初二数学知识点全总结

上学期间,大家最不陌生的就是知识点吧!知识点有时候特指教科书上或考试的知识。还在为没有系统的知识点而发愁吗?下面小编为大家带来初二数学知识点全总结,希望大家喜欢!

初二数学知识点

Ⅰ、平行四边形

(1)平行四边形性质

1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形。

2)平行四边形的性质(包括边、角、对角线三方面) :

边:①平行四边形的两组对边分别平行;

②平行四边形的两组对边分别相等;

角:③平行四边形的两组对角分别相等;

对角线:④平行四边形的对角线互相平分。

【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点。

(2)平行四边形判定

1)平行四边形的判定(包括边、角、对角线三方面):

边:①两组对边分别平行的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③一组对边平行且相等的四边形是平行四边形;

角:④两组对角分别相等的四边形是平行四边形;

对角线:⑤对角线互相平分的四边形是平行四边形。

2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线。

3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

4)平行线间的距离:

两条平行线中,一条直线上的任意一点到另一条直线的.距离,叫做这两条平行线间的距离。两条平行线间的距离处处相等。

Ⅱ、矩形

(1)矩形的性质

1)矩形的定义:有一个角是直角的平行四边形叫做矩形。

2)矩形的性质:

①矩形具有平行四边形的所有性质;

②矩形的四个角都是直角;

③矩形的对角线相等;

④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点。

(2)矩形的判定

1)矩形的判定:

①有一个角是直角的平行四边形是矩形;

②对角线相等的平行四边形是矩形;

③有三个角是直角的四边形是矩形。

2)证明一个四边形是矩形的步骤:

方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等;

方法二:若一个四边形中的直角较多,则可证三个角为直角。

3)直角三角形斜边中线定理:(如右图)

直角三角形斜边上的中线等于斜边的一半。

Ⅲ、菱形

(1)菱形的性质

1)菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2)菱形的性质:

①菱形具有平行四边形的所有性质;

②菱形的四条边都相等;

③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;

④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点。

3)菱形的面积公式:

菱形的两条对角线的长分别为,则

(2)菱形的判定

1)菱形的判定:

①有一组邻边相等的平行四边形是菱形;

②对角线互相垂直的平行四边形是菱形;

③四条边都相等的四边形是菱形。

2)证明一个四边形是菱形的步骤:

方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”;

方法二:直接证明“四条边相等”。

Ⅳ、正方形

(1)正方形的性质

1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

2)正方形的性质:

正方形具有平行四边形、矩形、菱形的所有性质,即①正方形的四条边都相等;②四个角都是直角;③对角线互相垂直平分且相等,并且每条对角线平分一组对角。

3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心。

(2)正方形的判定

正方形的判定:

①有一组邻边相等且有一个角是直角的平行四边形是正方形;

②有一组邻边相等的矩形是正方形;

③对角线互相垂直的矩形是正方形;

④有一个角是直角的菱形是正方形;

⑤对角线相等的菱形是正方形;

⑥对角线互相垂直平分且相等的四边形是正方形。

初二数学知识点总结

相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

代数式求值

(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.

(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

题型简单总结以下三种:

①已知条件不化简,所给代数式化简;

②已知条件化简,所给代数式不化简;

③已知条件和所给代数式都要化简.

3由三视图判断几何体

(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.

(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法

初二数学知识点梳理

1、边:两组对边分别平行;四条边都相等;相邻边互相垂直。

2、内角:四个角都是90°;

3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;

4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。

5、正方形具有平行四边形、菱形、矩形的一切性质。

6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形

7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%


初二数学知识点全总结相关文章

一键复制全文保存为WORD