小学五年级数学教案【优秀7篇】

作为一名教学工作者,时常需要用到教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么大家知道正规的教案是怎么写的吗?下面是小编精心为大家整理的小学五年级数学教案【优秀7篇】,您的肯定与分享是对小编最大的鼓励。

小学五年级数学教案 篇1

教学目标

1.通过教学使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式.

2.理解用字母表示数的意义.

3.知道一个数的平方的含义及读写法,学会在含有字母的式子里简写和略写乘号.

4.使学生学会应用字母公式求值.

教学重点

用字母表示运算定律和公式;根据字母公式求值.

教学难点

理解一个数的平方的含义,乘号的简写和略写.

教学过程

一、铺垫孕伏

(一)在下面的□里填上适当的数,并说明根据什么.

18+34=34+□

(35+55)+45=357+(□+□)

35×□=59×□

(1.2×2.5)×4=1.2×(□×□)

(4+8)×□=□×3.5+□×□

二、探究新知

(一)教学用字母表示运算定律.

1.学生叙述各运算定律的内容,并用字母公式表示出来.

教师板书

(1)加法交换律:

(2)加法结合律:

(3)乘法交换律:

(4)乘法结合律:

(5)乘法分配律:

2.观察比较:用字母表示运算定律比用文字叙述有哪些优点?

优点:用字母表示运算定律比用文字叙述运算定律更简明易记,也便于应用.

(二)教学用字母表示计算公式.

1.教学用字母表示图形面积公式(出示图片:图形面积公式)

(1)表示正方形的面积,表示正方形的边长.

(2)表示平行四边的面积,、分别表示平行四边形的底和高.

(3)表示三角形的面积,、分别表示三角形的底和高.

(4)表示梯形的面积、、分别表示梯形的下底和高.

2.教学一个数的平方的含义及正方形周长的书写格式.

(1)读出下面各式,并说明表示的意义.

(2)把下面各式写成一个数的平方的形式.

5×5

(3)省略乘号,写出下面各式.

(4)根据运算定律在□填上适当的字母或数.

(□+□)+□

□·(□·□)

(5)如果用表示长方形的长,表示宽,那么

这个长方形的面积_____________________,

这个长方形的周长_____________________.

教师小节:在含有字母的式子里,乘号可以省略,但加号、减号、除号都不能省略,如:

不能写成;在两个数相乘的时候,乘号不能省略不写,可以改为“·”,但容易与小数点混淆,所以一般仍记作“×”.

3.教学例1.

例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

教师说明:在我们计算一个图形的面积或周长时,实际上是把数值代入有关的公式,算

出的结果就是它的面积或周长.

(1)说出梯形的面积公式.

(2)说出梯形面积公式中每一字母表示的意义.

(3)说出字母所代表的数值.

(4)学生尝试解答.

教师强调:在利用公式进行计算时,计算的结果不必写出单位名称,只在答题时注明就行了.

(5)练习:一个长方形的长是8.4厘米,宽是4.6厘米,它的周长是多少厘米?

三、课堂小结

今天这节课学习了什么知识?

四、课后作业

(一)已知一个三角形的底是3.8分米,高是1.5分米.求这个三角形的面积.

(二)先写出下面图形的周长和面积的计算公式,再把数值代入公式计算.

1.一个长方形,长7.2厘米,宽1.8厘米.

2.一个正方形,边长24毫米.

五、板书设计

用字母表示运算定律和计算公式

运算定律

计算公式

可以写成

读作:的平方

表示:两个相乘

例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

=(3.5+5.5)×4÷2

=9×4÷2

=18

答:梯形的面积是18平方厘米.

探究活动

找规律

活动目的

1.能正确用含有字母的式子表示数量.

2.培养学生的抽象思维能力和概括能力.

活动题目

仔细观察,发现规律,得出结论,然后填空.

35=3×10+5702=7×100+0×10+2

72=7×10+2123=1×100+2×10+3

16=1×10+6564=5×100+6×10+4

…………

1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是().

2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是().

数学教案-用字母表示运算定律和公式

活动过程

1.学生分小组讨论.

2.汇报思考过程和答案.

3.仿照题目类型,每个小组自编一组练习,相互交换解答.

参考答案

1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是(10a+b).

2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是(100a+10b+c).

小学五年级数学教案 篇2

教学内容

《除法估算》选自苏教版九年制义务教育小学教科书数学第九册P51的内容。

教学思路

小学数学应该与现实生活相联系,使学生的学习更具有现实性、趣味性和挑战性。“估算”在实际生活中有着广泛的应用,与其他知识也密不可分。因而,在教学“除法估算”这一部分内容时,设计围绕从学生刚经历的秋游活动来展开,让学生独立思考以发现估算的题材、自主探索以感知估算的价值、小组合作来交流估算的策略、尝试解题来总结估算的方法、实践运用以提高估算的能力。

设计理念

1、数学教学活动要关注学生的个人知识和直接经验

新的《国家数学课程标准》(实验稿)中明确指出,数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。因此,教学活动要以学生的发展为本,把学生的个人经验(除法计算)、直接经验(秋游的感受)和现实世界(生活中的数学)作为数学教学的重要资源。

2、注重学生自主性和个性化的学习

引导学生通过独立思考、自主探索、合作交流获得知识,激励学生自得自悟。并且注意在教学过程中要充分利用学生的已有经验,尊重他们不同的思维方式,让数学学习活动成为一个生动活泼的、主动的和富有个性的过程。

教学目标

1、经历除法估算方法的探索过程,理解并掌握估算的方法。

2、能灵活运用估算方法解决实际的问题。

3、在探索学习活动中,培养学生的实践意识,培养探索意识、合作意识、创新意识,并获得积极的、成功的情感体验。

教学过程

一、秋游场景引入,调动学生学习兴趣。

上课后,出示秋游时拍的照片,询问学生当时的心情,一下就让学生回想起秋游那天的情景,因那天是远足秋游,学生对步行印象极深。在导入新课前,就提供路程和时间,让学生进行除数是一位数的除法估算的复习,求出同学们步行每小时大约行多少米。接着让学生把计时的单位改小,继续求每分钟的步行速度,便于我们判断走得比较快还是慢。此时顺利进入了除数是两位数的除法估算的教学中。

二、创设问题情景,激励学生自行探究。

1、关于所需车辆的计算:

师:同学们走的速度很快呢,是玩的心情很迫切吧!怪不得有同学问老师:“为什么不坐车呢?大家想知道原因吗?”

(1)出示题目并讲述:老师联系车子的时候只有中型客车,每辆车子可以坐44人,而我们四年级参加秋游活动的学生一共有235人。现在只有5辆车子可以用,你们认为够吗?

(2)学生自己思考解答后交流。

师:请同学来说说你的结果。(交流情况)

生1:我觉得不够。因为235÷44≈6(辆),要6辆车子才可以。现在只有5辆,所以不够。

(240)(40)

生2:我认为够了。235÷44,235的近似数取200,235÷44≈5(辆)。

(200)(40)

生3:我认为是不够的,老师还没有算在里面呢。

生4:老师,我用小数做的行吗?

师:当然可以了。你课外知识真丰富!请你说说看。

生4:我用235÷44≈5.3,把结果求近似数就是约等于5,所以我觉得5辆车就够了。

生5:可是在现实生活中有时不能把后面的直接去掉,应该要向前面进一。

生6:我同意生5的观点,5辆是不够的。我是这样想的:一辆车可以坐44人,那么5辆车大约可以坐44×5≈200(人),而200人<235人,多出来的人就坐不下了,要用6辆车才够。

师:是啊,多出来的人怎么办呢?不去了吗?

师:我看,问题主要是在生1和生2的两种解法中 235,也就是被除数的取近似数出现了分歧,那先来解决除数取近似数是怎样统一的?

生7:只要省略最高位后面的尾数,保留整十数。

师:其他同学有不同意见吗?(生都摇头表示没有)。问题是被除数到底该怎么考虑求近似数呢?在现实生活中来考虑这个问题,哪一种更符合实际呢?

生齐:生1说的那种。

生2:我现在想想应该是不够的,刚才没有仔细考虑。

师:那就是说,被除数取近似数时,要考虑尽量和原来的数接近。

生8:老师,那230也接近235的,为什么要取240呢?

师:谁能回答这个问题?

生9:因为240÷40是整数6,计算方便,算得快。

师:为什么会这么快?

生9:因为我想乘法口诀:四六二十四

师:这个方法真妙啊!把除数的近似数求出来后,用乘法口诀来想,找个最接近被除数的,把它取作被除数的近似数。你真会动脑筋!

师:(小结)我们用估计的方法求出了5辆车是不够的,所以决定远足秋游,还能观赏沿途风光呢,倒也是一举多得。

2.关于缆车票价的估算(出示缆车图)

(1) 理解价格表

师:到了坐缆车的地方,同学们可兴奋了。不知道有没有同学注意到了这张价格表呢?你能看懂它吗?(指名学生发言)

生10:大人坐缆车上山要20元,上山、下山一起要30元。

生11:大人光上山不下山是20元。儿童的票价是大人的一半。

师:两人说得都很棒,生11补充得更好,那按价格表的说明,同学们每人应该付多少钱呢?

生12:(口答)30÷2=15(元)

师:老师要负责付同学们的费用了。请大家帮忙算一下:一个人的票价是15元,我们班级有58名同学参加秋游,那么该付多少钱呢?

(学生小组讨论后交流)

生13:我们小组认为老师要付15×58≈1200(元)

(20)(60)

生14:我们小组认为老师只要付15×58≈900(元)

(60)

师:怎么一下就相差了300元?该听谁的呢?

生15:我们小组是列竖式计算的,其实只要15×58=870(元)

师:同样是估算,相差300元,这里就要注意联系生活实际的情况,估算目的是计算快速,但也要注意准确。大家想知道事实上老师付了多少钱吗?

(学生纷纷猜测)

生16:老师,我想您付的钱应该比870元少。

师:为什么这么说?

生16:因为我想集体乘坐应该可以优惠的,很多地方集体购票都可以打折的。

师:你的生活经验真丰富!的确如你所料,老师实际上付了775元。

(生恍然,纷纷点头。)

师:58个同学乘坐缆车,总共用了775元,你能算算自己用了约多少钱吗?

列式:775÷58 ≈

生解答后交流:除数58的近似数是60,被除数考虑能被60整除,而又接近775,所以求近似数是780。师板书:775÷58 ≈ 13(元)

三、提供数据信息,鼓励学生自选解题。

在学生掌握了除法估算的方法以后,出示一组信息,让学生选择其中对于自己想了解的情况有用的数据,进行计算解答,并和小组里的同学交流。

反思:

这堂课上得生动活泼,同学们都投身于自己探究知识的活动之中。他们仔细观察,认真思考,合作交流,终于发现了知识、领悟了方法,品尝到了成功的喜悦。我在实践后的体会如下:

1、生活即教育

“生活即教育。”这句话是著名的教育家陶行知说的。也说明了学习应该是学生自己的实践活动。以往教科书上枯燥的例题让学生失去了学习数学的兴趣,而我们现在应该更加关注学生会关心什么、经历了什么、对什么感兴趣、在生活中想要发现些什么。因为生活本身就是一个巨大的数学课堂,将学习和学生们的生活充分融合起来,让他们在自己感兴趣的问题中去寻找、发现、探究、认识和掌握数学。只有这样,学生才会学得积极主动,才会学得兴趣盎然。

2、估算与生活

估算的内容在生活中随处可见,有着极其广泛的应用,在日常生活中,对量的描述,很多时候只要算出一个与精确数比较接近的近似数就可以了。这堂课的教学,让学生把自己的经历和数学知识在生活中的应用结合起来,因此培养了学生的素质和能力。

小学五年级数学教案 篇3

一、准备练习

(一)口算

3.8+1.2 2.54 1.58

1.50.3 0.64+0.16 7.6+0.24

5-1.8 1.2580 3.64

6.3+2.45+3.7 3.56-1.57-0.43

0.87125 (2.5+0.9)4

(1.5+0.25)4 0.64+1.44

(二)口答,在□里填上适当的数.(说出依据)

1.3.18□=1.2□

2.(2.5+3.5)□=□□○□4

3.□+4.3=□+0.86

4.(2.51.2)□=1.2(□□)

5.7.6-2.8-□=□-(□+3.2)

(三)小结引入

我们运用一些运算定律或者运算性质可以使计算简便,在四则混合运算中,能不能运用这些运算定律和性质,使计算简便呢?

二、讲授新课

(一)教学例4

1.82.58+1.81.42

1.观察算式特点

2.学生试做

方法一:1.82.58+1.81.42 方法二:1.82.58+1.81.42

=1.8(2.58+1.42) =4.644+2.556

=1.84 =7.2

=7.2

3.观察比较:两种方法哪一种计算起来比较简便?

(第一种方法应用乘法分配律来计算,第二种方法只是根据一般的运算顺序)

4.练习

1.82.58+1.81.42+0.5

=1.8(2.58+1.42)+0.5 (乘法分配律)

=1.84+0.5

=7.2+0.5

=7.7

5.小结

通过刚才的练习,你对简算有什么新的认识?

三、巩固练习

(一)计算下面各题

1.561.7+0.441.7-0.7

11.72-7.85-(1.26+0.46)

(二)计算下面各题,能用简便算法的用简便算法

10.64+7.652.4+11.76

12.9〔14.66-(1.3+8.2)〕

9.83(3.8-2.3)+1.56.17

6.752-〔4.7(0.54-0.38)+2.8〕

15.4〔8(6.34-4.59)〕

(三)思考题:填同一个数

□-□+□+(□□□-□)=10

四、课堂小结

在四则混合运算中,有时虽然不能把整个题目简便计算,但是应该随时注意是不是有的步骤可以简算,能简算的,尽量使计算简便,不能简算的再按运算顺序计算.

五、课后作业

(一)计算下面各题,能用简便算法的用简便算法.

1.10.64+7.652.4+11.76

2.12.75[14.6-(1.3+8.2)]

3.9.831.5+6.171.5

4.15.4[8(6.34-4.59)]

(二)新兴煤矿七月份产煤4.85万吨,八月份产煤5万吨,九月份产煤5.65万吨.平均每月产煤多少万吨?

小学五年级数学教案 篇4

教学内容:观察物体

教学目标:

1、让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

2、培养学生从不同角度观察,分析事物的能力。

3、培养学生构建简单的空间想象力。

重点:帮助学生构建初步的空间想象力。

难点:帮助学生构建初步的空间想象力。

教学过程:

一、谜语导入

请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

二、合作探究

(一)整体观察

1、教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

你观察到的正方体是什么样的?

在你的位置上观察,你看到了哪几个面?

2、学生汇报交流。

学生自由走动,观察。汇报交流。

3、解释应用

教师出示两个正方体的立体图,一个有虚线,另一个没有。

提问:谁能用刚学到的知识解释一下正方体为什么这样画?

学生解释说明。

(二)分别从三个面进行观察(出示例1)

1、教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

学生离开座位自由观察。

2、小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

三、拓展应用

1、做教科书例2

2、智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

学生玩游戏,教师指导。

四、总结

本节课你学会了什么?

五、作业布置

兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。

1、不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

2、从一个面看到物体的形状,可以有多种不同的摆放方式。

3、知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

小学五年级数学教案 篇5

教学目标

1.理解除数是小数的除法的算理,掌握除数是小数的计算法则

2.培养学生的计算能力

教学重点

掌握除数是小数的除法的计算法则

教学难点

理解把除数是小数的除法转化为整数除法的道理

教学过程

一、铺垫孕伏

(一)指名板演,集体订正:5628÷67

(二)演示课件:商不变的性质

(三)教师导入:除数是整数的除法,我们已经掌握了它的计算方法,那么除数是小数的

除法该怎样计算呢?这节课我们就来解决这个问题.

(板书课题:除数是小数的除法)

二、探究新知

(一)教学例4

1.演示课件:一个数除以小数

2.尝试不同思路(把题里的米数都改写成厘米数来计算)

56.28米=5628厘米

0.67米=67厘米

5628÷67=84(条)

教师说明:这种方法是正确的,但是有一定的局限性

3.思考:为什么要把除数和被除数都扩大100倍呢?扩大1000倍可以吗?

4.练习:继续演示课件:一个数除以小数

5.计算除数是小数的除法的关键是什么?转化时以谁为标准?

6.小结计算方法

计算除数是小数的除法,先移动除数的小数点,使它变成整数.看除数的小数

点向右移动几位,被除数的小数点也向右移动几位,然后按除数是整数的除法法则进行计算.

(二)教学例5

例5

10.5÷0.75

1.学生试算

2.集体订正

教师强调:(1)位数不够用“0”补足.

(2)商的小数点和被除数的小数点对齐.

3.练习

51.3÷0.27

26÷0.13

(三)总结除数是小数的小数除法的计算法则

除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右

移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);然后按照除数是整数的小数除法进行计算.

三、课堂小结

这节课我们学习了什么?除数是小数的除法和除数是整数的小数除法有什么联

系?通过今天的学习,你有什么收获?

四、课堂练习

(一)填空

除数是小数的除法,先移动_____小数点,使它变成整数;除数的小数点向右移动

几位,_____也向右移动几位,位数不够的,在被除数的末尾_____补足;然后按照除数是_____的小数除法进行计算.

(二)把下面的题变成除数是整数的除法

4.68÷1.2=□÷12

2.38÷0.34=□÷□

5.2÷0.32=□÷32

161÷0.46=□÷□

(三)计算下面各题

6.21÷0.03=

210÷1.4

1.104÷2.4

五、布置作业

(一)计算下面个题.

19.76÷5.2

109.2÷0.42

8.4÷0.56

10.8÷4.5

6.825÷0.91

25.84÷1.7

(二)世界上最大的鸟是鸵鸟,体重达135千克,最小的鸟是蜂鸟,体重只有0.0016千克.鸵鸟的体重是蜂鸟的多少倍?

六、板书设计

一个数除以小数

例4做一条短裤要用布0.67米,56.28米布

例5计算

10.5÷0.75

可以做多少条短裤?

答:56.28米布可以做84条短裤

一个数除以小数(二)

小学五年级数学教案 篇6

教学目标

1.通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.

2.培养学生仔细、认真的学习习惯.

3.培养学生观察、演绎推理的能力.

教学重点

整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.

教学难点

整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.

教学过程

一、复习准备【演示课件“整数加法运算定律推广到分数加法”】

1.教师:整数加法的运算定律有哪几个?用字母怎样表示?

板书:a+b=b+a

(a+b)+c=a+(b+c)

2.下面各等式应用了什么运算定律?

①25+36=36+25

②(17+28)+72=17+(28+72)

③6.2+2.3=2.3+6.2

④(0.5+1.6)+8.4=0.5+(1.6+8.4)

教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究.

二、学习新课【继续演示课件“整数加法运算定律推广到分数加法”】

1.出示:下面每组算式的左右两边有什么关系?

○○

教师说明:整数加法运算定律,对分数加法同样适用.

教师提问:整数加法的运算定律可以在什么范围内使用?

(加法的交换律、结合律中的数,既包括了整数,又包括了小数和分数)

2.出示例3计算:

观察:这些加数分母和分子有什么特点?

思考:怎样可以使计算简便?

学生口述,教师板书:

教师提问:这道题哪里应用了加法交换律?哪里应用了加法结合律?

最后结果要注意什么问题?

学生总结:应用整数加法的运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.

三、巩固反馈.

1.在下面的○里填上合适的运算符号.

①○

②○

2.用简便方法计算下面各题.【继续演示课件“整数加法运算定律推广到分数加法”】

①②

3.思考题:

已知你能很快算出的和吗?

四、课堂总结.

整数加法的交换律、结合律对分数加法同样适用,应用加法运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.

五、布置作业.

用简便方法计算下面各题.

六、板书设计

人教版小学数学五年级下册教案 篇7

教学目标

1、结合具体情境, ,探索并理解分数乘分数的意义;

2、探索并掌握分数乘分数的计算方法,并能正确计算;

3、能解决简单的分数与分数相乘的实际问题,体会数学与生活的密切联系。

养成教育训练点:

教学重点、难点

1、结合具体情境, ,探索并理解分数乘分数的意义;

2、探索并掌握分数乘分数的计算方法,并能正确计算;

教学准备:

1、每人准备一条约10厘米长的纸条;

2、每人准备5张长方形的纸。

教学过程:

一、探索分数乘分数的意义和计算方法。

1、先让学生读一读教科书第7页的一段话。再让学生拿出课前准备的一张纸条,按照例题所述剪一剪。

剪好后,师问:怎样列式求“剩下的部分占这张纸条的几分之几?”

并根据剪的结果写出得数。

1/2×1/2=1/4 1/4×1/2=1/8

学生列出算式后,师问:为什么用乘法计算?

引导学生理解,求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课学习的求一个数的几分之几的意义相同,所以用乘法计算。

折一折,涂一涂 3/4×1/4-=?

让学生拿出课前准备好的一张长方形纸,按照教科书的要求折一折,涂一涂。

讨论:(1)请你说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?

(2)你能按照上面的方法先涂出1/4,再涂出1/4的3/4吗?

做一做:按照上面的方法折一折,想一想,并算出结果。

2/3×1/5 5/6×1/3

说一说:你能总结分数与分数相乘的计算方法吗?

小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。

想一想:此法与分数与整数相乘的方法有矛盾吗?

试一试:

1/4× 2/3 3/52/9 7/8×5/14

强调:能约分的要先约分。

二、课堂练习

1、计算练习。

教科书第8页“练一练”第2题。

学生计算后观察:分数相乘的积一定小于每一个乘数吗?

2、解决问题。

(1)教科书第8--9页“练一练”第3、4、5、6、7题。

学生完成后,说说解题思路。

(2)教科书第9页数学故事“唐僧分瓜”。

板书设计:

分数乘法(三)

分数乘分数的运算法则:分子相乘,分母相乘,能约分的要约分。

一键复制全文保存为WORD