高三数学八大引导方法

数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,下面给大家分享一些关于高三数学八大引导方法,希望对大家有所帮助。

高三数学八大引导方法

1.学科价值引导

就是要让学生明白数学的学科价值,懂得为什么要学习数学知识。

一是要让学生明白数学的悠久历史;

二是要让学生明白数学与各门学科的关系,特别是它在自然科学中的地位和作用;

三是要让学生明白数学在工农业生产、现代化建设和现代科学技术中的地位和作用;四是要让学生明白当前的数学学习与自己以后的进一步学习和能力增长的关系,使其增强克服数学学习心理障碍的自觉性,主动积极地投入学习。

2.爱心引导

关心学生、爱护学生、理解学生、尊重学生,帮助学生克服学习上的困难。特别是对于数学成绩较差的学生,教师更应主动关心他们,征询他们的意见,想方设法让他们体验到学数学的乐趣,向他们奉献一片挚诚的爱心。

3.兴趣引导

一是问题激趣。"问题具有相当难度,但并非高不可攀,经努力可以克服困难,但并非轻而易举;可以创造条件寻得解决问题的途径,但并非一蹴而就";

二是情景激趣,把教学内容和学生实际结合起来、创设生动形象、直观典型的情景,激起学生的学习兴趣。此外,还有语言激趣、变式激趣、新异激趣、迁移激趣、活动激趣等等。

4.目标引导数学教师要有一个教学目标体系,包括班级目标、小组目标、优等生目标和后进生目标,面向全体学生,使优等生、中等生和后进生都有前进的目标和努力的方向。其目标要既有长期性的又有短期性的,既有总体性的又有阶段性的,既有现实性的又有超前性的。对于学生个体,特别是后进生和尖子生,要努力通过"暗示"和"个别交谈"使他们明确目标,给他们加油鼓劲。

5.环境引导

"加强校风、班风和学风建设,优化学习环境;开展"一帮一"、"互助互学"活动;加强家访,和家长经常保持联系,征求家长的意见和要求,使学生有一个"关心互助、理解、鼓励"的良好学习环境。

6.榜样引导

数学教师要引导学生树立自己心中的榜样,一是要在教学中适度地介绍国内外著名的数学家,引导学生向他们学习;二是要引导学生向班级中刻苦学习的同学学习,充分发挥榜样的"近体效应";三是教师以身示范,以人育人。

7.竞争引导

开展各种竞赛活动,建立竞争机制,引导学生自觉抵制和排除不健康的心理因素,比、学、赶、帮争先进。

8.方法引导

在数学知识教学、能力训练的同时,要进行数学思维方法、学习方法、解题方法等的指导。总之,中学生数学学习的心理障碍是多方面的,其消极作用是显而易见的,产生的原因也是复杂的。与此相应,引导中学生克服心理障碍的方法也应是多样的,没有固定模式。我们数学教师要不断加强教育理论的学习,及时准确地掌握学生的思维状况,改进教法,引导学生自觉消除数学学习的心理障碍,使他们真正成为学习数学的主人,让素质教育在数学教学这块园地中开出鲜艳的花朵,结出丰硕的果实.

高三数学正确理解学习概念方法

一、温故法

学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。

二、操作法

对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。

三、类比法

这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。

四、喻理法

为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念.

五、置疑法

这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。

六、创境法

如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究“鼓掌时两只手怎样运动”开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。

高考数学五大主要解题思路

高考数学解题思想一:函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。

高考数学解题思想二:数形结合思想

中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

高考数学解题思想三:特殊与一般的思想

用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。

高考数学解题思想四:极限思想解题步骤

极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

高考数学解题思想五:分类讨论思想

我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。


高三数学八大引导方法相关文章

一键复制全文保存为WORD