有理数的减法数学初一上册教案优秀14篇

作为一名教职工,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。写教案需要注意哪些格式呢?它山之石可以攻玉,以下是敬业的小编帮家人们找到的有理数的减法数学初一上册教案优秀14篇,欢迎参考,希望对大家有一些参考价值。

初一数学上册教案 篇1

教学目标

1、会进行简单的整式加、减运算、

2、能说明整式加、减中每一步运算的算理,逐步发展有条理的思考和表述的能力、

重、难点

会进行简单的整式加、减运算、

教学过程

一、情境创设

1、操作:

(1)准备三张如下图所示的卡片

(2)思考:

用它们拼成各种形状不同的四边形,并计算拼成的四边形的周长、

二、探索活动

活动一:

1、整式的加减运算要进行哪些步骤?

进行整式的加减运算时,____________________________________________

《3、6整式的加减》同步测试

1、三个小队植树,第一队种_棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树________棵、

2、甲仓库有煤1500吨,乙仓库有煤800吨,从甲仓库每天运出煤5吨,从乙仓库每天运出煤2吨,求m天后,甲、乙两仓库一共还有多少吨煤,并求出当m=30时,甲、乙两仓库一共存煤的数量?

3、6整式的加减:测试

1、已知三角形的第一边长为2a+b,第二边比第一边长a-b,第三边比第二边短a,求这个三角形的周长?

2、某同学做了一道数学题:“已知两个多项式为A,B,B=3_-2y,求A-B的值、”他误将“A-B”看成了“A+B”,结果求出的答案是_-y,那么原来的A-B的值应该是( )

A、4_-3y B、-5_+3y C、-2_+y D、2_-y

初一数学上册教案 篇2

教学目标:

知识与技能

1、掌握直角三角形的判别条件,并能进行简单应用;

2、进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型。

3、会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论。

情感态度与价值观

敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。

教学重点

运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论。

教学难点

会辨析哪些问题应用哪个结论。

课前准备

标有单位长度的细绳、三角板、量角器、题篇

教学过程:

复习引入:

请学生复述勾股定理;使用勾股定理的前提条件是什么?

已知△ABC的两边AB=5,AC=12,则BC=13对吗?

创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法。

这样做得到的是一个直角三角形吗?

提出课题:能得到直角三角形吗

讲授新课:

⒈如何来判断?(用直角三角板检验)

这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?

就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)

⒉继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:

5,12,13;6,8,10;8,15,17.

(1)这三组数都满足a2+b2=c2吗?

(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

⒊直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。

满足a2+b2=c2的三个正整数,称为勾股数。

⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角。工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?

随堂练习:

⒈下列几组数能否作为直角三角形的三边长?说说你的理由。

⑴9,12,15;⑵15,36,39;

⑶12,35,36;⑷12,18,22.

⒉已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角。

⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积。

⒋习题1.3

课堂小结:

⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。

⒉满足a2+b2=c2的三个正整数,称为勾股数。勾股数扩大相同倍数后,仍为勾股数。

初一数学上册教案 篇3

《1.2有理数》教学设计

【学习目标】:

1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;

2、了解分类的标准 与集合的含义;

3、体验分类是数学上常用的处理问题方法;

【学习重点】:正确理解有理数的概念

【学习难点】:正确理解分类的标准和按照一定标准分类

《1.2.1有理数》同步练习含答案

5、对-3.14,下面说法正确的是(B)

A.是负数,不是分数

B.是负数,也是分数

C.是分数,不是有理数

D.不是分数,是有理数

《1.2有理数》同步练习含答案解析

8、如果a与1互为相反数,则|a|=( )

A.2 B.﹣2 C.1 D.﹣1

【考点】绝对值;相反数。

【分析】根据互为相反数的定义,知a=﹣1,从而求解。

互为相反数的定义:只有符号不同的两个数叫互为相反数。

【解答】解:根据a与1互为相反数,得

a=﹣1.

所以|a|=1.

故选C.

【点评】此题主要是考查了相反数的概念和绝对值的性质。

9、若|1﹣a|=a﹣1,则a的取值范围是( )

A.a>1 B.a≥1 C.a<1 D.a≤1

【考点】绝对值。

【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案。

【解答】解:∵|1﹣a|=a﹣1,

∴1﹣a≤0,

∴a≥1,

故选B.

【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大。

初一的数学上册教案 篇4

教学目标:

1、明白生活中存在着无数表示相反意义的量,能举例说明;

2、能体会引进负数的必要性和意义,建立正数和负数的数感。

重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

难点:对负数的意义的理解。

教学过程:

一、知识导向:本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

二、新课拆析:1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。如:0,1,2,3,…,,

2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。

如:汽车向东行驶3千米和向西行驶2千米

温度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C概括:我们把这一种新数,叫做负数,如:-3,-45,…过去学过的那些数(零除外)叫做正数,如:1,2.2…零既不是正数,也不是负数例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-,0,-11,+123,…

三、阶梯训练:P18练习:1,2,3,4。

四、知识小结:

从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

五、作业巩固:

1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示; 2、分别举出几个正数与负数(最少6个)。 3、P20习题2.1:1题。

初一数学上册教案 篇5

一、教学目标:

1、知识目标:

使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

2、能力目标:

培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

3、情感目标:

借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

二、教学重点、难点:

重点:同类项的概念和合并同类项的法则

难点:合并同类项

三、教学过程:

(一)情景导入:

1、观察下面的图片,并将这些图片分类:

你是依据什么来进行分类的呢?

生活中,我们常常为了需要把具有相同特征的事物归为一类。

2、对下列水果进行分类:

(二)新知探究1:

1、对下列八个单项式进行分类:

a,6x2,5,cd,-1,2x2,4a,-2cd

这些被归为同一类的项有什么相同的特征?

2、揭示同类项的概念。

同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。

《3.4合并同类项》同步练习

1、已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________.

2、若-4xay+x2yb=-3x2y,则a+b=_______.

3、下面运算正确的是( )

A.3a+2b=5ab B.3a2b-3ba2=0

C.3x2+2x3=5x5 D.3y2-2y2=1

4、已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( )

A.-5x-1 B.5x+1

C.-13x-1 D.13x+1

《3.4合并同类项》测试

1、下列说法中,正确的是( )

A.字母相同的项是同类项

B.指数相同的项是同类项

C.次数相同的项是同类项

D.只有系数不同的项是同类项

例题分析,运用法则 篇6

【例】计算:

(1)(-3)-(-5);  (2)0-7;

(3)7.2-(-4.8);(4)-3-5.

初一数学上册的教案 篇7

一、等式的概念和性质

1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式。 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边。等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则。

2.等式的类型楷体五号

(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立。如:数字算式 .

(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立。方程 需要 才成立。

(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立。如 , .

注意:等式由代数式构成,但不是代数式。代数式没有等号。体五号

3.等式的性质五号

等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。若 ,则 ;

等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式。若 ,则 , .

注意:

(1)在对等式变形过程中,等式两边必须同时进行。即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边。

(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同。

(3)在等式变形中,以下两个性质也经常用到:

①等式具有对称性,即:如果 ,那么 .

②等式具有传递性,即:如果 , ,那么 .黑体小四

二、方程的相关概念黑体小四

1.方程,含有未知数的等式叫作方程。 注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母。二者缺一不可。楷体五号

2.方程的次和元 方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元。楷体五号

3.方程的已知数和未知数楷体五号

已知数:一般是具体的数值,如 中( 的系数是1,是已知数。但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有等表示。

未知数:是指要求的数,未知数通常用 、 、 等字母表示。如:关于 、 的方程 中, 、 、 是已知数, 、 是未知数。楷体五号

4.方程的解 使方程左、右两边相等的未知数的值,叫做方程的解。楷体五号

5.解方程 求得方程的解的过程。

注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程。

6.方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是。黑体小四

三、一元一次方程的定义体小四

1.一元一次方程的概念 只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数。楷体五号

2.一元一次方程的形式楷体五号

标准形式: (其中 , , 是已知数)的形式叫一元一次方程的标准形式。

最简形式:方程 ( , , 为已知数)叫一元一次方程的最简形式。

注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证。如方程 是一元一次方程。如果不变形,直接判断就出会现错误。

(2)方程 与方程 是不同的,方程 的解需要分类讨论完成。黑体小四

四、一元一次方程的解法

1.解一元一次方程的一般步骤五号

(1)去分母:在方程的两边都乘以各分母的最小公倍数。 注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号。

(2)去括号:一般地,先去小括号,再去中括号,最后去大括号。 注意:不要漏乘括号里的项,不要弄错符号。

(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边。 注意:①移项要变号;②不要丢项。

(4)合并同类项:把方程化成 的形式。 注意:字母和其指数不变。

(5)系数化为1:在方程的两边都除以未知数的系数 ,得到方程的解 . 注意:不要把分子、分母搞颠倒。体五号

2.解一元一次方程常用的方法技巧 解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等。

3.关于x的方程 ax b 解的情况 ⑴当a 0时,x ⑵当a ,b 0时,方程有无数多个解 ⑶当a 0,b 0时,方程无解

练习1、等式的概念和性质

1.下列说法不正确的是

A.等式两边都加上一个数或一个等式,所得结果[]仍是等式。

B.等式两边都乘以一个数,所得结果仍是等式。 C.等式两边都除以一个数,所得结果仍是等式。

D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式。

2.根据等式的性质填空。

(1) ,则 ; (2) ,则 ;

(3) ,则 ; (4) ,则 .

练习2、方程的相关概念

1.列各式中,哪些是等式?哪些是代数式,哪些是方程?

① ;② ;③ ;④ ;⑤ ;⑥ ;

⑦ ;⑧ ;⑨ .

2.判断题。

(1)所有的方程一定是等式。

(2)所有的等式一定是方程。

(3) 是方程。

(4) 不是方程。

(5) 不是等式,因为 与 不是相等关系。

(6) 是等式,也是方程。

(7)“某数的3倍与6的差”的含义是 ,它是一个代数式,而不是方程。

练习3、一元一次方程的定义

1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:

(1)3x+5=12; (2) + =5; (3)2x+y=3; (4)y2+5y-6=0; (5) =2.

2.已知 是关于 的一元一次方程,求 的值。

3.已知方程 是关于x的一元一次方程,则m=_________

4.已知方程 是一元一次方程,则 ; .

练习4、一元一次方程的解与解法

1)一元一次方程的解 一)、根据方程解的具体数值来确定

1.若关于x的方程 的解是 ,则代数式 的值是_________。

2.若 是方程 的一个解,则 .

3.某同学在解方程 ,把 处的数字看错了,解得 ,该同学把 看成了 .

二)、根据方程解的个数情况来确定楷体五号

1.关于 的方程 ,分别求 , 为何值时,原方程:

(1)有唯一解;(2)有无数多解;(3)无解。

2.已知关于 的方程 有无数多个解,那么 , .

3.已知方程 有两个不同的解,试求 的值。

三)、根据方程定解的情况来确定楷体五号

1.若 , 为定值,关于 的一元一次方程 ,无论 为何值时,它的解总是 ,求 和 的值。

2.当 取符合 的任意数时,式子 的值都是一个定值,其中 ,求 , 的值。

五号

四)、根据方程整数解的情况来确定楷体五号

1.已知 为整数,关于 的方程 的解为正整数,求 的值。

2.已知关于 的方程 有整数解,那么满足条件的所有整数 =

3.若方程 有一个正整数解,则 取的最小正数是多少?并求出相应方程的解。

五)、根据方程公共解的情况来确定

1.若 和 是关于 的'同解方程,则 的值是 .

2.已知关于 的方程 ,和方程 有相同的解,求这个相同的解。

3.已知关于 的方程 仅有正整数解,并且和关于 的方程 是同解方程。若 , ,求出这个方程可能的解。

2)一元一次方程的解法 一)、基本类型的一元一次方程的解法

1.解方程:(1) (2) - =1- (3)

二)、分式中含有小数的一元一次方程的解法楷体五号

1.解方程:(1) (2)

(3) (4)

三)、含有多层括号的一元一次方程的解法体五号

1.解方程:(1) (2) (3)

四)、一元一次方程的技巧解法

1.解方程:(1) (2)

(3) (4)

一、填空题。(每小题3分,共24分)

1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.

2.若x=-1是方程2x-3a=7的解,则a=_______.

3.当x=______时,代数式 x-1和 的值互为相反数。

4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.

5.在方程4x+3y=1中,用x的代数式表示y,则y=________.

6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元。

7.已知三个连续的偶数的和为60,则这三个数是________.

8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成。

二、选择题。(每小题3分,共30分)

9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为。

A.0 B.1 C.-2 D.-

10.方程│3x│=18的解的情况是。

A.有一个解是6 B.有两个解,是±6

C.无解 D.有无数个解

11.若方程2ax-3=5x+b无解,则a,b应满足。

A.a≠ ,b≠3 B.a= ,b=-3

C.a≠ ,b=-3 D.a= ,b≠-3

12.解方程 时,把分母化为整数,得。

A、 B、 C、 D、

13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于。

A.10分 B.15分 C.20分 D.30分

14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额。

A.增加10% B.减少10% C.不增也不减 D.减少1%

15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米。

A.1 B.5 C.3 D.4

16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是。

A.从甲组调12人去乙组 B.从乙组调4人去甲组

C.从乙组调12人去甲组 D.从甲组调12人去乙组,或从乙组调4人去甲组

17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了场。

A.3 B.4 C.5 D.6

18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?

A.3个 B.4个 C.5个 D.6个

三、解答题。(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)

19.解方程:2(x-3)+3(2x-1)=5(x+3)

20.解方程:

21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明。已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片。

22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数。

23.据了解,火车票价按“ ”的方法来确定。已知A站至H站总里程数为1500千米,全程参考价为180元。下表是沿途各站至H站的里程数:

车站名 A B C D E F G H

各站至H站

里程数(米) 1500 1130 910 622 402 219 72 0

例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).

(1)求A站至F站的火车票价(结果精确到1元).

(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了。请问王大妈是在哪一站下的车(要求写出解答过程).

24.某公园的门票价格规定如下表:

购票人数 1~50人 51~100人 100人以上

票 价 5元 4.5元 4元

某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元。

(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?

(2)两班各有多少名学生?(提示:本题应分情况讨论)

初一上册数学《有理数》教案精选 篇8

教学目的:

1.了解计算器的性能,并会操作和使用;

2.会用计算器求数的平方根;

重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;

难点:乘方和开方运算;

教学过程:

1.计算器的使用介绍(科学计算器)

初一上册数学一单元教案。png

2.用计算器进行加、减、乘、除、乘方、开方运算

例1用计算器求下列各式的值。

(1)(-3.75)+(-22.5) (2)51.7(-7.2)

解(1)

初一上册数学一单元教案。png

(-3.75)+(-22.5)=-26.25

(2)

初一上册数学一单元教案。png

51.7(-7.2)=-372.24

说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入。

随堂练习

用计算器求值

1.9.23+10.2 2.(-2.35)×(-0.46)

答案1.37.8 2.1.081

初一的数学上册教案 篇9

学习目标:

1、理解有理数的绝对值和相反数的意义。

2、会求已知数的相反数和绝对值。

3、会用绝对值比较两个负数的大小。

4、经历将实际问题数学化的过程,感受数学与生活的联系。

学习重点:

1.会用绝对值比较两个负数的大小。

2.会求已知数的相反数和绝对值。

学习难点:

理解有理数的绝对值和相反数的意义。

学习过程:

一、创设情境

根据绝对值与相反数的意义填空:

-5的相反数是,-的相反数是, 的相反数是;

|0|=,0的相反数是。

二、探索感悟

1、议一议

(1)任意说出一个数,说出它的绝对值、它的相反数。

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

2、想一想

(1)2与3哪个大?这两个数的绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?

三。例题精讲

例1. 求下列各数的绝对值:

+9,-16,-,0.

求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。

议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?

(2)数轴上的点的大小是如何排列的?

例2比较-与-的大小。

例3.求6、-6、14 、-14 的绝对值。

小节与思考:

这节课你有何收获?

四。练习

1. 填空:

⑴ 的符号是 ,绝对值是 ;

⑵的符号是 ,绝对值是

⑶符号是+号,绝对值是 的数是

⑷符号是-号,绝对值是9的数是 ;

⑸符号是-号,绝对值是的数是 .

2. 正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数).

请指出哪个足球质量最好,为什么?

第1个第2个第3个第4个第5个第6个

-25-10+20+30+15-40

3.比较下面有理数的大小

(1)-与- (2) (3) (4)-5与0

五、布置作业:

P25 习题 5

家庭作业:《评价手册》 《补充习题》

六、学后记/教后记

有理数减法教案 篇10

知识与能力:

1.使学生理解有理数的加减法法可以互相转化。2.使学生熟练地进行有理数的加减混合运算。

过程与方法:

1.体会有理数的加减法法可以互相转化的思想。2.培养学生的运算能力。

情感态度与价值观:

培养学生认真、仔细的良好学习态度

重点准确迅速地进行有理数的加减混合运算。

教材提示:

本节课是学习有理数减法的第二课时,在教学过程中,教师应该首先通过探究的方式组织学生分组讨论,借助于已有知识,体会有理数的加减法法可以互相转化的思想,如何省略加号,并且还要正确掌握省略加号后它们表示的是哪些数的和,强化混合运算的准确性。

教学过程

一、自主学习

(一)、阅读教材23-24页。

(二)、导学练习[活动1]:学生课前自主完成。 1.减法法则: ,用字母表示为:

2.计算(1)1-5= (2)8-11= (3)6-9=

(4)9-(-9)= (5)(- )-(- )=

[活动2]:学生先课前自主,然后在课堂上一起和大家交流讨论。

1、红星队在4场足球赛中的战绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。红星队在4场比赛中总的净胜球数是多少?

2、一20十3十(十5)十(一7)(读作 , , , 的和 ) 3、 计算:(一20)十(十3)一(一5)一(十7). 注意:在进行有理数混合运算时,应该先将减法按规则统一成加法后再计算;第一个数前面的一常用括号括起来,但熟练后,第一个数带负号时,通常可以不用括号手起来。 4、 计算在做有理数运算时,易出 符号错误。

计算:(1)(一5)一(一4)一(十1)=(一5)十(一4)十(十1)

=(一9)十(十1) =一8

(2)(一7)一(十4) 十(一8)十(一3)一(一8) =一7十4一8一3一8 =一22. 以上两个小题均有错误,指出错在哪里,并改正。 [学法指导:有理数混合运算,只有将减法按规则统一成加法后,才能省略加号,而减号不能省略。在有理数加减混合运算中,当我们把减法转化为加法时,为了书写简便,常常省略加号和括号。] 5、分别指出下列两个式子的读法,表示那些数的和,并计算: (1)8一7十4一6 (2)(一8)一(十4)十(一7)一(十9)。

(三)自学疑难摘要:

自主学习小组长检查等级 等,组长签字

二、合作探究

计算:1、-5+3-2 +6+7-8-9; 2、-0.5-(-3 )+2.75-(+7 )

3、 4、

[学法指导:在完成以上计算题时,一定要注意当把 减号变为加号时,减数必须变为原数的相反数,再利用加法法则进行计算。在进行有理数的加减运算时,当减法转 化为加法后,可以用加法交换律和加法结合律,这样可以使运算简便。]

[小组活动:1.在进行小组交流时,各位组长一定要注意每一位组员,看他们是否掌握了减法法则,特别是交流一下如何把减数变为原来的相反数。2.特别小心在省略加号时是否正确。3.组长注意自己小组到黑板上交流的任务,安排好展示的人员,督促大家掌握本节课的学习任务。]

三、展示提升

1、每个同学自主完成二中的练习后先在小组内交流讨论。 2、每个组根据分配的任务把自己组的结论板 书到黑板上准备展示。 3、每个组在展示的过程中其他组的同学认真听作好补充和提问。

四、反馈与检测

1.计算:(1)(-41)-(-18)-(+39)-(-72) (2) 2.活动与探究:23. 1 D3 +5D7 +9D11++97D99= 。 [学法指导:这个环节的处理方式是第1题在课堂上完成,第2题在课外由组长主持,进行探究活动,进而对所学知识加以巩固。]

五、课后 反思

初一数学上册教案 篇11

一、教学目标:

1、知识目标:

使学生理解同类项的概念和合并同类项的意义,学会合并同类项。

2、能力目标:

培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。

3、情感目标:

借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。

二、教学重点、难点:

重点:同类项的概念和合并同类项的法则

难点:合并同类项

三、教学过程:

(一)情景导入:

1、观察下面的图片,并将这些图片分类:

你是依据什么来进行分类的呢?

生活中,我们常常为了需要把具有相同特征的事物归为一类。

2、对下列水果进行分类:

(二)新知探究1:

1、对下列八个单项式进行分类:

a,6_2,5,cd,—1,2_2,4a,—2cd

这些被归为同一类的项有什么相同的特征?

2、揭示同类项的概念。

同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。

《3、4合并同类项》同步练习

1、已知代数式2a3bn+1与—3am—2b2是同类项,则2m+3n=________、

2、若—4_ay+_2yb=—3_2y,则a+b=_______、

3、下面运算正确的是()

a、3a+2b=5ab B、3a2b—3ba2=0

C、3_2+2_3=5_5 D、3y2—2y2=1

4、已知一个多项式与3_2+9_的和等于3_2+4_—1,则这个多项式是()

a、—5_—1 B、5_+1

C、—13_—1 D、13_+1

《3、4合并同类项》测试

1、下列说法中,正确的是()

a、字母相同的项是同类项

B、指数相同的项是同类项

C、次数相同的项是同类项

D、只有系数不同的项是同类项

初一数学上册教案 篇12

教学目标

1、会进行简单的整式加、减运算、

2、能说明整式加、减中每一步运算的算理,逐步发展有条理的思考和表述的能力、

重、难点

会进行简单的整式加、减运算、

教学过程

一、情境创设

1、操作:

(1)准备三张如下图所示的卡片

(2)思考:

用它们拼成各种形状不同的四边形,并计算拼成的四边形的周长、

二、探索活动

活动一:

1、整式的加减运算要进行哪些步骤?

进行整式的加减运算时,____________________________________________

《3、6整式的加减》同步测试

1、三个小队植树,第一队种x棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树________棵、

2、甲仓库有煤1500吨,乙仓库有煤800吨,从甲仓库每天运出煤5吨,从乙仓库每天运出煤2吨,求m天后,甲、乙两仓库一共还有多少吨煤,并求出当m=30时,甲、乙两仓库一共存煤的数量?

3、6整式的加减:测试

1、已知三角形的第一边长为2a+b,第二边比第一边长a-b,第三边比第二边短a,求这个三角形的周长?

2、某同学做了一道数学题:“已知两个多项式为A,B,B=3x﹣2y,求A﹣B的值、”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B的值应该是( )

A、4x﹣3y B、﹣5x+3y C、﹣2x+y D、2x﹣y

初一数学上册教案 篇13

教学目标

1。使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;

2。会初步应用正负数表示具有相反意义的量;

3。使学生初步了解有理数的意义,并能将给出的有理数进行分类;

4。培养学生逐步树立分类讨论的思想;

5。通过本节课的教学,渗透对立统一的辩证思想。

教学建议

一、重点、难点分析

本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。

正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作—5℃;比海平面高8848米,记作8848米,比海平面低155米记作—155米。由这两个实例很自然地,把大于0的数叫做正数,把加“—”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。

关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

二、教法建议

这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。

为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。

三、正数与负数概念的理解

1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“—”号的数是负数。

2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…—6,—4,—2,0,2,4,6…,不能被2整除的数是奇数,如…—5,—4,—2,1,3,5…

3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

四、有理数的分类

整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。

2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。

3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。

4)分数和小数的区别:

分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。

5)到目前为止,所学过的数(除π外)都是有理数。

初一的数学上册教案 篇14

教学目标:

知识与技能:

1、进一步熟练掌握有理数加法的法则。

2、掌握有理数加法的运算律,并能运用加法运算律简化运算。

过程与方法:

启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。

情感、态度与价值观:

1、培养学生的分类与归纳能力。

2、强化学生的数形结合思想。

3、提高学生的自学以及理解能力,激发学生学习数学的兴趣。

教学重点:

加法运算律的灵活运用,解决实际问题。

教学难点:

能运用加法运算律简化运算,加法在实际中的应用。

教学方法:

采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。

教学准备:

1、复习有理数的加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

(3)一个数同0相加,仍得这个数。

2、口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8

教学过程:

(一)情境引入,提出问题:

鼓励学生通过自己的探索,交流、归纳,自主得出有理数加法的运算律。

1、叙述有理数的加法法则。

2、小学学过的加法的运算律是不是也可以扩充到有理数范围?

3、计算下列各组数的值,并观察寻找规律。

(1) (-7)+(-5) (-5)+(-7)

(2) [8+(-5)]+(-4) 8+[(-5)+(-4)]

(3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]

结论:在有理数运算中,加法交换律、结合律仍然成立。

(二)活动探究,猜想结论:

交换律——两个有理数相加,交换加数的位置,和不变。

用代数式表示:a+b=b+a

运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零。

在同一个式子中,同一个字母表示同一个数。

结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

用代数式表示:(a+b)+c=a+(b+c)

这里a、b、c表示任意三个有理数。

(三)验证结论:

例1计算16+(-25)+24+(-32)

(引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便)

解:16+(-25)+24+(-32)

=[16+24]+[(-25)+(-32)] (加法结合律)

=40+(-57) (同号相加法则)

=-17 (异号相加法则)

例2计算:31+(-28)+28+69

(引导学生发现,在本例中,把互为相反数的两个数相加得0,计算比较简便)

解:31+(-28)+28+69

=31+69+[(-28)+28]

=100+0

=100

《2.4.1有理数的加法法则》同步练习

3、若两个有理数的和为负数,那么这两个有理数(  )

A.一定都是负数B.一正一负,且负数的绝对值大

C.一个为零,另一个为负数D.至少有一个是负数

4、两个有理数的和(  )

A.一定大于其中的一个加数

B.一定小于其中的一个加数

C.和的大小由两个加数的符号而定

D.和的大小由两个加数的符号与绝对值而定

5、如果a,b是有理数,那么下列各式中成立的是(  )

A.如果a<0,b0

B.如果a>0,b0

C.如果a>0,b<0,那么a+b<0

D.如果a>0,b|b|,那么a+b>0

《2.4.2有理数的加法运算律》测试

7、张大伯共有7块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:kg):+320,-170,-320,+130,+150,+40,-150.则今年小麦的总产量与去年相比(  )

A.增产20 kg B.减产20 kg C.增长120 kg D.持平

8、一口井水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却又下滑了0.15米;第四次往上爬了0.75米,却又下滑了0.2米;第五次往上爬了0.55米,没有下滑;第六次往上爬了0.48米,此时蜗牛有没有爬出井口?请通过列式计算加以说明

一键复制全文保存为WORD