人教版五年级上册数学教案【优秀8篇】

提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。这里给大家分享一些关于人教版五年级上册数学教案,方便大家学习。以下是人见人爱的小编分享的人教版五年级上册数学教案【优秀8篇】,如果能帮助到您,小编的一切努力都是值得的。

冀教版五年级数学上册教案 篇1

教学内容:

冀教版五年级上册第四单元小数除法38——39页。

教学目标:

1、结合具体事例,经历自主主问题和学习除数是整数的小数除法计算方法的过程。

2、理解商的小数点要被除数的小数点对齐的道理,会笔算除数是整数的小数除法。

3、积极主动参与数学数学学习活动,获得运用已有知识解决问题的成功体验。

教学准备:各种型号电池及投影。

教学过程:

一、导入。

1、认识各种型号电池。

2、针对5号电池。

引:现在老师手中这节电池的价钱是250,缺什么?应该是250什么?如果用角做单位呢?元做单位呢?(板:2.5元)2节5号电池多少元?说完列式后(板:5元)5节电池多少元?说完列式后(板:12.5元)

二、探知。

出示教材中情景图一。

1、让学生根据情景图提问题,独立列式。(口答得出“每节5号电池2.5元”)

2、尝试竖式计算(找不同计算方法板演)。

3、小组交流算法。

4、根据元角分知识引导算法。

针对除得余数为1后引:个位商2后,余数1不够商了怎么办?得数中的“5”是怎样来的?如果余数不是1而是10该多好呀!商2后还剩下几元,1元也就是多少角?

5、再次思考后全班内交流算法。(巡视中把各种竖式让学生板演黑板上)提问:为什么要加小数点?

6、同桌互说算法。

7、初步感知算理。

引:此题之所以余1后仍然可以计算是因为什么?如果抛开元角分,这道题你还会计算吗?我们知道数的本身也有计数单位,每个计数单位间的进率是多少?现在你可以做了吗?来试一试。

出示情景图二

1、估算每节大约多少元。

2、尝试竖式计算。(注意出错地方)

3、找学生说算法。(有用计数单位回答的表扬)

4、重点用计数单位分析算理。

5、小组内讨论交流。

6、让学生说注意问题。

三、巩固。

1、数学诊室(改错题若干)。

2、把没做完的题补充完整(教材中的做一做)。

3、选择题。(练习中的题若干)

四、:通过这节课你有什么收获?有什么样的感受?

教学反思

2021人教版最新五年级上册数学教案 篇2

教学要求①使学生进一步理解整除的意义。②使学生掌握整除、约数与倍数的概念,以及它们之间的相互依存关系,渗透辨证唯物主义思想。③培养学生抽象概括与观察思考的能力。

教学重点约数和倍数的意义

教学难点理解除尽和整除,约数和倍数等概念间的联系和区别。

教学过程

一、创设情境

1、计算下面三组题。

(1)23÷7=(2)6÷5=(3)15÷3=

11÷3=1.8÷3=24÷2=

2、观察并回答。

(1)上面哪个算式中的第一个数能被第二个数整除?

(2)在什么情况下,才可以说“一个数能被另一个数整除”?

(3)如果用整数a表示被除数,整数b(b≠0)表示除数,可以怎样说?(让学生看教材第49页关于“整除”的一段话)

3、思考:我们在说一个数能被另一个数整除时,必须具备哪几个条件?

①被除数、除数都是整数,除数不等于0

明确三点②商必须是整数缺一不可

③商的后面没有余数

4、除尽与整除的区别与联系。

(1)像6÷5=1.21.8÷3=0.6我们只能说第一个数能被第二个数。

(2)除尽被除数和除数(不等于0),不一定是整数,商是有限小数,没有余数。

整除被除数和除数(不为0)都是整数,商是整数,没有余数。(三整无余)

师:一个数能被另一个数整除表示的是两个整数之间的一种关系,它们还有另一种关系,这就是我们今天要学习的约数和倍数关系(板书课题:约数和倍数的意义)

二、探索研究

1、小组学-约数和倍数的意义。

(1)让学生看教材第50页有关约数和倍数的一段话。

(2)小组讨论:两个数在什么情况下才有约数和倍数关系?“约数和倍数是相互依存的”是什么意思?

(3)在复习的第1题中,请你指出哪个数是哪个数的倍数,哪个数是哪个数的约数?为什么?

(4)倍与倍数意义一样吗?

如:15是3的倍数,表示15能被3整除。

1.5是0.3的5倍,5倍表示1.5除以0.3的商。

(5)注意事项。让学生看教材第50页的注意。

三、课堂实践

1、做教材第51页的“做一做”。

2、做练习十一的第1题。

3、做练习十一的第2题。

4、做练习十一的第3题。

5、做练习十一的第4题。

60的约数有。

6的倍数有。

四、课堂小结

学生小结今天学习的内容。

课后反思:

给学生以丰富的材料,让他们在感性认识的基础上,通过主动的探索学习掌握概念。

新人教版小学五年级数学上册教案 篇3

教学内容:

课本第39页例1、例2.

教学目标:

1、使学生理解第一级运算和第二级运算的含义。

2、使学生掌握无括号的四则混合运算顺序,并能正确地进行计算。

3、能在学生掌握整数四则混合运算和小数四则混合运算的基础上,对整数、小数四则混合运算进行概括、总结。

4、培养学生认真严格的态度。

教学过程:

一、复习铺垫

(1)设问:我们学过哪些计算?(学生回答后,告诉学生:加法、减法、乘法和除法这四种运算,统称为四则运算。)

(2)填空回答。

①在一个算式里,如果只有()或者只有(),要从左往右依次计算。

②在一个算式里,如果有(),又有(),要先做()后做()。

(3)在一个算式里,如果有括号,要先算()。

二、新授

1、出示课题:整数、小数四则混合运算。

2、介绍四则运算:我们学过的加、减、乘、除四种运算,统称四则运算。

3、教学例1.

(1)板书例1:3.7-2.5+4.6  3.6×6÷0.9

然后设问

①这些算式里有哪些运算?

在学生回答的基础上告诉学生:加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

②这两个算式的运算顺序怎样?

③如果用“第一级运算”代替“加、减法”,用“第二级运算”代替“乘、除法”,运算顺序怎样叙述。

根据学生回答,改变复习填空①的叙述。

④再概括一点讲,这句话可以怎样叙述?

根据学生回答,改变复习填空①的叙述,出示教材结语。

(2)学生完成例1的计算。

4、教学例2.

(1)板书例2:35.6-5×1.73,6.75+2.52÷1.2,然后设问

①算式里含有几级运算?

②运算顺序怎样?

根据学生回答,改变复习填空②的叙述,出示教材结语。

(2)学生把没有做完的继续做完。(一学生板演,其余做在书上。)

(3)完成例2下面的“做一做”习题。

5、小结:混合运算步骤比较多,容易发生错误,我们要养良好的习惯,计算时要做到:“一看、二想、三划、四算、五查”。在没有括号算式中,先算乘除,后算加减。

三、巩固练习。

1、(1)填空。(出示,学生口答)

①加、减、乘、除四则运算统称为()。

②加法和减法叫做第()级运算,乘法和除法叫做第()级运算。

③一个算式里,如果只含有同一级运算要从()计算;如果含有两级运算,要先做第()级运算,后做第()级运算;如果有两种括号,要先算()括号里面的,再算()括号里面的。

2、课本第39页做一做。

四、作业。

练习十第1、4题。

冀教版五年级数学上册教案 篇4

教学目标:

1、经历猜测、实验、数据整理和描述的过程,体验事件发生的可能性。

2、知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性做出预测,并阐述自己的`理由。

3、积极参加摸棋子活动,在用可能性描述事件的过程中,发展合情推理能力。

教学过程:

一、创设情境

师生谈话,由围棋子是什么颜色的引出把6个黑棋子,4个白棋子放在盒子中和“说一说”的问题,让学生发表自己的意见

(设计意图:由围棋子是什么颜色的问题引入学习活动,既调动学生学习的兴趣,又是摸棋子活动的准备。)

二、摸棋子实验A

1、教师提出摸棋子的活动和用“正”字记录黑白棋子的出现次数的要求,全班同学轮流摸棋子。

(设计意图:学生猜并摸出棋子,亲身感受事件发生的不确定性。)

2、交流学生统计的情况,把结果记录在表(一)合计栏。

(设计意图:使学生经历收集整理的过程,为下面的交流作铺垫。)

3、提出:观察全班摸棋子的结果,你发现了什么?让学生充分发表自己的意见。

(设计意图:从全班统计结果的描述中,感受统计的意义,为体验可能性的大小积累直观经验和素材。)

三、摸棋子实验B

1、提出:如果把盒子中的棋子换成9个黑的,1个白的,会出现什么结果?学生发表意见后,全班进行摸棋子实验。然后整理统计记录。(设计意图:改变事物的条件,让学生猜测,再摸,发展学生的数学思维和合理推理能力,获得愉快的学习体验。)

2、让学生观察描述统计结果。

然后提出:谁能解释一下,为什么这次摸出黑色棋子多呢?鼓励学生大胆发表自己的意见。

(设计意图:在观察描述摸棋子结果的过程中,感受摸棋子实验的意义,初步体验摸出什么颜色的棋子的次数和盒子中放的这种颜色的棋子个数有关系。)

四、摸棋子实验C

1、提出:如果把盒子中的棋子换成1个黑的,9个白的,让学生猜一猜摸中哪种颜色棋子的次数多,再摸。然后整理统计结果,填在表(三)合计栏中,并和大家猜的结果进行比较。

(设计意图:在学生已有活动经验的背景下,进行猜测、实验,发展学生的合理推理能力,激发参与活动的兴趣。)

2、提出:谁能解释一下,为什么这次摸出白色棋子多呢?鼓励学生大胆发表自己的意见。

(设计意图:在两次实验结果的分析比较中,再次体验到,摸中哪种颜色的棋子的可能性和放入盒子里这种颜色棋子的个数有关系。)

五、可能性大小

1、提出“议一议”的问题,让学生讨论:摸中哪种颜色的棋子的次数跟盒子中棋子个数有关系吗?得出盒子中哪种颜色的棋子多,摸中的次数就多,反之就少。

(设计意图:在亲身实验的基础上,认识盒子中放棋子的情况和摸棋子结果的关系。)

2、教师介绍可能性大小的含义。鼓励学生用可能性大小描述实验的结果。

(设计意图:理解可能性大小的部分意义,学会用可能性大小描述实验结果。)

六、课堂练习与问题讨论

学生独立完成练习。

冀教版五年级数学上册教案 篇5

教学目标:

1、结合具体实例,在观察、讨论、操作的活动中,经历认识简单图形旋转的过程。

2、了解顺时针、逆时针的旋转现象,能在方格纸上将简单的图形旋转90°。

3、在探索图形旋转并用语言描述的过程中,进一步发展空间观念。

教学重难点:

了解顺时针、逆时针的旋转现象,能在方格纸上将简单的图形旋转90°。

教学过程:

一、旋转方向

1、观察喷洒的情境图,说一说看到了什么旋转现象,是怎样旋转的。教师结合钟表上表针的转动介绍顺时针、逆时针转动。

2、拿一把转椅,按不同方向实际转一转,让学生描述旋转方向。

二、旋转90°

1、教师简笔画分步演示喷头顺时针旋转90°的画面,让学生认识并描述旋转了多少度。

2、再次旋转转椅,分别从顺时针、逆时针方向旋转90°,让学生用语言描述转椅是沿怎样的方向旋转的,旋转了多少度。

说一说

1、观察书中的两组图形,了解书中有什么。教师提出“说一说”的问题,给学生独立思考的、判断的时间。

2、交流,重点让学生说一说是怎样判断的,给学生充分表达的机会。

三、图形旋转

1、提出画图的要求,并提示画图时要先确定旋转方向,再考虑旋转90°后的位置。

2、展示画出的图形,交流画的方法。教师介绍先确定两条直角边旋转后的位置,最后连另一条边的方法。

3、让学生看书中画的三角形旋转90°后的图形。

练一练

1、弄清题目要求后,再判断。

2、学生在书中独立完成,教师辅导后进。

3、先引导学生了解图的特点,鼓励学生自己设计图案。

人教版五年级上册数学教案 篇6

教学目标:

1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。

2、能正确列式解答“求平均数”问题。

教学重点难点:初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。

教学过程:

一、引入

1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?

二、新授

1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。

刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。

生:用4来表示……; 用5来表示……。

师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?

生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……

师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?

遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。

2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。

第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。

师:你觉得用几来代表他1分钟的水平呢?

生:计算,是4。

师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。

生:3+7+2=12个 12÷3=4个(板书算式)

生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)

师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)

我们说,4是3、7、2这3个三个数的平均数。

那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?

生:他投了3次,所以4是3、4、5的平均数。

师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的`水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?

师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)

3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?

师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。

老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。

老师第四次投中了1个。我赢了还是输了?算一算。

如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?

三、练习

1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……

不然移多补少补给谁去呢?

2、平均身高160,但不是人人都160,排在中间的人一定是160吗?

3、平均水深才110,所以以他140的身高肯定淹不死,是吗?

生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。

出示水下图片。

师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?

4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?

人教版五年级上册数学教案 篇7

教学重点

小数乘法的计算法则。

教学难点

小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。

教具准备

投影、口算小黑板。

教学过程

一、引入尝试

1、出示例3图:孩子们最近我们社区宣传栏的玻璃坏了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8 ×1.2)

2、尝试计算

师:上节课我们学习小数乘以整数的计算方法,想想是怎样算的?

师:是把小数转化成整数进行计算的。现在能否还用这个方法来计算1.2×0.8呢?

如果能,应该怎样做?(指名口答,板书学生的讨论结果。)

示范:

1、 2扩大到它的10倍1 2

× 0. 8扩大到它的10倍× 8

0.9 6缩小到它的1/100 9 6

3、1.2×0.8,刚才是怎样进行计算的?

引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。

4、观察一下,例3中因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?

5、小结小数乘法的计算方法。

师:请做下面一组练习

(1)练习(先口答下列各式积的小数位数,再计算)

(2)引导学生观察思考。

①你是怎样算的?(先整数法则算出积,再给积点上小数点。)

②怎样点小数点?(因数中有几位小数,就从积的最右边起,数几位,点上小数点。)

③计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)通过通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?

(3)根据学生的回答,逐步抽象概括出P.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)

人教版五年级上册数学教案 篇8

教学目标:

知识与技能目标

通过猜测—验证—应用等环节引导学生探索并理解整数乘法运算定律对于小数同样适用

过程与方法目标

能够正确、合理、灵活的运用乘法运算定律进行有关小数乘法的简便运算。

情感态度与价值观目标

让学生相互交流、合作、体验成功的喜悦

教学重点:

探索、发现、理解整数乘法运算定律,在小数乘法中同样适用。

教学难点:

运用运算定律进行小数乘法的简便计算。

学情分析:

五年级的孩子们大部分已养成良好的学习习惯,能在课堂上大胆地表达自己的见解。因此在本堂课的教学中,我充分调动学生的积极性,提高学生课堂活动的参与性,让他们通过亲自探索和体验来达到掌握所学知识的目的。同时,感受数学中的奥妙,增加学习数学的兴趣。

教法学法:

本节课我主要采用“自主探究,合作交流,汇报验证”等教学方法。通过创设生动的教学情景,激发学生的求知欲。使学生在观察中发现,在探究中交流,在合作中归纳解决问题。具体地说分为以下几种方法:1、情景创设法。 2、活动探究法。 3、集体讨论法。

教学流程:

创设情景,导入新课——自主探索,解决问题——精心选题,多层训练,——质疑总结,反思评价。

第一环节:创设情境,导入新课。

上课伊始,我会向孩子们抛出一个问题:同学们,我们已经学习了整数乘法的一些运算定律,谁能来说一说整数乘法的运算定律有哪些?

学生们会回答:乘法交换律、乘法结合律和乘法分配律。

接着我会让孩子们用数字、字母或者符号等自己喜欢的方式来表示出这三个定律。学生展示后,我进行小结:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用呢?今天这节课我们就来研究这个问题。同时板书课题。

在这一环节中让孩子们用自己喜欢的方式表示三个定律,一方面激发他们学习的兴趣,另一方面复习巩固所学的知识,为学习新课作准备。以旧引新,激发孩子的探究__,让他们有目标的去思考。

第二环节:自主探索,解决问题。

本环节我设计了以下几个教学活动。

(一)小组合作,猜测验证

1、用幻灯片出示以下题目。

0。7×1。2○1。2×0。7

(0。8×0。5)×0。4○0。8×(0。5×0。4)

(2。4+3。6)×0。5○2。4×0。5+3。6×0。5

让孩子们猜一猜,每一组算式它们有怎样的关系?(当然由于是猜测,学生出现的答案很可能会不一样。)

2、学生自己探究,验证。

让学生以小组为单位通过计算得出结论,原来每组算式的结果都是相等的。

接着我引导学生们仔细观察每一组算式,它们有什么特点?

学生们通过观察会得出如下结论:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。

3、举例验证。

我向孩子们提问:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?

孩子们可能有两种意见:能或是不能。

针对不同意见,我会引导他们:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。下面咱们就以小组为单位仿照第一组的例子,也写出三种这样的算式,并验证是否相等。

(给孩子们充分的时间动手写,验证后让他们进行汇报,尽量多让几组学生汇报,这样例子多了,结论更有说服力。)

学生汇报的同时,我会有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。

在大家交流结束后,我这样引导他们:刚刚小组同学相互交流后,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)

在这一环节中我首先让学生进行猜测,在头脑中初步感知每一组算式之间的关系,然后进行验证,进一步理解每一组算式之间的关系,再次启发学生自己举例验证,让他们通过自己动手动脑,以及倾听其他同学的发言,从而得出结论。在这一环节中,教师的作用只是引导点拨,决不把规律强加给学生,而是让学生自己去猜测、发现、验证。

(二)灵活应用,解决问题

出示例题8

师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。

0。25×4。78×4 0。65×201

(1)让学生独立思考,然后尝试写在练习本上。

(2)指名让学生板演。

然后我会让孩子们思考:第①题中为什么先让0。25和4相乘?这里运用了什么运算定律呢?

孩子们会自然而然的答出:运用了乘法交换律

接着问他们:你们认为第②小题中解题的关键是什么?

学生会根据以往的知识答出:把201分成200+1,然后用乘法分配律完成。(因为乘法分配率在上学期的学习中就是一个难点,所以这里我也会强调一下,让孩子们体会到先把特殊的数进行分解,然后才能进行简算。)

然后继续提问:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点等。)

在这一环节里,让孩子们运用所学的知识解决问题,这是数学学习的目的。学生通过自己动脑想,尝试用乘法的运算定律使计算简便,激发了他们运用知识解决问题的__,同时使学生体会到运用乘法运算定律的简便性,并体验到成功的快乐。

第三环节:精心选题,多层训练。

本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组(基本题、变式题、拓展题、开放题)。

练习题组设计如下

通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。

第四环节:质疑总结,反思评价。

用幻灯片出示以下两个问题

让学生以小组为单位,每位学生充分发言,交流学习所得。在评价方面:先让学生自评,接着让他们互评,最后我会表扬全班学生,以增强学生的自信心和荣誉感,使他们更加热爱数学。

在本环节通过交流学习所得,增强孩子们学习数学知识的信心,培养了他们敢于质疑、勇于创新的精神。

一键复制全文保存为WORD