四年级下册数学教案【优秀3篇】

你有没有想过在考试之前提前知道自己的学习成绩呢?这不是荒诞!让我们来做套纸卷就知道了!下面是的小编为您带来的四年级下册数学教案【优秀3篇】,如果能帮助到您,小编的一切努力都是值得的。

四年级下册数学教案 篇1

教学内容:

简便算法--教材第55页例1-2,做一做题目及练习十二6-8题。

教学目的:

使学生理解并掌握从一个数里连续减去两个数,改为从这个数里减去这两个减数的简便算法。

教学过程:

一、教学例1

出示例1:育民小学图书室新买来130本图书。其中故事书46本,科技书34本,其余的是连环画。买来连环画多少本?

指名学生读题,并说一说,这道题可以用几种方法解答,再让学生用两种方法解答出来。解答完后,指几名学生说说是怎样解答的,教师板书出两种解法:

130-46-34130-(46+34)

=84-34=130-80

=50(本)=50(本)

引导学生对比这两种解法:

这两种解法有什么区别?(第一种解法是先从总本数中减去故事书的本数,再从减得的差中减去科技书的本数,求出连环画的本数;第二种解法是先算出故事书与科技书的和,再从总本数中减去求出的和,求出连环画的本数。)

它们的结果怎样?(两种算法的结果相同。)

这道题用哪种方法计算比较简便?

使学生初步理解:从一个数里连续减去两个数等于从这个数里减去这两个减数的和,在这道题中用后一种解法计算比较简便。

二、教学例2

1.出示例2:计算295-128-72。

先让学生观察题里的数目有什么特点,想一想:能不能用学过的知识使计算简便。然后引导学生联系例1思考:因为128与72的和正好是整百数,从295中依次减去128和72,等于从295中减去128与72的和。所以,先算(128+72),再算295-200,计算起来比较简便。教师边分析边板书出计算步骤:

说明虚线框中的计算步骤初学时可以写出来,以后可以省略不写。

2.做第55页的`做一做。

让学生独立完成,订正时,说一说简算的依据是什么。

三、巩固练习

做练习十二的第6-8题。

1.第6题,让学生自己填数,并说一说是怎样想的。

2.第7题,计算时,告诉学生,可以根据自己的情况确定写不写简算过程。

3.第8题,这是接近整百数的简便算法,可以让学生独立完成。订正时,着重让学生说出少加了的要再加上,少减了的要再减去。

四年级下册数学教案 篇2

一、教学内容:

角的画法P43

二、教学目标:

1、使学生会用量角器按指定度数画角,并通过练习进一步巩固角的有关知识。

2、通过学习,使学生经历画角和练习的全过程,进一步巩固角的有关知识。

3、培养学生动手操作能力及分析、推理的能力。

三、教学重难点

重点:会用量角器按指定度数画角。

难点:培养学生动手操作能力。

四、教学准备

课件、量角器、活动角、尺或三角板

五、教学过程

(一)导入新授

1.说出下面的角各是哪一种角。(大屏出示)

2.我们已经认识角,会用量角器量角,会进行角的分类,怎样画角呢?今天我们来学习画角。板书教学内容:画角

(二)探索发现

1.教学角的画法

问:量角的工具是什么?(说明要画一个指定度数的角,也要用量角器来画。)

出示例题:画一个60°的角

(1)请同学自学角的画法,书P43,例3

(2)试一试

让学生拿出量角器、铅笔、练习本,按书上的步骤一步一步地画一画。

请学生说说你是怎么画的?学生一边说,教师在黑板上示范,最后教师讲解说明。

总结画角步骤:

画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。

在量角器60°刻度线的地方点一个点。

以画出的射线的端点为端点,通过刚画的点,再画一条射线。

2.练习分别画出75°、105°的角

学生说出这两个角的名称。

学生自己进行画角,同桌用量角器互相订正。

(三)巩固发散

1、选择合适的方法画出下列各角,并说说它们分别是哪一种角。

10°45°60°90°105°120°

2、用一副三角尺,分别画出15°、150°165°的角。

(指名汇报方法)

3、P43做一做2独立完成后指名订正。

(四)评价反馈

说一说你有什么收获。

(五)板书设计

角的`画法

(1)画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。

(2)在量角器60°刻度线的地方点一个点。

(3)以画出的射线的端点为端点,通过刚画的点,再画一条射线

六、教学后记

四年级下册数学教案 篇3

(一)教学目标

1.使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。

2.使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。

3.联系生活实际并通过拼摆、设计等活动,使学生进一步感受三角形的特征及三角形与四边形的联系,感受数学的转化思想,感受数学与生活的联系,学会欣赏数学美。

4.使学生在探索图形的特征、图形的变换以及图形的设计活动中进一步发展空间观念,提高观察能力和动手操作能力。

(二)教材说明和教学建议

教材说明

1.本单元的内容及作用。

学生通过第一学段以及四年级上册对空间与图形内容的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形。本单元内容的设计是在上述内容基础上进行的,通过这一内容的教学进一步丰富学生对三角形的认识和理解。

本单元主要内容有:三角形的特性、三角形两边之和大于第三边、三角形的分类、三角形内角和是180°及图形的拼组。内容结构及具体例题安排如下表:

三角形是常见的一种图形,在平面图形中,三角形是最简单的多边形,也是最基本的多边形,一个多边形都可以分割成若干个三角形。三角形的稳定性在实践中有着广泛的应用。因此把握好这部分内容的教学不仅可以从形的方面加深学生对周围事物的理解,发展学生的空间观念,而且可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维能力和解决实际问题的能力。同时也为以后学习图形的面积计算打下基础。

2.本单元教材的编写特点。

(1)关注学生的已有经验,强调数学知识与现实生活的密切联系。

儿童有一种与生俱来,以自我为中心的探索性学习方式,他们的知识经验是在与客观世界的相互作用中逐渐形成的,这些知识与经验是他们进一步学习的基础。为使儿童以一种积极的心态调动原有的知识经验,认识新问题,建构他们自己新的知识与经验,教材的编写注意从学生已有的经验出发,创设丰富多彩的与现实生活联系紧密的情境和动手实验活动,以帮助学生理解数学概念,构建数学知识。例如:对“三角形的分类”这一内容,教材根据学生已懂得了角的分类,能区分锐角、钝角、直角、平角与周角这一基础,设计了“给三角形分类”活动,放手让学生自己在“给三角形分类”的探索活动中了解和把握各种三角形的特征。又如,对三角形的稳定性的设计,教材提供了较丰富的三角形在生活中应用的直观图,让学生联系生活思考:“哪儿有三角形?它们有什么作用?”然后让学生亲自做一个实验感受三角形的稳定性。这不仅是认识几何形体特征的需要,而且有助于学生切实感受到数学对于解决生活实际问题的价值。

(2)重视创设问题情景,让学生在动手操作、积极探索的活动过程中掌握知识。

几何初步知识无论是线、面、体的特征还是图形的特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。“要让学生动手做科学,而不是用耳朵听科学”,让学生带着问题,动手、动口、动脑,调动多种感官参与数学学习活动,在活动中获得知识。基于这样的考虑,教材在提供大量形象的感性材料的同时,加强了数学问题情景、操作探索活动的设计。例如“三角形任意两边的和大于第三边”这一部分内容,创设了“我上学走中间这条路最近”“这是什么原因呢?”这种学生熟悉而有趣的问题情境,让学生去探索、去实验、去发现。从而让学生在动手操作积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力。

(3)教学内容的呈现不但体现知识的形成过程,而且给学生留有充分自主探索和交流的空间。

经过第一学段的学习,学生已经具备一定的关于三角形的认识的直接经验,获得相应的知识和技能,为感受、理解抽象的概念,自主探索图形的性质打下了基础。为方便教师领会教材编写的理念与意图,开展有效的教学,更好地发展学生的空间观念、培养学生各种能力,教材在呈现教学内容时,不但重视体现知识形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活地组织教学提供了清晰的思路。这主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。例如,三角形三边之间的关系、三角形的内角和、三角形与四边形的联系等,均是让学生在操作、探索中发现,形成结论。

(4)加强对图形之间的关系的认识。

本单元增加了“图形的拼组”,让学生再次感受三角形的特征及三角形与四边形的联系与区别,从而了解数学知识之间的内在联系,进一步发展学生的空间观念和动手操作、探索能力。

教学建议

1.准确把握本册关于“三角形的认识”的教学目标。

这一学段的学生已经积累了一些有关“空间与图形”的知识和经验,形成了一定程度的空间感。他们对周围事物的感知和理解的能力以及探索图形及其关系的愿望不断提高,具备了一定的抽象思维能力,可以在比较抽象的水平上认识图形,进行探索。因此,本册对三角形认识的教学目标与第一学段“获得对简单平面图形的直观经验”有所不同,应使学生通过观察、操作、推理等手段,逐步认识三角形。因此,在进行本单元的教学,如落实“了解三角形任意两边的和大于第三边”“三角形内角和是180°”等内容的具体目标时,不仅要求学生积极参与各种形式的实践活动,而且要积极引导学生对活动过程和结果进行判断分析、推理思考和抽象概括,让学生在学习知识的过程中提高能力。

2.重视实践活动,让学生在探索中获取知识。

“数学学习的过程实际上是数学活动的过程”,学生对图形的认识是在活动中逐步建立起来的。回忆生活经验、观察实物、动手操作、推理想像等都是学习理解抽象的几何概念的重要手段,也是发展学生空间观念的途径。教学时,应从学生的生活实践出发,给予学生充分从事数学活动的时间和空间,让他们通过观察、操作、有条理的思考和推理、交流等活动,经历从现实空间抽象出几何图形的、探索图形性质及其变化规律的过程,从而获得对图形的认识,发展空间观念。

3.促进教学中的数学交流。

数学在信息社会应用广泛,重要的原因之一就是数学能够用非常简明的方式、经济有效地、精确地表达和交流思想。交流可以帮助学生在他们的直觉的观念与抽象的数学语言、符号之间建立联系。由于学生的个体差异,不同的学生认识事物的方法不尽相同。教师要重视为学生创设交流的情境,提供“数学对话”的机会,鼓励学生用耳、用口、用眼、用手去表达自己的思想和接受他人的思想。这样的过程有助于培养学生的参与意识,学会用不同的方式探索、思考、解释问题,不断提高自己的思维水平。

4.注重教具、学具和现代教学手段的运用,加强教学的直观性。

几何图形的直观性为各种教学手段的运用提供了广阔的空间,利用各种教具、学具和现代教学技术,可以使学生认识和探索图形的过程更具有趣味性和挑战性,也是进一步发展学生空间观念和实践能力的有效途径。但在运用各种教学手段时,要注意切合实际,易操作而有实效。一些农村学校由于条件所限,不能配备丰富多彩的`教学具,教师必须因地制宜充分挖掘当地资源,积极发动学生制作。学生在制作过程中不但可以激发学习的兴趣而且可以加深对图形的认识。

5.本单元可安排6课时进行教学。

(三)具体内容的说明和教学建议

三角形的特性

(第80~82页)

本节包括三角形的定义、三角形各部分名称、三角形的稳定性、三角形任意两边的和大于第三边等内容。

1.情境图。

编写意图

这是一幅建筑工地场景图,图上楼房建筑框架上、脚手架上包含有大量的三角形。教材提供了这样一幅三角形在生活中应用的直观图,目的是让学生联系生活实际思考并说一说“哪些物体上有三角形?”激发学生学习三角形的兴趣,而且引起学生对三角形及其在生活的作用的思考。

教学建议

教学时,可以先出示情境图,也可以先让学生说一说生活中的三角形,再看情境图,教师可根据个人的需要灵活处理。为让学生进一步研究三角形的特征,了解三角形的作用做好准备。

2.例1。

编写意图

(1)例1是有关三角形定义的教学。教材让学生在“画三角形”的操作活动中进一步感知三角形的属性,抽象出概念。这样有利于学生借助直接经验,把抽象的概念和具体的图形联系起来。

(2)出示三角形的定义后,教材在已学的垂直概念的基础上,引入了三角形的底和高。三角形的底和高实际上是一组互相垂直的线段,这两个概念在学习三角形面积的计算时要用到。

(3)最后,为了便于表述,教材说明如何用字母表示三角形。

教学建议

(1)教学时,要充分考虑到学生已有的生活经验和知识基础,恰当把握教学要求。三角形是生活中常见的图形,在第一学段学生已初步认识过。这里重点是引导学生发现三角形的特征,概括出三角形的定义。

(2)教学三角形的定义时,可让学生在纸卡上画出三角形,思考所画的三角形有几条边?几个角和几个顶点?并尝试标出三角形的边、角、顶点。然后在小组内展示,观察并找出这些三角形的共同点,使学生明确三角形的特征。接着让学生尝试概括三角形的含义,再与课本上的定义比较,着重理解“围成”。之后可出示一组含正、反例的图形让学生辨析,建立正确的三角形概念。

(3)教学三角形的底和高时,可让学生在例1的基础上,选择画好的三角形的一个顶点向它的对边做一条垂线。然后指出顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。再让学生在小组内展示自己所画的底和高。最后请学生思考、操作“你还能在三角形内画出其他的底和高吗?”但要注意的是在钝角三角形两条短边上做的高在三角形外,学生比较难理解,在小学阶段不作要求。

这部分内容的教学也可以由实例入手,让学生量出三角形房顶或斜拉索桥的高度,引出底和高的概念进行教学。

(4)最后说明为了表达方便,可以用字母来表示三角形,并说明如何表示。

3.例2。

编写意图

稳定性是三角形的重要特性,在生活中有着广泛的应用。对它进行教学可以让学生对三角形有更为全面和深入的认识,同时有利于培养学生的实践精神和实践能力。教材对这一内容的设计思路是“情境、问题—实验、解释—特性应用”。

教学建议

(1)教学时,可先出示教材中的插图,引导学生讨论、交流:图上哪儿有三角形?它们有什么作用?然后组织学生用课前制作的三角形进行实验,了解三角形的稳定性。最后请学生列举三角形稳定性在生活中应用的例子。

(2)稳定性的实验也可以这样设计:先出示一个长方形画框,拉动使其变形,请学生思考“为什么会这样?”“怎样才能把画框固定?”然后请学生用课前制作的三角形进行实验,发现特性。最后列举生活实例,并进行应用——把画框固定。

4.例3。

编写意图

(1)教学三角形边的关系——任意两边的和大于第三边。

(2)教材首先呈现了情境图,通过学生熟悉的生活实例创设问题情境,引发学生对三角形边的关系的思考。然后让学生动手实验,探究规律。

教学建议

(1)教学时,可先出示情境图,提出问题“从小明家到学校有几条路?”“哪条路最近呢?”“这是什么原因?”引导学生思考、交流。由于学生还未正式学习三角形边的关系,因此在交流原因时,要鼓励学生结合生活经验谈看法,用自己的话来描述,教师不要作过多的评论,以保护学生学习的积极性。

(2)接着组织学生以小组合作学习的方式进行实验、探究。探究的重点放在引导学生讨论“第(2)、(3)组纸条为什么摆不成三角形?”然后请学生交流自己在探究中的发现,形成结论。最后用自己的发现解释引入中的问题“为什么小明上学走中间这条路最近”。

(3)引入时,也可以用学生熟悉的人和街道创设类似教材中的情境,如选择班上某个同学或老师上学(上班)的路线图,或同学们到电影院看电影的路线图等,使学生感到数学是在研究自己周围的人和事,解决生活中的问题。

三角形的分类

(第83~84页)

1.例4。

编写意图

(1)三角形的分类,教材分两个层次编排。第一层次,按角分,认识锐角三角形、直角三角形、钝角三角形;第二层次,按边分,认识特殊的三角形:等腰三角形和等边三角形。

(2)一般来说,进行分类的基本原则是不重复、不遗漏。对三角形按角进行分类即符合上述原则。教材中用集合图直观地表示出,三角形整个集合与锐角三角形、直角三角形、钝角三角形之间整体与部分的关系。

(3)三角形按边分类,可以分为不等边三角形和等腰三角形。等腰三角形里又包含等边三角形。但按边分类难一些,为避免增加学生的负担,教材不强调分成了几类,着重引导学生认识等腰三角形、等边三角形边和角的特征。

教材在学生按边分类的活动中,引出等腰三角形和等边三角形,分别给出两种三角形各部分的名称。并通过让学生量一量它们的各个角,来认识它们的角的特征。最后让学生找一找这两种特殊的三角形。

教学建议

(1)教学时,可以以小组为单位把课前剪好的三角形分类。教师不要给出分类的标准,要让小组商量按什么分,然后进行操作。

(2)小组汇报时,抓住其中按角分的情况要求其他小组也试一试。交流、汇报时,首先让各小组谈谈把哪些三角形分为一类,为什么。再请学生给三类三角形命名。然后引导学生比较这三类三角形的三个角,看有什么相同点和不同点。再指出什么叫锐角三角形、直角三角形、钝角三角形。使学生明确:每个三角形都至少有两个锐角,另外一个角是锐角、直角、钝角中的一个。最后用集合图表示出三种三角形之间的关系。

(3)按边分类,在学生分出不等边三角形和等腰三角形两类后,再引导学生对等腰三角形进一步分类,就此引出等腰三角形和等边三角形。并告诉学生这两种三角形各部分的名称。在认识等腰三角形、等边三角形后,可让学生观察猜测这两种三角形角的特征,然后测量验证,再列举这两种特殊三角形在生活中的应用。

(4)“做一做”在点子图上画三角形,可以根据班级情况提出不同层次的要求:一种是让学生任意画,然后说说是什么三角形;另一种是让学生画出不同形状的三角形,这需要学生考虑所围图形的特性,是一个探究与构思的过程,难度要大些。

三角形的内角和

(第85~89页)

三角形的内角和是180°是三角形的一个重要性质。它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

1.例5及“做一做”。

编写意图

(1)教材先通过让学生度量不同类型的三角形的内角度数,并分别计算出它们的和,使学生初步感知到它们的内角和是180°。在此基础上,教材再提出用实验的方法加以验证。

(2)实验的方法是把一个三角形的三个角剪下来,引导学生拼成一个平角来加以验证,并概括三角形的内角和是180°。

(3)“做一做”应用这一结论解决问题,使学生知道,在一个三角形中,已知两个角的度数,可以用“三角形的内角和是180°”求第三个角的度数。

教学建议

(1)教学时可先安排猜角游戏,以激发学生的兴趣,调动学生探索的愿望。如,可以先让学生猜一猜三角形三个内角的和大概是多少度。然后小组合作画出几个不同类型的三角形,再量一量、算一算每个三角形内角的和各是多少度。也可以让学生先量出三角形每个内角的度数,报出其中两个内角的度数,请教师猜第三个内角的度数,结果老师总是能猜出来。以此激起学生的疑问,然后请学生算一算每个三角形内角和的度数。使学生初步感知它们的和大约是180°,是不是准确呢?再引导学生用实验来验证,进而概括出结论。

(2)最后让引导学生应用“三角形内角和等于180°”完成“做一做”。

(3)教学时要注意两点:一是应使学生先理解“内角”“内角和”的含义;二是为了使所得的结论具有普遍性,要分别对锐角三角形、直角三角形、钝角三角形进行操作实验。

2.关于练习十四中一些习题的说明和教学建议。

第5题,有的蚂蚁可以从两个洞口进入。如,等腰直角三角形既可以进直角三角形的洞,又可以进等腰三角形的洞,这一点要注意引导学生发现。

第7题,猜一猜的游戏可在小组内进行,猜的内容不应局限于教材上的一种,可先准备好多个三角形,由1人报出1个三角形的某个特征,其他同学猜测。

第13题,这类操作有利于培养空间观念,剪的方法或步骤也不一定相同,可由学生自行探索,再组织交流,只要学生的方法可行,就应给予肯定。

第12、16*题,都是通过把多边形分割成若干个三角形,根据三角形的内角和是180°求出多边形的内角和。教学时应指导学生进行分割(转化),其中长方形、正方形还可以通过90°×4=360°的方法来验证。对于学有余力的学生,还可以扩展:五边形、八边形……的内角和是多少?引导学生探究规律。

第17*题,学生一般会通过有顺序地数的办法得出结果。有的也可能将数出的每个图的三角形个数的规律转化为数列的规律。

三角形的个数

引导学生发现每增加一条线就增加2,3,4…个三角形(见上图第二行数列)。还可以指导学生在有规律地数三角形个数时发现(见上图第三行数列):

三角形个数=单个三角形个数+两个单个三角形组成的三角形个数+三个单个三角形组成的三角形个数+…

如,第四个图形,单个三角形的个数是4,其三角形的总个数为4+3+2+1=10(个)。

图形的拼组

(第90~94页)

本小节安排了两个例题,例6让学生用三角形拼出不同的四边形,例7让学生用三角形拼组图案。使学生进一步体会三角形的特征,体会平面图形之间的关系,学习用联系变化的观点看待事物,并为图形面积的学习打基础。

1.例6。

编写意图

(1)安排了一个用同样大小的三角形拼四边形的活动,让学生从中体会三角形与四边形的关系。

(2)在此基础上,教材提出想一想:任何两个相同的三角形都可以拼成一个四边形吗?使学生通过动手拼摆,了解到可以拼成,并且拼成的四边形可以是平行四边形、长方形和正方形等。由此为后面学习平行四边形面积的计算打基础。

教学建议

(1)具体活动时,不一定按教材提供的思路拼,可以让学生自主拼,看用同样的三角形可以拼出哪些四边形,并说一说是怎么拼摆的。

(2)自主拼摆后,可提出:是不是任何两个相同的三角形都可以拼成一个四边形?让学生通过动手拼摆回答这一问题。在汇报结果时,让学生说一说用两个相同的三角形拼成了哪些四边形,使学生明确拼成的四边形可能是平行四边形、长方形或正方形等。还可以让学生看一看它们都是由什么样的三角形拼成的,为进一步学习做铺垫。

2.例7及“做一做”。

编写意图

(1)安排了用三角形拼出美丽图案的活动,进一步感受三角形与其他图形的关系,同时享受创作的快乐,感受数学美。

(2)作为范例,教材呈现了几种用三角形拼出的实物图:美丽的孔雀、健壮的马、卡通式的船、可爱的房子。

(3)“做一做”要求用七巧板设计自己喜欢的图案。

教学建议

(1)本例所用的三角形,可以鼓励学生课前用色纸剪出。各种三角形多准备一些。

(2)本例可以设计成“我是图案设计大师”等活动。可以让学生共同设计,设计后展示交流,互相欣赏。展示作品时,可先让大家猜一猜拼出的是什么,看像不像,并说一说作品中包含哪些图形。使学生进一步体会三角形和其他图形之间的关系。书上的图案可让学生欣赏一下,如学生有兴趣也可以照着拼一拼,并说一说每个图案中包含哪些图形。

(3)“做一做”中要用到七巧板,如果学生没有可以让他们用三角形拼制,从中进一步体会三角形与其他图形的关系,同时初步感知三角形是最基本的平面图形。

3.关于练习十五中一些习题的说明和教学建议。

第3题,在点子图上画等腰三角形和直角三角形,每种都要求画出两个不同的。如果学生画出的两个三角形共用一条边(如下)也是可以的。

第4题,可以让学生利用“三角形两边的和大于第三边”直接判断哪三根小棒可以摆出一个三角形。能摆出的三角形一共有四种:2 ,5,6;2,6,6;5,6,6;6,6,6。学生能摆几种就摆几种,不必举全。但要指导学生有序思考。

第7题,问用直角三角形、等边三角形拼指定的图形,至少需要几个。教学时,可以让学生动手拼一拼。如果有学生直接在所要拼成的图形中画线,看其中含有几个规定的三角形,对于这种逆思考教师要给予表扬。

教科书第93页思考题,指导用正方形纸剪等边三角形。其过程见下图:

折到第③步时,要注意提醒学生将AB边向上折起,B点要与折痕相交(交点C),这样沿BC、CA剪就能得到一个等边三角形,为什么呢?原因是AC是由AB翻折过去得到的,所以AC=AB。而AC与BC,又可通过将剪好的三角形沿折痕对折完全重合,说明AC=BC。这一原因可以让学生通过测量讨论探究。

4.生活中的数学。

编写意图

(1)本单元之后,教材安排了“生活中的数学”介绍平面图形密铺的知识。

(2)密铺在生活中非常普遍,如家庭、商场、街道用地砖铺的地板、走廊,厕所里铺的墙壁等,密铺成的图案绚丽、美观,装扮了我们的生活,给我们以美的享受。教材因版面所限仅提供了一些用长方形、正方形、三角形密铺起来的图案,让学生知道什么是密铺并感受密铺创造的美。并在最后展现了自然界中的密铺现象,即小蜜蜂用六边形密铺成的蜂窝,让学生在感受自然界奥秘的同时惊叹于小蜜蜂的独运匠心。

教学建议

(1)教学时,在学生知道密铺的概念后,教师还可以展示更多的密铺图案,让学生欣赏,谈谈感受并说说每种图案是由哪些平面图形拼成的,使学生初步感知到长方形、正方形、三角形、六边形可以用来密铺。同时也可让学生举出生活中的一些密铺图案,感受数学在生活中的应用。

(2)要注意这里介绍密铺,主要是使学生感受平面图形给生活带来的美,体会数学的应用价值。对于密铺的概念只要学生了解就可以了,不要拔高要求,如对于什么样的平面图形可以用来密铺不要让学生研究。

(四)参考教案

课题一:三角形的特性

教学内容:教科书第80、81页,练习十四第1、2、3题。

教学目标:

1.通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。

2.通过实验,使学生知道三角形的稳定性及其在生活中的应用。

3.培养学生观察、操作的能力和应用数学知识解决实际问题的能力。

4.体验数学与生活的联系,培养学生学习数学的兴趣。

教具、学具准备:师生分别准备木条(或硬纸条)钉成的三角形。

教学过程:

一、联系生活,情境导入

1.展示课本第80页情境图:我们的城市日新月异,每天都有新的变化。

瞧,这是正在建设中的会展中心,不久的将来就会落成,成为我们城市新的标志性建筑。你在建筑框架上、吊车上发现三角形了吗?请你描出几个三角形。

2.让学生说一说:生活中还有哪些物体上有三角形。

3.出示一些生活中常见的物体上的三角形:电视接收塔上的三角形、铁桥上的三角形、交通标志牌上的三角形、晾衣架上的三角形等。

4.导入课题:三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课我们将对它进行深入的研究。(板书课题)

二、操作感知,理解概念

1.发现三角形的特征。

请你画出一个三角形。边画边想:三角形有几条边?几个角?几个顶点?

展示学生画的三角形,组织交流:三角形有什么特点?

让学生在自己画的三角形上尝试标出边、角、顶点。

反馈,教师根据学生的汇报板书,标出三角形各部分的名称。

2.概括三角形的定义。

引导:大家对三角形的特征达成了一致的看法。能不能用自己的话概括一下,什么样的图形叫三角形?

学生的回答可能有下面几种情况:

(1)有三条边的图形叫三角形或有三个角的图形叫三角形;

(2)有三条边、三个角的图形叫三角形;

(3)有三条边、三个角、三个顶点的图形叫三角形;

(4)由三条边组成的图形叫三角形;

(5)由三条线段围成的图形叫三角形。

请学生对照上面的说法,议一议:下面的图形是不是三角形?

讨论:哪种说法更准确?

阅读课本:课本是怎样概括三角形的定义的?你认为三角形的定义中哪些词最重要?

组织学生在讨论中理解“三条线段”“围成”。

3.认识三角形的底和高。

出示练习纸:三角形屋顶的房子和斜拉桥。

你能测量出三角形房顶和斜拉桥的高度吗?

学生在练习纸上操作。反馈:你是怎么测量的?

指出:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

出示教材第81页上的三角形。提问:这是三角形的一组底和高吗?在这个三角形中,你还能画出其他的底和高吗?

学生操作,然后评议交流。

三、实验解疑,探索特性

1.提出问题。

出示教材第81页插图:图中哪儿有三角形?生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?

2.实验解疑。

下面,请大家都来做一个实验。

学生拿出预先做好的三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?

实验结果:三角形具有稳定性。

请学生举出生活中应用三角形稳定性的例子。

四、巩固运用,提高认识

指导学生完成练习十四1、2、3题。

五、总结评价,质疑问难

这节课我们学习了什么?你对三角形有了哪些进一步的认识?还有什么有关三角形的问题?

课题二:三角形任意两边的和大于第三边

教学内容:教科书第82页。

教学目标:

1.探究三角形三边的关系,知道三角形任意两条边的和大于第三边。

2.根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括能力和动手操作能力。

3.积极参与探究活动,在活动中获得成功的体验,产生学习的兴趣。

学具:不同长度的小棒。

教学过程:

一、创设情境

1.出示:课本82页例3情境图。

(1)这是小明同学上学的路线。请大家仔细观察,他可以怎样走?

(2)在这几条路线中哪条最近?为什么?

2.大家都认为走中间这条路最近,这是什么原因呢?

请大家看,连接小明家、商店、学校三地,近似一个什么图形?连接小明家、邮局、学校三地,同样也近似一个什么图形?那么走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,根据刚才大家的判断,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?

我们来做个实验。

二、实验探究

1.实验1:用三根小棒摆一个三角形。

在每个小组的桌上都有5根小棒,请大家随意拿三根来摆三角形,看看有什么发现?

学生动手操作,发现随意拿三根小棒不一定都能摆成三角形。接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。

2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。

(1)每个小组用以下四组小棒来摆三角形,并作好记录。

(2)观察上表结果,说一说不能摆成三角形的情况有几种?为什么?

(3)能摆成三角形的三根小棒又有什么规律?

(4)师生归纳总结:三角形任意两边的和大于第三边。

三、应用深化

1. 通过实验,我们知道了三角形三条边的一个规律,你能用它来解释小明家到学校哪条路最近的原因吗?

2. 请学生独立完成86页练习十四的第4题:在能拼成三角形的各组小棒下面画“√”。(单位:厘米)

问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?(用较小的两条线段的和与第三条线段的关系来检验。)

你能用下图中的三条线段组成三角形吗?有什么办法?

3.有两根长度分别为2 cm和5 cm的木棒。

(1)用长度为3 cm的木棒与它们能摆成三角形吗?为什么?

(2)用长度为1 cm的木棒与它们能摆成三角形吗?为什么?

(3)要能摆成三角形,第三边能用的木棒的长度范围是。

四、反思回顾

在这节课里,你有什么收获?学会了什么知识?是怎样学习的?

一键复制全文保存为WORD