五年级下册数学教案(8篇)

作为一位杰出的教职工,编写教案是必不可少的,借助教案可以让教学工作更科学化。教案应该怎么写呢?以下是人见人爱的小编分享的五年级下册数学教案(8篇),如果对您有一些参考与帮助,请分享给最好的朋友。

人教版六年级下册数学教案 篇1

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:

比例的基本质性。

教学难点:

发现并概括出比例的基本质性。

教具准备:

多媒体课件

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4

0.5 :0.2和5:2

1/2:1/3 和6 : 4

0.2:0.8和1:4

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6 = 60:40

内项:1.6 6o

外项:2.4 40

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如:2.4 :1.6 = 60:40

外 内 内 外

项 项 项 项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1) 学生独立探索其中的规律。

(2) 与同学交流你的发现。

(3) 汇报你的发现,全班交流。(师作适当的补充)

在比例里,两个内项的积等于两个外项的积。

板书

两个外项的积是2.440=96

两个内项的积是1.660=96

外项的积等于内项的积。

(4) 举例说明,检验发现。

0.6 :0.5=1.2: 1

两个外项的积是 0.61 =0.6

两个内项的积是0.51.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:2.4/1.6 = 60/40

3.440=1.660

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5) 学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5 =1/4:1/10

( )( )=( )( )

(2)0.8:1.2=4:6

( )( )=( )( )

(3)45=210

4:( )=( ):( )

5.做一做。

完成课本中的做一做。

6.课堂小结

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

三、巩固练习

完成课文练习六第4~6题。

补充习题

一题多变化,动脑解决它

(1)在比例里,两个内项的积是18,

其中一个外项是2,另一个外项是。

(2)如果5a=3b,那么, = ,

(3)aU8=9Ub,那么,ab=( )

教学反思

比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

人教版八年级下册数学教案 篇2

教学目标

1.使学生理解和掌握两个数的公因数和最大公因数的概念。

2.能了解求两个数的公因数和最大公因数的方法,并能用自己喜欢的方法,找出两个数的最大公因数。

3.通过数学学习活动过程,训练学生思维的有序性和条理性。

教学重难点

最大公因数的求法。

教学工具

ppt课件

教学过程

(一)、复习旧知,为新知打好铺垫

1、师:前面,我们已经学过有关因数的知识,你能举例说一下什么叫做一个数的因数吗?(学生举例。)谁还能像刚才那位同学举例说一下?

2、理解了什么是一个数的因数,你能找出8的因数有哪些吗?(找同学回答)师:这位同学找全了吗?这位同学做到了既不重复也不遗漏。你能介绍一下你找因数的方法吗?表扬:讲的太清楚了,让我们把掌声送给这位同学。(或:思考一下,怎样找一个数的因数才能做到既不重复也不遗漏。)

哪位同学能用这样的方法找出12的因数呢?

师:看来大家对因数的知识掌握的非常的牢固,今天要学的新知识就和因数有着密切的联系。

(二)、创设情境,引导动手操作

同学们喜欢做游戏吗?下面,我们就来通过做一个小游戏来学习新知识。

1、教师出示7张数字卡片。(1、2、3、4、6、8、12)

(1)请7位同学上台任选一张卡片。记清你卡片上的数字,把你的数字卡放在胸前,面朝大家。

(2)是8的因数的请站在左边,是12的因数的请站在右边。

同学们,你们有没有发现有几位同学是两面派?(有)是哪几位同学?

这三位同学请站到中间来,老师采访一下,你们为什么是两面派呀?

(3)同学们,你们有没有发现有几位同学是两面派?(有)是哪几位同学?

这三位同学请站到中间来,老师采访一下,你们为什么是两面派呀?

(4))师问:你们发现了吗?

(5)师:1、2、4既是4的因数,又是12的因数,用句简单的话说:1,2,4是8和12公有的因数,8和12公有的因数叫做它们的公因数。

(6)师问:同学们观察,8和12的最大的公因数是几呢?(4)

(7)4是8和12最大的公因数,我们就把4叫做它们的最大公因数。

(8)这就是我们这节课要学习的内容《最大公因数》。

(9)板书课题:最大公因数。

(10)除了用上面这种方法表示公因数

我们还可以用前面学过的集合圈的形式表示。

(三)、合作交流、探索方法

1、小组合作:求出18和27的最大公因数。

现在,同学们知道了什么是公因数和最大公因数,那你能试着求出18和27的最大公因数吗?

合作要求:(四人一组)

(1)讨论用什么方法求出两个数的最大公因数。

(2)在答题纸上写出你们组是怎样找这两个数的最大公因数的。

2、汇报交流反馈。

方法一:现分别写出18和27的因数,再圈出公有的因数,从中找出最大公因数数。同学们真是太棒了!其他小组,还有不同的方法吗?

方法二:先找出18的因数:1,2,3,6,9,18.再看看18的因数中有哪些是27的因数,最后看哪个最大。(或者是:先找出27的因数:1,3,9,27;再看看27的因数中有哪些是18的因数,最后看哪个最大。)

方法三: 先写出18 的因数:1 , 2 , 3 , 6 , 9 , 18 。从大到小依次看18 的因数是不是27 的因数,9 是27 的因数,所以9 是18 和27 的最大公因数。

4、这些方法都属于列举法,在解决问题时你可以选择自己喜欢的方法。

5、观察两个数的公因数和它们的最大公因数,你有什么发现?(两个数的公因数也是它们最大公因数的因数。)

(四)、拓展延伸。

刚才,同学们表现得都特别的好,接下来是不是会表现的更出色呢?

老师相信,接下来你们会用自己出色的表现,证明优秀的自己!

1、求出 4和8、16和32的最大公因数 ,思考你发现了什么?

教师对学生的发现概括总结,并课件出示发现:如果较小数是较大数的因数,他们的最大公因数是较小数

2、求出 2和7、8和9的最大公因数,思考你发现了什么?

发现:如果两个数只有公因数1,它们的最大公因数就是1.

3、教师总结:通过刚才的学习我们知道了求最大公因数共有3种情况。

(3种:成倍数关系的;公因数只有1的;一般情况。)

两个数成倍数关系和公因数只有1时可以直接判断出最大公因数。一般情况的采用列举法求出最大公因数。)

(五)、巩固提高。

刚才大家不仅展现了自己的数学才能,还突显了自己的探索能力,那么,我相信老师带来的这些问题同学们就更不在话下了。

1. 填空。

(1) 10 和 15 的公因数有 _____________。

(2) 14 和 49 的公因数有 _____________。

2. 选出正确答案的编号填在横线上。

(1) 9 和 16 的最大公因数是______。

A. 1 B. 3 C. 4 D. 9

(2) 16 和 48 的最大公因数是______。

A. 4 B. 6 C. 8 D. 16

(3) 甲数是乙数的倍数,甲、乙两数的最大公因数是______。

A. 1 B. 甲数 C. 乙数 D. 甲、乙两数的积

3、写出下列各分数分子和分母的最大公因数。

(1) (4) (18) 《·》(3)

五、全课总结。

师:同学们,这节课马上要结束了,能说说你们的收获吗?

同学们的收获真多,除了用我们这节课学习的列举法求两个数的最大公因数,老师这里还有两种更简便的方法求最大公因数,给大家分享一下。

一种是:分解质因数求最大公因数的方法,课件演示。

另一种是:短除法

这两种方法我们只是了解一下,在这里就不具体研究了,有兴趣的同学下课后,可以自学教材61页的这部分知识。

人教版数学五年级下册教案 篇3

教学目标

(1)知识目标:

①使学生理解分数化成小数的方法,能根据分数与除法的关系把分数化成小数。

②使学生认识能化成有限小数的最简分数的特点,能判断一个最简分数能不能化成有限小数。

(2)能力目标:在学生对能化成有限小数的最简分数的过程的参与讨论中培养学生观察、归纳、解决问题的能力。 (3)情感目标:在找出能化成有限小数的最简分数的规律过程中培养学生对待知识的科学态度和探索精神。

教学重难点

教学重点:分数与小数互化的方法

教学难点:能化成有限小数的分数的特点。

教学过程

一、设置悬念 导入新课

1、师:在我们的日常生活中,经常会遇到这样的问题:“小红和小明进行登山比赛,从山下到山顶,小红用了0.8小时,小明用了3/4小时,哪位同学登得快?”

要解决这个问题,你有什么好办法

生1:把小数化成分数,再比较。

生2:把分数化成小数,再比较。

师:大家的想法都很好,要想比较两个人的速度,需要把这两个数统一成一类数,要么都是小数,要么都是分数,这样才能便于比较,今天这节课我们就来学习分数、小数互化的一般方法。(板书课题)

二、自主探究 学习新知

1、自主探究小数化分数的方法:

(1)出示例1:把一条3米长的绳子,平均分成10段,每段长多少米?

师:谁来列出算式?

生:3÷10=0.3米

3÷10= 3/10米

师:还是这根绳子,如果平均分成5段,每段长多少米?

生:3÷5=0.6米

3÷5=3/5米

师:观察一下上面两组算式,你发现了什么?

生:0.3= 3/10

0.6=3/5

师:两种不同形式结果是相等的,说明小数和分数是可以相互转化的。同学们想一想,能不能把一个小数直接化成分数呢?

怎样能较快地把小数化成分数?

0.3 0.6

问题:请你自己试着把 0.3 和 0.6 转化成分数。

学生独立完成。课件演示。

问题:1.说说你的想法。 2.这样转化的依据是什么? 3.把小数化成分数要注意什么?

生:能,因为小数表示的就是十分之几,百分之几,千分之几。.。的数,所以可以直接化成分母是10、100、1000.。.的分数,再化简就行了。

(2)师:试一试,请大家在练习本上,尝试把下面的小数化成分数:

0.07= 0.24= 0.123=

(3)学生独立解答,教师巡视。请学生到黑板板演,并讲解自己把小数化成分数的方法,师生小结如下: 把小数化成分数,原来有几位小数,就在1的后面写几个0做分母,原来的小数去掉小数点做分子。

师:小数化成分数,需要注意什么呢?

生:需要化简的分数,要化简成最简分数,还要看清楚原来的小数是几位小数。

2、自主探究把分数化成小数的一般方法:

怎样能较快地把分数化成小数?

把化成小数(不能化成有限小数的保留两位有效小数)。

师:现在就请大家以小组为单位,讨论交流,用你们喜欢的方法做。

问题:1.说说你的想法。 2.这样转化的依据是什么? 3.把分数化成小数要注意什么?

要求:各小组推荐一名代表来作汇报。

(2)交流反馈:

请小组派代表板书,并讲解本组比较的过程及方法。其他同学质疑。(课件出示)

师:你认为哪种方法比较简便?你是怎样把分数化成小数的?

生:我认为把分数化成小数比较更简便,因为不需要通分了。

生:分数化成小数的一般方法是:分子÷分母(除不尽时按要求保留几位小数)

用分子除以分母除不尽时,要根据需要按“四舍五入”法保留几位小数。

特殊方法:分母是10、100、1000.。.时,直接写成小数;分母是10、100、1000.。.的因数时,可以化成分母是10、100、1000.。.的分数,再写成小数。

试一试: 把下面的分数化成小数(不能化成有限小数的保留两位小数)。问题:说说你的想法。

三、巩固应用

1、师:刚才我们一起研究了分数和小数的互化,让我们再次回到开始时提到的问题,你能解决了吗?下面就用你喜欢的方法比较吧!

2、李阿姨和王叔叔谁打字快些?

问题:

1、 怎样比较它们的大小?

2、 你想把小数转化成分数还是把分数转化成小数?

强调学生说一说自己解决问题的过程,教师及时作出评价。

1、把0.7 、9/10 、0.25 、43/100 、7/25 、13/47 这6个数按从小到大的

顺序排列起来。

拓展提高:

你知道吗?

下面这些分数中哪些可以化成有限小数?

四、畅谈收获 知识小结

谁来说一说你今天这节课都学习了哪些知识?你最大的收获是什么?

五、布置作业 巩固知识

作业:第78页练习十九, 第3题、第8题、第10题。

七年级下册数学教案人教版 篇4

教学目标

1.了解的概念和的画法,掌握的三要素;

2.会用上的点表示有理数,会利用比较有理数的大小;

3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议

一、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础。

二、知识结构

有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

定义

三要素

应用

数形结合

规定了原点、正方向、单位长度的直线叫

原 点

正方向

单位长度

帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数

比较有理数大小,上右边的数总比左边的数要大

在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。

三、教法建议

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念。是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、的相关知识点

1.的概念

(1)规定了原点、正方向和单位长度的直线叫做。

这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。

以是理解有理数概念与运算的重要工具。有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想。另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对的学习。

2.的画法

(1)画直线(一般画成水平的)、定原点,标出原点“O”。

(2)取原点向右方向为正方向,并标出箭头。

(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3.用比较有理数的大小

(1)在上表示的两数,右边的数总比左边的数大。

(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。

五、定义的理解

1.规定了原点、正方向和单位长度的直线叫做,如图1所示。

2.所有的有理数,都可以用上的点表示。例如:在上画出表示下列各数的点(如图2).

A点表示-4; B点表示-1.5;

O点表示0; C点表示3.5;

D点表示6.

从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数。

因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。

同理, ,表示 是负数;反之 是负数也可以表示为 。

3.正常见几种错误

1)没有方向

2)没有原点

3)单位长度不统一

最新人教版五年级下册数学教案 篇5

《数的世界》是北师大版五年级第九册第一单元的内容,它是在学生已学过的数的基础上来研究学习的。学生已经知道学过的数有整数(负数)、小数、分数,而本节课探讨的是自然数和整数的关系、一个数的因数和倍数的关系,这里需要强调的是我们研究因数和倍数时,是把0除外的。

通过学生独立思考、小组讨论、全班汇报,学生弄清了自然数和整数的关系,特别是班上的一位男生概括地很准确:所有的自然数都是整数,而所有的整数不一定都是自然数。有同学还提醒大家注意:0既是自然数,又是整数。看来,学生是真正参与到学习中来了,这个知识点是掌握了。

一个数的因数和倍数的关系,主要要求学生能针对具体的乘法算式说一说,谁是谁的因数?谁又是谁的倍数?而具体研究一个数的因数的个数是怎样?最小的因数是几?的因数是几?等问题是在后面专门学习,本课时只要学生知道因数和倍数的关系并自己能举实例说明。但还有一点,书中特别提到是在自然数(非零)范围内研究,学生在判断一道题时,把这个要求忽略了。即:2.1×3=6.3,6.3是3的倍数,3是6.3的因数。学生认为是对的,就是对研究的范围没有弄清,所以这是一个重点,要反复强调。

人教版数学五年级下册教案 篇6

教学内容

正方体的认识

教材第20页的内容及练习五第4、第9题。

教学目标

1、通过观察实物和动手操作,掌握正方体的特征,建立正方体的概念。

2、理解长方体和正方体之间的关系,明确正方体的特征,掌握正方体与长方体的区别与联系。

3、培养学生的观察、操作和抽象概括的能力,发展空间观念。

重点难点

重点:掌握正方体的特征,理解正方体与长方体的关系。

难点:建立立体图形的概念,形成表象。

教具学具

多媒体课件,正方体实物模型。

教学过程

一、创设情境,激趣导入

师:当右面长方体的长、宽、高都相等的时候,这个长方体变成了什么?

生:正方体。

师:同学们猜得对不对呢?老师暂时先保密,相信学完本节课的内容,大家就都清楚了。

【设计意图:通过把长方体变成正方体,把正方体的特征化难为易,学生初步体会到正方体与长方体的关系】

二、探究体验,经历过程

投影出示例3 。

1、探究正方体的特征。

师:谁还记得上节课我们是从哪几个方面研究长方体的特征的?

根据学生的回答,老师板书:面、棱、顶点。

师:那正方体有几个面、几条棱、几个顶点?它的面和棱各有什么特征呢?请你也用探究长方体的方法,看一看,量一量,比一比,把你的发现记录下来。

师:请同学们观察正方体的特征。(出示观察要点)

(1)正方体有几个面?有什么特点?

(2)正方体有几条棱?有什么特点?

(3)正方体有几个顶点?

【设计意图:利用学生的心理特点,让学生进行看、数、量、比的实践活动,凸显知识的形成过程,采用多种方式开展小组合作研究,发挥了学生的创新思维,教学生学会学习方法,也提高了学生的学习兴趣】

小组汇报:

(1)正方体有6个面,这6个面都完全相同。

(2)正方体有12条棱,这12条棱长都相等。

(3)正方体有8个顶点。

2、探究正方体和长方体的区别与联系。

师:通过制作正方体,相信同学们一定对正方体的特征有了更深的了解,到现在为止,我们已认识了长方体和正方体这两种立体图形,那么让我们想一想,它们有什么相同点和不同点呢?

学生对照长方体和正方体模型,在组内交流观察到的长方体和正方体的相同点和不同点。教师巡视指导,学生汇报讨论结果。

投影展示:

相同点不同点面棱顶点面的形状面积棱长6个12条8个6个面都是长方形(也可能有两个相对的面是正方形)相对的面完全相同相对的棱长相等6个12条8个6个面都是正方形6个面的面积都相等12条棱的长度都相等

师:说它是特殊的长方体,它特殊在哪儿呢?(让学生明确正方体是一个长宽高都相等的长方体)

师:现在我们之前的那个猜测,是不是得到验证了呢?如果我们画图来表示它们之间的关系,该怎样画呢?

板书展示:

【设计意图:通过对长方体及正方体的特征的比较,从而渗透事物是相互联系的辩证思想。以图文表结合的形式,生动、形象、直观地展现本节课的重点内容,让学生铭刻记忆,融会贯通】

三、课末总结,梳理提升

在这节课里,我们认识了正方体,知道了正方体有6个面,每个面都完全相同,有8个顶点,12条棱,每条棱的长度都相等。了解了长方体与正方体的区别与联系,知道了正方体是特殊的长方体。

板书设计

教学反思

在本节课的教学中,我注重了知识的条理性,培养学生有条理地研究问题和总结结论。在研究长方体和正方体的区别和联系时,我让学生分别从面、棱、顶点三方面去研究,学生对于研究有了方向。学生在小组内讨论结束后,我组织学生有条理地总结,并有条理地板书。让学生自己先研究再交流,为后面学习长方体的表面积作铺垫。

课堂作业新设计

A类

1、因为正方体是长、宽、高都( )的长方体,所以正方体是( )的长方体。

2、一个正方体的棱长为a,棱长之和是( ),当a=6厘米时,这个正方体的棱长总和是( )厘米。

3、一个正方体的棱长是5厘米,这个正方体的棱长总和是多少厘米?

B类

用72厘米长的铁丝焊接成一个正方体的框架,这个正方体的棱长是多少厘米?

参考答案

课堂作业新设计

A类:

1、相等特殊2. 12a 72 3. 5×12=60(厘米)

B类:

72÷12=6(厘米)

教材习题

教材第20页做一做

(1) 8个(2)略(3)搭成的是正方体

教材第21页练习五

4、正方体10厘米6个9. C F D

人教版五年级下册数学教案 篇7

一、想一想。

出示教科书第38页的图形,并让学生准备这样的图形。按虚线折叠成一个封闭的立体图形,它的形状像什么?(学生小组交流讨论,合作,教师引导学生先想象这个平面展开图折叠以后像什么。)

二、画一画。

动手操作,将附页3图1剪下,按虚线折叠后,形状是一座小房子。

三、做一做。

通过折叠后的小房子来确定天窗和门的位置,然后在平面图上画出来(天窗可以在平面图中上数第二个或第三个长方形内,门可以在第一个或第四个长方形内,也可以在两边的五边形内。)

根据学生的实际情况,把这个问题进行拓展,首先将附页3图1中的各个图形标上号码,长方形从上到下依次为1,2,3,4,5,左边的五边形为6号图形,右边的为7号图形。然后,提出挑战性的问题:

(1)与图形6相对的声纳个图形?

(2)和图形1相对的是哪个图形?借助想象活动,发展学生的空间观念。

四。练一练。

1.第39页第1题。

引导学生进行想象,作出最初的判断,然后通过动手操作,讨论并交流,得出结论。

2.第39页第2题。

进一步让学生体会立体图形和它的平面

展开图之间的对应关系,有多余信息。学生独立完成本题,教师允许学习有困难的学生通过动手操作解决问题

人教版五年级下册数学教案 篇8

【设计理念】

数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度

【教学内容】

人教版五年级下册第23~24页“质数与合数”。

【学情与教材分析】

本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。

【教学目标】

1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。

2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。

3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。

【教学准备】

课件;练习纸每生一张。

【教学过程】

活动一:构建质数和合数概念

1.引导学生按要求列出乘法算式:“因数用整数、不用1”。

教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。

学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。

2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。

教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。

【设计意图】

“活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。

活动二:讨论质数和合数的特征

1.师:“从这些乘法算式中,你发现了什么?

学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;

合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。

2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。

师:观察因数的个数,你又发现了什么?

从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。

3.根据学生回答板书。

4.讨论:“1”是质数还是合数?

学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。

师把板书写完整。

5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?

【设计意图】

预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。

活动三:应用概念寻找或判断质数

1.继续寻找30以内的其它质数。

2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。

3.下面的说法正确吗?说说你的理由。

⑴所有的奇数都是质数。()

⑵所有的偶数都是合数。()

⑶在1、2、3、4、5……中,除了质数以外都是合数。()

⑷两个质数的和是偶数。()

【设计意图】

通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。

活动四:拓展延伸深化概念

1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)

⑴两个质数的和是10,积是21,他们各是多少?

⑵两个质数的和是20,积是91,他们各是多少?

⑶最小的质数是?最小的合数是?

2.在括号里填上质数:

8=()+()12=()+()28=()+()

3.数学小阅读:哥德巴赫猜想。

同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。

请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。

【设计意图】

在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。

活动五:总结

这节课你有哪些收获?

一键复制全文保存为WORD