人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,
探索勾股定理(二)
教学目标:
1、 经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
2、 掌握勾股定理和他的简单应用
重点难点:
重点: 能熟练运用拼图的方法证明勾股定理
难点:用面积证勾股定理
教学过程
七、 创设问题的情境,激发学生的学习热情,导入课题
我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?
(同学们回答有这几种可能:(1) (2) )
在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。
= 请同学们对上面的式子进行化简,得到: 即 =
这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。
八、 讲例
1、 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?
分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的 米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。
解:由勾股定理得
即BC=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为:
答:飞机每个小时飞行540千米。
九、 议一议
展示投影2(书中的图1—9)
观察上图,应用数格子的方法判断图中的三角形的三边长是否满足
同学在议论交流形成共识之后,老师总结。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
十、 作业
1、 1、课文 P11§1.2 1 、2
2、 选用作业。
一、教学目标
1、理解一个数平方根和算术平方根的意义;
2、理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3、通过本节的训练,提高学生的逻辑思维能力;
4、通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合
四、教学手段
幻灯片
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0。125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=—4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1、一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3、负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0。2的平方根是
④3的平方根是
⑤ 的平方根是
由学生说出上式的读法。
例1。下列各数的平方根:
(1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根为±9。即:
(2)
的平方根是 ,即
(3)
的平方根是 ,即
(4)∵(±0。7)2=0。49,
∴0。49的平方根为±0。7。
小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。
六、总结
本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。
七、作业
教材P。127练习1、2、3、4。
八、板书设计
平方根
(一)概念 (四)表示方法 例1
(二)性质
(三)开平方
探究活动
求平方根近似值的一种方法
求一个正数的平方根的近似值,通常是查表。这里研究一种笔算求法。
例1。求 的值。
解 ∵92102,
两边平方并整理得
∵x1为纯小数。
18x1≈16,解得x1≈0。9,
便可依次得到精确度
为0。01,0。001,……的近似值,如:
两边平方,舍去x2得19.8x2≈—1.01
第一步:情景创设
乒乓球的标准直径为40mm,质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):
A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
�
(2)是否由此就断定两厂生产的乒乓球直径同样标准?
今天我们一起来探索这个问题。
探索活动
通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动
算一算
把所有差相加,把所有差取绝对值相加,把这些差的。平方相加。
想一想
�
意义:用来衡量一批数据的波动大小
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定
归纳:(1)研究离散程度可用(2)方差应用更广泛衡量一组数据的波动大小
(3)方差主要应用在平均数相等或接近时
(4)方差大波动大,方差小波动小,一般选波动小的
方差的简便公式:
推导:以3个数为例
(二)标准差:
方差的算术平方根,即④
并把它叫做这组数据的标准差。它也是一个用来衡量一组数据的波动大小的重要的量。
注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
一次函数的图象应用》
教学目标
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维。
3、情感、态度与价值观
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。
重、难点与关键
1、重点:一次函数的应用。
2、难点:一次函数的应用。
3、关键:从数形结合分析思路入手,提升应用思维。
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。
教学过程
一、范例点击,应用所学
【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。
y=
【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨。B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200)。
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习。
三、课堂总结,发展潜能
由学生自我评价本节课的表现。
四、布置作业,专题突破
课本P120习题14.2第9,10,11题。
板书设计
14.2.2一次函数(4)
1、一次函数的应用例:
一、创设情境
1、一次函数的图象是什么,如何简便地画出一次函数的图象?
(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象)。
2、正比例函数y=kx(k≠0)的图象是经过哪一点的直线?
(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线)。
3、平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?
4、在平面直角坐标系中,画出函数的图象。我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?
二、探究归纳
1、在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点。
2、求直线y=-2x-3与x轴和y轴的交点,并画出这条直线。
分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.
解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点。
过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.
所以一次函数y=kx+b,当x=0时,y=b;当y=0时,。所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是。
三、实践应用
例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式。
分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值。
解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.
例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积。
分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?
探索勾股定理(一)
教学目标:
1、 经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
重点难点:
重点:了解勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现
教学过程
一、 创设问题的情境,激发学生的学习热情,导入课题
出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影2 (书中的P2 图1—2)并回答:
1、 观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C中有_______个小方格,即A的面积为______个单位。
2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:
3、 图1—2中,A,B,C 之间的面积之间有什么关系?
学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?
二、 做一做
出示投影3(书中P3图1—4)提问:
1、图1—3中,A,B,C 之间有什么关系?
2、图1—4中,A,B,C 之间有什么关系?
3、 从图1—1,1—2,1—3,1|—4中你发现什么?
学生讨论、交流形成共识后,教师总结:
以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
三、 议一议
1、 图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?
2、 你能发现直角三角形三边长度之间的关系吗?
在同学的交流基础上,老师板书:
直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”
也就是说:如果直角三角形的两直角边为a,b,斜边为c
那么
我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
3、 分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)
四、 想一想
这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?
五、 巩固练习
1、 错例辨析:
△ABC的两边为3和4,求第三边
解:由于三角形的两边为3、4
所以它的第三边的c应满足 =25
即:c=5
辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题
△ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。
(2)若告诉△ABC是直角三角形,第三边C也不一定是满足 ,题目中并为交待C 是斜边
综上所述这个题目条件不足,第三边无法求得。
初二数学教案【精选21篇】
六、 作业
课本P7 §1.1 2、3、4
教学目标:
1、 理解运用平方差公式分解因式的方法。
2、 掌握提公因式法和平方差公式分解因式的综合运用。
3、 进一步培养学生综合、分析数学问题的能力。
教学重点:
运用平方差公式分解因式。
教学难点:
高次指数的转化,提公因式法,平方差公式的灵活运用。
教学案例:
我们数学组的观课议课主题:
1、关注学生的合作交流
2、如何使学困生能积极参与课堂交流。
在精心备课过程中,我设计了这样的自学提示:
1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?
2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?
①-x2+y2 ②-x2-y2 ③4-9x2
④ (x+y)2-(x-y)2 ⑤ a4-b4
3、试总结运用平方差公式因式分解的条件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解吗?
5、试总结因式分解的步骤是什么?
师巡回指导,生自主探究后交流合作。
生交流热情很高,但把全部问题分析完已用了30分钟。
生展示自学成果。
生1: -x2+y2能用平方差公式分解,可分解为(y+x)(y-x)
生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)
师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。
生3:4-9x2 也能用平方差公式分解,可分解为(2+9x)(2-9x)
生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。
生5: a4-b4可分解为(a2+b2)(a2-b2)
生6:不对,a2-b2 还能继续分解为a+b)(a-b)
师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……
反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:
(1) 我在备课时,过高估计了学生的能力,问题2中的③、④、⑤ 多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:
下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。
(2) 教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤ 可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。
我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。
确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有最好,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……
一、教学目标
1、使学生理解并掌握分式的概念,了解有理式的概念;
2、使学生能够求出分式有意义的条件;
3、通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;
4、通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识。
二、重点、难点、疑点及解决办法
1、教学重点和难点 明确分式的分母不为零。
2、疑点及解决办法 通过类比分数的意义,加强对分式意义的理解。
三、教学过程
【新课引入】
前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)
【新课】
1、分式的定义
(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
用、表示两个整式,就可以表示成的形式。如果中含有字母,式子就叫做分式。其中叫做分式的分子,叫做分式的分母。
(2)由学生举几个分式的例子。
(3)学生小结分式的概念中应注意的问题。
①分母中含有字母。
②如同分数一样,分式的分母不能为零。
(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]
2、有理式的分类
请学生类比有理数的分类为有理式分类:
例1 当取何值时,下列分式有意义?
(1);
解:由分母得。
∴当时,原分式有意义。
(2);
解:由分母得。
∴当时,原分式有意义。
(3);
解:∵恒成立,
∴取一切实数时,原分式都有意义。
(4)。
解:由分母得。
∴当且时,原分式有意义。
思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?
例2 当取何值时,下列分式的值为零?
(1);
解:由分子得。
而当时,分母。
∴当时,原分式值为零。
小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零。
(2);
解:由分子得。
而当时,分母,分式无意义。
当时,分母。
∴当时,原分式值为零。
(3);
解:由分子得。
而当时,分母。
当时,分母。
∴当或时,原分式值都为零。
(4)。
解:由分子得。
而当时,,分式无意义。
∴没有使原分式的值为零的的值,即原分式值不可能为零。
(四)总结、扩展
1、分式与分数的区别。
2、分式何时有意义?
3、分式何时值为零?
(五)随堂练习
1、填空题:
(1)当时,分式的值为零
(2)当时,分式的值为零
(3)当时,分式的值为零
2、教材P55中1、2、3.
八、布置作业
教材P56中A组3、4;B组(1)、(2)、(3)。
九、板书设计
课题 例1
1、定义例2
2、有理式分类
一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1、平移
2、平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。
3、简单的平移作图
①确定个图形平移后的位置的条件:
⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:
⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;
二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定�
1、旋转
2、旋转的性质
⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3、简单的旋转作图
⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成
①确定组合图案中的“基本图案”
②发现该图案各组成部分之间的内在联系
③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;
⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。
2、会求一组数据的极差。
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差。
2、难点:本节课内容较容易接受,不存在难点、
三、课堂引入:
下表显示的是上海2001年2月下旬和2002年同期的每日最高气温,如何对这两段时间的气温进行比较呢?
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法、
经计算可以看出,对于2月下旬的这段时间而言,2001年和2002年上海地区的平均气温相等,都是12度、
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图、
观察一下,它们有区别吗?说说你观察得到的结果、
用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围、用这种方法得到的差称为极差(range)、
四、例习题分析
本节课在教材中没有相应的例题,教材P152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。
二次根式
一、教学目标
1、了解二次根式的意义;
2、 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、 掌握二次根式的性质 和 ,并能灵活应用;
4、通过二次根式的计算培养学生的逻辑思维能力;
5、 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:(1)二次根的意义;(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义: 式子 叫做二次根式。
对于 请同学们讨论论应注意的问题,引导学生总结:
(1)式子 只有在条件a≥0时才叫二次根式, 是二次根式吗? 呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1 当a为实数时,下列各式中哪些是二次根式?
例2 x是怎样的实数时,式子 在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义。
例3 当字母取何值时,下列各式为二次根式:
(1) (2) (3) (4)
分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是二次根式。
(2)-3x≥0,x≤0,即x≤0时, 是二次根式。
(3) ,且x≠0,∴x>0,当x>0时, 是二次根式。
(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.当x>2时, 是二次根式。
例4 下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即: 只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得 。
(2)由 ,得3a-1>0,解得 。
(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式。 所以所求字母x的取值范围是全体实数。
(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.
教学目标:
知识目标:
1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。
2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。
3、会对一个具体实例进行概括抽象成为数学问题。
能力目标:
1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。
2、经历具体实例的'抽象概括过程,进一步发展学生的抽象思维能力。
情感目标:
1、经历函数概念的抽象概括过程,体会函数的模型思想。
2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
教学重点:
掌握函数概念。
判断两个变量之间的关系是否可看作函数。
能把实际问题抽象概括为函数问题。
教学难点:
理解函数的概念。
能把实际问题抽象概括为函数问题。
教学过程设计:
一、创设问题情境,导入新课
『师』:同学们,你们看下图上面那个像车轮状的物体是什么?
『生』:摩天轮。
『师』:你们坐过吗?
……
『师』:当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?
『生』:应该有规律。因为人随轮一直做圆周运动。所以人的高度过一段时间就会重复依次,即转动一圈高度就重复一次。
『师』:分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。
大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『师』:对于给定的时间t,相应的高度h确定吗?
『生』:确定。
『师』:在这个问题中,我们研究的对象有几个?分别是什么?
『生』:研究的对象有两个,是时间t和高度h。
『师』:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。
教学目标:
1、掌握一次函数解析式的特点及意义
2、知道一次函数与正比例函数的关系
3、理解一次函数图象特点与解析式的联系规律
教学重点:
1、 一次函数解析式特点
2、 一次函数图象特征与解析式的联系规律
教学难点:
1、一次函数与正比例函数关系
2、根据已知信息写出一次函数的表达式。
教学过程:
Ⅰ.提出问题,创设情境
问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是
s=570-95t.
说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.
问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.
分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.
问题3 以上问题1和问题2表示的这两个函数有什么共同点?
Ⅱ.导入新课
上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称
y是x的正比例函数。
例1:下列函数中,y是x的一次函数的是( )
①y=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);
(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);
(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;
(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).
(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;
(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答. 解 (1)a?20,不是一次函数. h
(2)L=2b+16,L是b的一次函数.
(3)y=150-5x,y是x的一次函数.
(4)s=40t,s既是t的一次函数又是正比例函数.
(5)y=60x,y是x的`一次函数,也是x的正比例函数;
(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;
(7)y=50+2x,y是x的一次函数,但不是x的正比例函数
例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.
分析 根据一次函数和正比例函数的定义,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.
例4 已知y与x-3成正比例,当x=4时,y=3.
(1)写出y与x之间的函数关系式;
(2)y与x之间是什么函数关系;
(3)求x=2.5时,y的值.
解 (1)因为 y与x-3成正比例,所以y=k(x-3).
又因为x=4时,y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函数.
(3)当x=2.5时,y=3×2.5=7.5.
1. 2
例5 已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).
(1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.
(2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.
分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.
(2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.
分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.
解 在第一阶段:y=3x(0≤x≤8);
在第二阶段:y=16+x(8≤x≤16);
在第三阶段:y=-2x+88(24≤x≤44).
Ⅲ.随堂练习
根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不
超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]
Ⅳ.课时小结
1、一次函数、正比例函数的概念及关系。
2、能根据已知简单信息,写出一次函数的表达式。
Ⅴ.课后作业
1、已知y-3与x成正比例,且x=2时,y=7
(1)写出y与x之间的函数关系.
(2)y与x之间是什么函数关系.
(3)计算y=-4时x的值.
2、甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.
3、仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.
4、今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.
5、按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.
教学目标
知识与技能
用二元一次方程组解决有趣场景中的数字问 题和行程问题,归纳用方程(组)解决实际问题的一般步骤。
过程与方法
1.通过设置问题串,让学生体会分析复杂问题的思考方法。
2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界 的有效数学模型。
情感态度与价值观
在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气, 树立自信心,并鼓励学生合作 交流,培养学生的团队精神。
教学重点
1.初步体会列方程组解决实际问题的步骤。
2.学会用图表 分析较复杂的数量关系问题。
教学难点
将实际问题转化 成二元一次方程组的数学模型;会用图表分析数 量关系。
教学准备:
教具:教材,课件,电脑(视频播放器)
学具:教材,练习本
教学过程
第一环节:复习提问(5分钟,学生口答)
内容:填空:
(1)一个两位数,个位数字是 ,十位数字是 ,则这个两位数用代数式表示为 ;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为。
(2)一个两位数,个位上的数为 ,十位上的数为 ,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为 。
(3)有两个两位数 和 ,如果将 放在 的左边,就得到一个四位数,那么这个四位数用代数式表示为 ;如果将 放在 的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为。
第二环节:情境引入(10分钟,学生动脑思考,全班交流)
内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况。你能 确定小明在12:00时看到的里程碑上的数吗?
第三环节:合作学习(10分钟,小组讨论,找等量关系,解决 问题)
内容:例1
两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。已知前一个四位数比后一个四位数大2178,求这两个两位数。
学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论。
第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)
内容:练习
1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字 之和,商是5,余数是1。这个两位数是多少?
2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左 边与放在右边所得的数之和为8484.求这个两位数。
第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)
内容:
1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流。
2.师生互相交流总结出列方程(组)解决实际问题的一般步骤。
第 六环节:布置作业
内容:习题7.6
A组(优等生) 2,3,4
B组(中等生)2、3
C组(后三分之一生)2
一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1.平移
2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。
3.简单的平移作图
①确定个图形平移后的位置的条件:
⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:
⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;
二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定�
1.旋转
2.旋转的性质
⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3.简单的旋转作图
⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成
①确定组合图案中的“基本图案”
②发现该图案各组成部分之间的内在联系
③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;
⑸旋转变换与轴对称变换的'组合;⑹轴对称变换与平移变换的组合。
学习目标
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。
2、由坐标的变化探索新旧图形之间的变化。
重点
1、 作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。
2、 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
难点
体会极坐标和直角坐标思想,并能解决一些简单的问题
学习过程(导入、探究新知、即时练习、小结、达标检测、作业)
第一课时
学习过程:
一、旧知回顾:
1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。
2、坐标平面内点的坐标的。表示方法____________。
3、各象限点的坐标的特征:
二、新知检索:
1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2), (0,0)并用线段依次连接,观察形成了什么图形
三、典例分析
例1、
(1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?
例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?
四、题组训练
1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。
(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?
(2)纵、横分别加3呢?
(3)纵、横分别变成原来的2倍呢?
归纳:图形坐标变化规律
1、 平移规律:2、图形伸长与压缩:
第二课时
一、旧知回顾:
1、轴对称图形定义:如果一个图形沿着 对折后两部分完全重合,这样的图形叫做轴对称图形。
中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转 ,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形
二、新知检索:
1、如图,左边的鱼与右边的鱼关于y轴对称。
1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?
2、各个对应顶点的坐标有怎样的关系?
3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?
三、典例分析,如图所示,
1、右图的鱼是通过什么样的变换得到 左图的鱼的。
2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。
3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系
四、题组练习
1、将坐标作如下变化时,图形将怎样变化?
① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)
④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)
2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。
3、 如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。
4、 描出下图中枫叶图案关于x轴的轴对称图形的简图。
学习笔记
一、教学目标
1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点
1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、练习题的意图分析
1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.P11习题16.1的第5题是:不改变分式的值,使下列分式的'分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。
四、课堂引入
1、请同学们考虑:与相等吗?与相等吗?为什么?
2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解
P7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
P11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
P11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
知识技能
1、了解两个图形成轴对称性的性质,了解轴对称图形的性质。
2、探究线段垂直平分线的性质。
过程方法
1、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。
2、探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。
情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。
教学重点
1、轴对称的性质。
2、线段垂直平分线的性质。
教学难点体验轴对称的特征。
教学方法和手段多媒体教学
过程教学内容
引入中垂线概念
引出图形对称的性质第一张幻灯片
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的性质。
幻灯片二
1、图中的对称点有哪些?
2、点A和A的连线与直线MN有什么样的关系?
理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。
我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
定义:经过线段的中点并且垂直于这条线段,就叫这条线段的'垂直平分线,也叫中垂线。
一、学习目标:
1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;
2、会运用两数差的平方公式进行计算。
二、学习过程:
请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:
(一)探索
1、计算: (a - b) =
方法一: 方法二:
方法三:
2、两数差的平方用式子表示为_________________________;
用文字语言叙述为___________________________ 。
3、两数差的平方公式结构特征是什么?
(二)现学现用
利用两数差的平方公式计算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
(三)合作攻关
灵活运用两数差的平方公式计算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)达标训练
1、、选择:下列各式中,与(a - 2b) 一定相等的是( )
A、a -2ab + 4b B、a -4b
C、a +4b D、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、计算:
( a - b) ( x -2y )
3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?
(四)提升
1、本节课你学到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值
1、展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?
2、思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)
3、再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义、
矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形)、
矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象、
【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状、
①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?
操作,思考、交流、归纳后得到矩形的性质、
矩形性质1 矩形的四个角都是直角、
矩形性质2 矩形的对角线相等、
如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD、因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半、
例习题分析
例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长、
分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求、
解:∵ 四边形ABCD是矩形,
∴ AC与BD相等且互相平分、
∴ OA=OB、
又∠AOB=60°,
∴△OAB是等边三角形、
∴矩形的对角线长AC=BD=2OA=2×4=8(cm)、
例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm、求AD的长及点A到BD的距离AE的长、
分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法
学习目标:
1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质。
2、经历探索轴对称的性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力。
3、利用轴对称的基本性质解决实际问题。
学习重点:灵活运用对应点所连的线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。
学习难点:轴对称的性质的理解和拓展运用。
学习过程 :
一、探索活动
如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.
两针孔A、A和线段AA与折痕MN之间有什么关系?
1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.
2、那么 直线MN为什么会垂直平分线段AA呢?
3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).
例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线。
4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?
5.如图,再在纸上任画一点C,并仿照上面进行操作。
(1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?
(2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?
(3)轴对称有哪些性质?
6.轴对称的性质:
(1)成轴对称的两个图形全等。
(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
二、例题讲解
例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .
(2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证。
(3)AE与BF平行吗?为什么?
(4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?
(5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?