总结是指社会团体、企业单位和个人对某一阶段的学习、它可以给我们下一阶段的学习和工作生活做指导,因此十分有必须要写一份总结哦。下面是小编给大家带来的高中数学知识点重点总结大全,以供大家参考!
高中数学知识点重点总结大全
集合的有关概念
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N
子集、交集、并集、补集、空集、全集等概念
1)子集:若对_∈A都有_∈B,则AB(或AB);
2)真子集:AB且存在_0∈B但_0A;记为AB(或,且)
3)交集:A∩B={_|_∈A且_∈B}
4)并集:A∪B={_|_∈A或_∈B}
5)补集:CUA={_|_A但_∈U}
注意:A,若A≠?,则?A;
若且,则A=B(等集)
集合与元素
掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。
子集的几个等价关系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、并集运算的性质
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的个数:
设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
练习题:
已知集合M={_|_=m+,m∈Z},N={_|_=,n∈Z},P={_|_=,p∈Z},则M,N,P满足关系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:从判断元素的共性与区别入手。
解答一:对于集合M:{_|_=,m∈Z};对于集合N:{_|_=,n∈Z}
对于集合P:{_|_=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。
人教版高一数学知识点整理
考点一、映射的概念
1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多
2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素_,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。包括:一对一多对一
考点二、函数的概念
1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数_,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。记作y=f(_),_A.其中_叫自变量,_的取值范围A叫函数的定义域;与_的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。
2.函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。
3.区间的概念:设a,bR,且a
①(a,b)={_a
⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__
考点三、函数的表示方法
1.函数的三种表示方法列表法图象法解析法
2.分段函数:定义域的不同部分,有不同的对应法则的函数。注意两点:①分段函数是一个函数,不要误认为是几个函数。②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
考点四、求定义域的几种情况
①若f(_)是整式,则函数的定义域是实数集R;
②若f(_)是分式,则函数的定义域是使分母不等于0的实数集;
③若f(_)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;
④若f(_)是对数函数,真数应大于零。
⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。
⑥若f(_)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;
⑦若f(_)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题
高一数学知识点归纳大全
圆的方程定义:
圆的标准方程(_—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:
1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。
①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ<0,直线和圆相离。
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。
①dR,直线和圆相离、
2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。
3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。
切线的性质
⑴圆心到切线的距离等于圆的半径;
⑵过切点的半径垂直于切线;
⑶经过圆心,与切线垂直的直线必经过切点;
⑷经过切点,与切线垂直的直线必经过圆心;
当一条直线满足
(1)过圆心;
(2)过切点;
(3)垂直于切线三个性质中的两个时,第三个性质也满足。
切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线。
切线长定理
从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。
高中数学知识点重点总结大全相关文章: