3a2—2ab—4b2,N=4a2+5ab—b2,则8a2—13ab—15b2等于()
A、2M—N B、3M—2N C、4M—N D、2M—3N
19、把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示。则图②中两块阴影部分的周长和是()
A、4m cm B、4n cm
C、2(m+n)cm D、4(m—n)cm
一、知识要点
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:
1、大于0的数叫做正数。
2、在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rationalnumber):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(numberaxis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:
(1)在直线上任取一个点表示数0,这个点叫做原点(origin);
(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3)选取适当的长度为单位长度。
6、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolutevalue)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)
9、有理数减法法则
减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
11、倒数
1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(basenumber),n叫做指数(exponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序
(1)“先乘方,再乘除,最后加减”的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0
16、近似数(approximatenumber):
17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。
拓展知识:
1、数集:把一些数放在一起,就组成一个数的集合,简称数集。
一、(1)所有有理数组成的数集叫做有理数集;
二、(2)所有的整数组成的数集叫做整数集。
2、任何有理数都可以用数轴上的一个点来表示,体现了数形结合的数学思想。
3、根据绝对值的几何意义知道:|a|≥0,即对任何有理数a,它的绝对值是非负数。
4、比较两个有理数大小的方法有:
(1)根据有理数在数轴上对应的点的位置直接比较;
(2)根据规定进行比较:两个正数;正数与零;负数与零;正数与负数;两个负数,体现了分类讨论的'数学思想;
(3)做差法:a-b>0a>b;
(4)做商法:a/b>1,b>0a>b.
二、基础训练
选择题
1、下列运算中正确的是()。
A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9
2、下列各判断句中错误的是()
A.数轴上原点的位置可以任意选定
B.数轴上与原点的距离等于个单位的点有两个
C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示
D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。
3、、是有理数,若>且,下列说法正确的是()
A.一定是正数B.一定是负数C.一定是正数D.一定是负数
4、两数相加,如果比每个加数都小,那么这两个数是()
A.同为正数B.同为负数C.一个正数,一个负数D.0和一个负数
5、两个非零有理数的和为零,则它们的商是()
A.0B.-1C.+1D.不能确定
6、一个数和它的倒数相等,则这个数是()
A.1B.-1C.±1D.±1和0
7、如果|a|=-a,下列成立的是()
A.a>0B.a0或a=0D.a<0或a=0
8、(-2)11+(-2)10的值是()
A.-2B.(-2)21C.0D.-210
9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()
A.3瓶B.4瓶C.5瓶D.6瓶
10、在下列说法中,正确的个数是()
⑴任何一个有理数都可以用数轴上的一个点来表示
⑵数轴上的每一个点都表示一个有理数
⑶任何有理数的绝对值都不可能是负数
⑷每个有理数都有相反数
A、1B、2C、3D、4
11、如果一个数的相反数比它本身大,那么这个数为()
A、正数B、负数
C、整数D、不等于零的有理数
12、下列说法正确的是()
A、几个有理数相乘,当因数有奇数个时,积为负;
B、几个有理数相乘,当正因数有奇数个时,积为负;
C、几个有理数相乘,当负因数有奇数个时,积为负;
D、几个有理数相乘,当积为负数时,负因数有奇数个;
填空题
1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。
2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。
3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.
4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|。
5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.
6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.
7、1-2+3-4+5-6+……+20xx-2002的值是____________.
8、若(a-1)2+|b+2|=0,那么a+b=_____________________.
9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.
10、用四舍五入法把3.1415926精确到千分位是,用科学记数法表示302400,应记为,近似数3.0×精确到位。
11、正数–a的绝对值为__________;负数–b的绝对值为________
12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大
13、在数轴上表示两个数,的数总比的大。(用“左边”“右边”填空)
14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。
三、强化训练
1、计算:1+2+3+…+20xx+2003=__________.
2、已知:若(a,b均为整数)则a+b=
3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来
4、已知,则___________
5、已知是整数,是一个偶数,则a是(奇,偶)
6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
8、如果有理数a,b满足∣ab-2∣+(1-b)2=0,试求+…+的值。
9、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。
10、已知|x+1|=4,(y+2)2=4,求x+y的值。
11、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。
例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):
星期一二三四五
每股涨跌+4+4.5-1-2.5-6
第1章(1)星期三收盘时,每股是多少元?
第2章(2)本周内最高价是每股多少元?最低价是多少元?
第3章(3)已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?
第4章(4)以买进的股价为0点,用折线统计图表示本周该股的股价情况。
四、竞赛训练:
1、最小的非负有理数与最大的非正有理数的和是
2、乘积=
3、比较大小:A=,B=,则A B
4、满足不等式104≤A≤105的整数A的个数是x×104+1,则x的值是( )
A、9 B、8 C、7 D、6
5、最小的一位数的质数与最小的两位数的质数的积是( )
A、11 B、22 C、26 D、33
6、比较
7、计算:
8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
9、计算:
10、计算
11、计算1+3+5+7+…+1997+1999的值
12、计算1+5+52+53+…+599+5100的值。
13、有理数均不为0,且设试求代数式20xx之值。
14、已知a、b、c为实数,且,求的值。
15、已知:。
16、解方程组。
17、若a、b、c为整数,且,求的值。
1.2.1有理数
七年级上(1.1正数和负数,1.2有理数)
1.2有理数
【学习目标】
1、借助数轴,初步理解绝对值和相反数的概念,能求一个数的绝对值和相反数,2.会利用绝对值比较两负数的大小;学习数形结合的数学方法和分类讨论的思想。
3、会与人合作,并能与他人交流思想的过程和结果;
【学习方法】
自主探究与合作交流相结合。
【学习重难点】
重点:会求一个数的绝对值和相反数,会利用绝对值比较两负数的大小。
难点:对绝对值和相反数的代数意义、几何意义的理解。
【学习过程】
模块一 预习反馈
一、学习准备
1、数轴:规定了xxxxx、xxxxxxx、xxxxxxxxxx的一条直线叫做xxxxxxxx.
2、数轴上两个点表示的数,右边的总比左边的 ;正数大于 ,负数小于 ,正数大于一切 。
3、请同学们阅读教材p30—p32,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。
二、精读教材
4、相反数的意义
+3与—3,—5与+5,—1.5与1.5这三对数有什么共同点?还能列举出这样的数吗?
归纳:如果两个数只有xxxxxx不同,那么称其中一个数为另一个数的xxxxxxxx,也称这两个数xxxxxxxxxxxx.特别地,0的相反数是xxxx。如,+3的相反数是—3,也可以说+3与—3互为相反数。相反数是成对出现的,不能单独存在。
《2.3绝对值》课时练习
一、选择题(共10题)
1、有理数的绝对值一定是( )
A.正数 B.负数
C.零或正数 D.零或负数
答案:C
解析:解答:根据绝对值的定义可知:正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零;所以答案选择C选项
分析:考查有理数的绝对值,注意正数的绝对值是它本身,负数的绝对值是正数,零的绝对值是零
2、绝对值等于它本身的数有( )
A.0个 B.1个 C. 2个 D 。无数个
答案:D
解析:解答:根据绝对值得定义可知正数和零的绝对值是它本身,所以答案选择D选项
分析:考查绝对值这一知识点。
3、相反数等于-5的数是( )
A.5 B.-5 C.5或-5 D.不能确定
答案:A
解析:解答:根据相反数的定义可知,互为相反数的两个数只有符号不同,所以答案选择A选项
分析:考查相反数的基本概念。
2.3绝对值》同步练习
10、如果|a|=-a,下列成立的是( )
A.-a一定是非负数 B.-a一定是负数
C.|a|一定是正数 D.|a|不能是0
11、下列说法:①一个数的绝对值一定是正数;②-a一定是一个负数;③没有绝对值为-3的数;④若|a|=a,则a是一个正数;⑤-20xx的绝对值是20xx.其中正确的有xxxxxxxx.(填序号)
12、若绝对值相等的两个数在数轴上的对应点的距离为6,则这两个数为( )
A.+6和-6 B.-3和+3 C.-3和+6 D.-6和+3
学习目标:
1、会进行包括小数或分数的有理数的加减混合运算。
2、熟练地进行有理数加减混合运算,并利用运算律简化运算。
3、会比较“加减法统
学习重难点:
1、准确迅速地进行有理数的加减混合运算,加减运算法则和加法运算律。
2、减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。
学习过程:
任务一:温故知新
1、完成课本44页习题2、7的第1、2题,写在作业本上。
2、6有理数的加减混合运算》课时练习
一、选择题(共10题)
1、下列关于有理数的加法说法错误的是( )
A、同号两数相加,取相同的符号,并把绝对值相加
B、异号两数相加,绝对值相等时和为0
C、互为相反数的两数相加得0
D、绝对值不等时,取绝对值较小的数的符号作为和的符号
答案:D
解析:解答:D选项应该是有理数相加时,如果绝对值不等时,取绝对值较小的数的符号作为和的符号
分析:考查有理数的的加法法则
《2、6有理数的加减混合运算》同步练习
2、有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?
3、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5
这10名学生的总体重为多少?10名学生的平均体重为多少?
教学内容
角的初步认识
第38、39页练习八1、2、3
第三单元
第1课时
教学
目标
1.结合生活情境及操作活动,使学生初步认识角,会判断角,知道角的各部分名称。
2.初步学会用直尺画角。3.培养学生的动手操作能力和团结合作的精神。
教学
准备
教学课件、师生的三角尺、活动角、吸管等
教
学
过
程
教 学 活 动
教 师
学 生
一、创设情景,引入新课
1、 师播放多媒体:把实物抽象成图形,再把角拉出来。
2、 揭示课题。角的初步认识。
二、联系实际感知角
1. 第38页主题图校园一角,引导学生观察三角板、大剪刀、球门的框、球场的角等。
2. 在生活中还有许多这样的例子,投影出示例1
3. 小结:这些物品中都有角。
4. 引导学生寻找生活中的角。
5. 师引导学生创造一个角
三、操作感知,探究新知,认识角的组成部分
(1)师变魔术引出活动角。
边
顶点
边
学生说出所看到的图形名称,并指出各有几个角。
生观察。
生在教室里找角,同桌互相说一说。
生用手中的纸折一个角、用两只铅笔搭一个角……等。
2、生从自己折的角中探索出角的顶点和边。
教
学
过
程
教 师
学 生
(2)出示不同的'角,你们能指出这些角的顶点和边吗?
小结:一个角有一个顶点和两条边。
(2)画角
五、巩固练习
1.练习第1题判断。要求学生出2和4为什么不是角的原因。
2.练习第2题,数角。
3.练习第3题,比角的大小。
小结:角的大小与边的长短无关。
6. 出示活动角。
小结:角的大小与两条边的张开的大下有关。
六、拓展、游戏:
1. 用三根小棒可以摆几个角?有几种摆法?
2. 有一个长方形,用剪刀剪一刀,剪去一个角后,还剩几个角?
七、课后小结
这节课我们认识了什么?你有哪些收获?
1.生探索画角的过程。自学。
2.生说画角过程。
3.观看多媒体画角过程。
4.生再次画角。
用自己喜欢的方法比较两个角的大小。
生玩活动角:慢慢地张开,慢慢地合拢。
学生动手做一做,小组合作,说一说。
【教学目标】
知识与技能
了解并掌握数据收集的基本方法。
过程与方法
在调查的`过程中,要有认真的态度,积极参与。
情感、态度与价值观
体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。
【教学重难点】
重点:掌握统计调查的基本方法。
难点:能根据实际情况合理地选择调查方法。
【教学过程】
一、讲授新课
像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。
调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查(samplingsurvey),即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
在一个统计问题中,我们把所要考察对象的全体叫做总体(population),其中的每一个考察对象叫做个体(individual),从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量(samplesize)。
例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。
为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。
上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样(simplerandomsampling)。
师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。
学生小组合作、讨论,学生代表展示结果。
教师指导、评论。
师:除了问卷调查外,我们还有哪些方法收集到数据呢?
学生小组讨论、交流,学生代表回答。
师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?
(1)你班中的同学是如何安排周末时间的?
(2)我国濒临灭绝的植物数量;
(3)某种玉米种子的发芽率;
(4)学校门口十字路口每天7:00~7:10时的车流量。
学生讨论,并举手回答。
师:采用何种方法一定要结合实际问题来定。在解决问题(1)的过程中,不但要同学们动手调查,并且对全班所有学生都要调查,像这样对全体对象进行的调查叫做全面调查(普查)。同学们还知道哪些数据的收集需要全面调查吗?
学生讨论,并回答。
生:如人口普查、本班同学的出生年月、某班学生50米跑成绩等。
师:很好!下列问题也适合采用普查方式来收集数据吗?
(1)了解某批次炮弹的杀伤半径;
(2)某一天全国牛肉的平均价格;
(3)一批罐头产品的质量检查;
(4)对某条河的河水的污染情况的调查。
学生讨论、分析,并举手回答。
师:普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受到客观条件(如人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
二、例题讲解
【例】(1)电视台准备在某市调查一电视节目的收视率,需要对所有看电视的人进行全面调查吗?对一所中学学生的调查结果能否作为该节目的收视率?
(2)对本年级同学是否喜欢某电视节目调查的结果,能代表学校全体同学的意见吗?如果不适用,应如何改进调查方法?
解:(1)电视台不可能对每个看电视的人进行全面调查。对这?所中学学生的调查结果不能作为该节目的收视率,因为调查对象只有中学生,缺乏代表性;
(2)对本年级同学是否喜欢某电视节目的调查结果不能代表
《6。2普查与抽样调查》课时练习
2。下列事件中最适合使用普查方式收集数据的是()
A。为制作校服,了解某班同学的身高情况
B。了解全市初三学生的视力情况
C。了解一种节能灯的使用寿命
D。了解我省农民的年人均收入情况
答案:A
解析:解答:A。人数不多,适合使用普查方式,所以A正确;
B。人数较多,结果的实际意义不大,因而不适用普查方式,所以B错误;
C。是具有破坏性的调查,因而不适用普查方式,所以C错误;
D。人数较多,结果的实际意义不大,因而不适用普查方式,所以D错误。
故选:A。
分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似。此题考查了抽样调查和全面调查,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查选用普查。
《6。2普查与抽样调查》基础巩固
1、(知识点1)要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()
A、选取该校一个班级的学生
B、选取该校50名男生
C、选取该校50名女生
D、随机选取该校50名九年级学生
2、(题型二)下列调查适合用抽样调查的是()
A、了解义乌电视台“同年哥讲新闻”栏目的收视率
B、了解禽流感H7N9确诊病人同机乘客的健康状况
C、了解某班每个学生家庭电脑的数量
D、“神七”载人飞船发射前对重要零部件的检查
3、(题型三)为了了解某市八年级男生的身高,有关部门准备对200名八年级男生的身高做调查,以下调查方案中比较合理的是()
A、查阅外地200名八年级男生的身高统计资料
B、测量该市一所中学200名八年级男生的身高
C、测量该市两所农村中学各100名八年级男生的身高
D、在该市市区任选两所中学,农村任选两所中学,每所中学用抽签的方法分别选出50名八年级男生,然后测量他们的身高
计算:20+(-30)与(-30)+20两次得到的和相同吗?
得出结论:20+(-30)=(-30)+20
换几组数去试:得到加法交换律:a+b= (学生填)。
其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)
计算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)]。
得出结论:加法结合律:(a+b)+c= 。
教学目标
教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。
能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
2、在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣。
2、在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。
教学重点难点:
重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。
难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。
教学过程
1、创设问题情境,引入新课:
前几节课我们学习了勾股定理,你还记得它有什么作用吗?
例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?
根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度。所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米。
所以至少需13米长的梯子。
2、讲授新课:①、蚂蚁怎么走最近
出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米。在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(π的值取3)。
(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)
(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?
(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)
我们知道,圆柱的侧面展开图是一长方形。好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图)。
我们不难发现,刚才几位同学的走法:
(1)A→A′→B;(2)A→B′→B;
(3)A→D→B;(4)A—→B.
哪条路线是最短呢?你画对了吗?
第(4)条路线最短。因为“两点之间的连线中线段最短”。
②、做一做:教材14页。李叔叔随身只带卷尺检测AD,BC是否与底边AB垂直,也就是要检测∠DAB=90°,∠CBA=90°。连结BD或AC,也就是要检测△DAB和△CBA是否为直角三角形。很显然,这是一个需用勾股定理的逆定理来解决的实际问题。
③、随堂练习
出示投影片
1、甲、乙两位探险者,到沙漠进行探险。某日早晨8∶00甲先出发,他以6千米/时的速度向东行走。1时后乙出发,他以5千米/时的速度向北行进。上午10∶00,甲、乙两人相距多远?
2、如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?
1、分析:首先我们需要根据题意将实际问题转化成数学模型。
解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米)。
在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米。即甲、乙两人相距13千米。
2、分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时。
解:设伸入油桶中的长度为x米,则应求最长时和最短时的值。
(1)x2=1.52+22,x2=6.25,x=2.5
所以最长是2.5+0.5=3(米)。
(2)x=1.5,最短是1.5+0.5=2(米)。
答:这根铁棒的长应在2~3米之间(包含2米、3米)。
3、试一试(课本P15)
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形。在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和这根芦苇的长度各为多少?
我们可以将这个实际问题转化成数学模型。
解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得
(x+1)2=x2+52,x2+2x+1=x2+25
解得x=12
则水池的深度为12尺,芦苇长13尺。
④、课时小结
这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题。我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型。
⑤、课后作业
课本P25、习题1.52