学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是小编给大家整理的一些四年级数学的知识点,希望对大家有所帮助。
四年级数学上册《统计》知识点
栽蒜苗(一)(条形统计图)
【知识点】:
1、统计图中1格表示不同单位量,要结合具体的情况来判断1个表示几个单位。数据大,每1格所表示的单位就多,数据小,每1格所表示的单位就小。
2、理解条形统计图上的数据所表示的意义。
3、明确条形统计图的特点:直观、方便、便于察看。
4、制作条形统计图的方法:确定水平方向,标出项目;确定垂直方向代表的数量(一格代表的数量);根据数据的大小画出长度不同的直条;写出标题。
补充【知识点】:初步了解复式条形统计图,能够从中获得信息,并能回答相应的问题。
栽蒜苗(二)(折线统计图)
【知识点】:
1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
3、能够看出折线统计图所提供的信息,并回答相关的问题。
补充【知识点】:
1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
四年级上册数学《数一数》知识点归纳
【知识点】:
亿以内数的读数方法。
含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管有几个零,只读一个零。
亿以内数的写数方法。
从高位写起,按照数位的顺序写,中间或末尾哪一位上一个也没有,就在那一位上写0。
比较数大小的方法。
多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。
国土面积(多位数的改写)
【知识点】:
改写以“万”或“亿”为单位的数的方法。
以“万”为单位,就要把末尾的四个0去掉,再添上万字;以“亿”为单位,就要把末尾八个0去掉,再添上亿字。
改写的意义。
为了读数、写数方便。
森林面积(求近似数)
【知识点】:
精确数与近似数的特点。
精确数一般都以“一”为单位,近似数都是省略尾数,以“万”或“亿”为单位。
用四舍五入法保留近似数的方法。
根据题中要求,看到所要保留位数的下一位,如果这一位满5,则向前一位进一;如果不够5则舍去。而不管尾数的后几位是多少。如精确到万位,只看千位,精确到亿位,只看到千万位。最后一定要写出单位名称。
四年级数学简便计算:方法归类
一、交换律(带符号搬家法)
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。适用于加法交换律和乘法交换律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
二、结合律
(一)加括号法
1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)
例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689
2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)
例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100
(二)去括号法
1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈)(注:去括号是添加括号的逆运算)
2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算)
三、乘法分配律
1.分配法 括号里是加或减运算,与另一个数相乘,注意分配。
例:45×(10+2)=45×10+45×2=450+90=540
2.提取公因式 注意相同因数的提取。
例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。
3.注意构造,让算式满足乘法分配律的条件。
例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500
四、借来还去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106
五、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆还要注意不要改变数的大小。
例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900综上所述,要教好简便计算,使学生达到计算的时候又快又对,不仅正确无误,方法还很合理、样式灵活的要求。首先要求教师熟知有关内容并绰绰有余,其次对教材还要像导演使用剧本一样,都有一个创造的过程,做探求教法的有心人。在练习设计上除了做到内容要精选,有层次,题形多样,还要有训练智力与非智力技能的价值。