《加法交换律和结合律》教案【优秀7篇】

作为一名教学工作者,时常需要用到说课稿,说课稿可以帮助我们提高教学效果。那么说课稿应该怎么写才合适呢?下面是小编辛苦为大家带来的《加法交换律和结合律》教案【优秀7篇】,如果能帮助到您,小编的一切努力都是值得的。

《加法交换律和结合律》说课稿 篇1

教学目标

1、知识与技能:

结合具体的情境,引导学生认识和理解结合律的含义。

2、过程与方法:能用字母式子表示加法结合律,初步学会应用加法结合律进行一些简便运算。

3、情感态度与价值观:

①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。

②培养学生观察,比较,抽象,概括的初步思维能力。

教学重点

认识和理解加法结合律的含义。

教学难点

引导学生抽象,概括加法结合律。

教学用具

多媒体课件。

教学过程

一、自主学习

(一)出示自学提纲

自学提纲(P29页例2并完成自学提纲问题,将不会的问题做标注)

1、根据例2情境图中信息列出算式。

2、用你喜欢的方法尝试计算

3、同桌交流自己的算法

4、教师板书出学生的算式及答案

88+104+96 88+(104+96)

=192+96 =88+200

=288 =288

5、对比上面的两道算式,你发现了什么?用自己的话说一说。

(二)学生自学(学生对照自学提纲,自学教材P29页例2,并完成自学提纲问题,将不会的。问题做标注)

(学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

(三)自学检测

1、填空

387+425=( )+ 387 525+( )=137+ 525

300+600=( )+( ) ( )+65=( )+35

2、连线

56+68 150+(25+75)

150+25+75 50+B

B+50 68+56

A+B+100 A+(B][+100 )

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)

(引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)

(二)师生互探

1、解答各小组自学中遇到不会的问题。

(1)让学生提出不会的问题,并让学生解决。

(2)教师引导学生解决学生还遗留的问题。

(3)如何用字母表示加法交换律和结合律?

(4)用字母表示这些运算定律有什么优点?

2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。

四、达标训练(1--3题必做,4题选做,5题思考题)

1、根据加法结合律填空题。

(1)78+25+22 =78 +( )+25

(2)376+175+25=376 +( + )

2、连线。

147+(72+28) A+(B+100 )

A+B+100 147+72+28

3、简便计算下面各题。

52+27+73 285+15+77+23

课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

五、堂清检测

(一)出示检测题

1、根椐加法的运算定律填空

(1)450+320=( )+ 450 65+95=95+( )

(2)( )+ 100 =100+150 250+( )=125+250

(3)78+25+22 =(78 + )+( )

(4)495+125+75=495 +( + )

2、下面的哪些算式符合加法结合律,哪些算式符合加法交换律。

(1)A + ( 30+9 )=A+ 30+9

(2)15+ ( 7+B )= (15 + 7 )+B

(3)10 + 20 + 30 + 40 =10 + (20 + 30) + 40

3、连线。

87+22+78 (79+83)+17

498+125+75 498+(125+75)

(138+136)+162 87+(22+78 )

79+(83+17) 138+136+162

4、简便计算。

98+72+28 215+85+73+27

(二)堂清反馈:

作业布置

《加法交换律和结合律》说课稿 篇2

一、说教材

1、教材分析

“加法交换律和加法结合律”是国标版苏教版小学四年级上册第八单元中的第一课时,它是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。

2、目标分析

(1)教学技能目标:利用学生熟悉的情境引入教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。

(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,进行比较和分析,发现并概括出运算律。

(3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

二、说教学过程

(一)探索加法交换律:

这部分分成4步进行

1、感知规律

课的开始出示第56页的例题(前两幅图),通过解决“参加跳绳的一共有多少人?”得出一个等式,从而导入新课,进行加法交换律的研究。

(设计意图:用学生身边事情引入新知,并为下而面的探究呈现素材。)

2、验证规律

(1)组织学生观察这个等式的特点,然后自己照样子仿写等式。

(2)运用自己写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。

(设计意图:丰富学生的表象,进一步感知加法交换律。)

3、概括规律

(1)通过自己仿写式子,独立思考或小组讨论,引导学生概括出规律,尝试用语言表述。

(2)用自己喜欢的形式表示出来着重强调用字母来表示加法交换律的简便性。

(设计意图:帮助学生构建了简单的数学模型,使学生体会到符号的。简洁性,从而发展了学生的符号感。)

4、巩固规律

出示一组填空,根据加法交换律填出所缺的数字

(设计意图:一个规律教授结束就配以针对性的练习,既有利于概念的正确建立,同时也及时地巩固了新知。)

(二)探索加法结合律:

1、感受规律。

在学生解决“三个项目共得多少分?”过程中得出等式。学生交流各自列式,并让学生说清列式理由。选择两种不同列式,探索规律。

(设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)

2、验证规律

(1)教师出示两组题目,判断左右两边是否可以写等号,分别算一算。

(2)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。

3、揭示规律

(1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?

(2)按照这种规律,你还能写出这样的算式吗?

(3)用字母表示这样的规律。

(设计意图:多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)

4、巩固规律。出示针对结合律的一些填空,巩固新知。

三、实践应用

1、书面训练

(1)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。

(2)想想做做5

(设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)

2、活动训练。游戏“找朋友”

(1)如:师说出“2”,学生要找出它的好朋友“8”,因为“2”和“8”和是“10”,教师配合学生完成。

(2)找出与一个数和是100的数。同学配合完成。

(设计意图:让学生在游戏中意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。)

《加法交换律和结合律》说课稿 篇3

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:

挂图、小黑板

教学过程:

一、教学新课教学加法交换律。

1、一年一度的学校运动会又即将举行了,学校的同学们都在做充分的准备。从这张图片中,你获得了哪些数学信息?

你能根据这些信息,提出几个用加法计算的问题吗?请学生回答。

①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人?

④参加活动的一共有多少人?

2、今天这节课,我们就一起来研究其中的这两个问题:

在黑板上张贴:参加跳绳的有多少人?

参加活动的一共有多少人?

我们先来解决第一个问题:参加跳绳的一共有多少人?

3、你们能马上口头列式并口算出结果吗?

指名回答,教师板书:2817=45(人)追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:1728=45(人)

为什么这两个算式的结果一样?

4、你们能用一个符号把它们连接起来吗?教师继续板书:2817=1728

这是一个等式,仔细地观察一下这个等式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?(同桌交流并汇报)

5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?

6、我们再仔细的观察这几个算式,从中你们发现什么规律?(用自己的话来说一说)你能用自己喜欢的方法、符号或文字来表示你们的发现吗?

教师巡视,并作相应的辅导,板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?

7、同学们都自己用自己喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:ab=ba。

8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书加法交换律),学生齐读一遍。

9、其实加法交换律我们早就会用了,想想看,什么时候我们用过?(在验算加法时用的就是加法交换律)

二、学习加法结合律。

1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究第二个问题“参加活动的一共有多少人?”看看我们有没有新的发现?

2、你们会自己列式解决这个问题吗?学生练习,教师巡视指导。

3、学生回答,教师有意识的板书:

(2817)23=68(人)

28(1723)

(2823)17

28(2317)

(2317)28

23(1728)

交流不同的算法。

下面,我们就来针对这两个算式开展研究:(2817)23 28(1723)

(为了看得清楚,我们给2817添上括号)

4、观察或计算一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:

(2817)23=28(1723)

5、出示:下面的Ο里能填上等号吗?口算或计算一下。

(4525)13Ο45(2513)

(3618)22Ο36(1822)

学生回答,教师板书:(4525)13=45(2513)

(3618)22=36(1822)

6、看着黑板上的板书,你们从中有了什么新的发现?把你的发现在小组内先交流一下。学生小组交流后大堂再交流。

7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

板书:(ab)c=a(bc)

a、b、c各代表什么?(ab)c表示什么?a(bc)表示什么?

教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

四、巩固练习。

1、完成“想想做做”第1题。

以游戏的形式进行,女生代表交换律,男生代表结合律。

2、完成“想想做做”第2题(出示小黑板)说说是怎么想的。

3、完成“想想做做”第3题第1行。

4、插入“朝三暮四”的故事,来听个“朝三暮四”的成语故事

战国时代,宋国有一个养猴子的老人,他在家中的院子里养了许多猴子。日子一久,这个老人和猴子竟然能沟通讲话了。这个老人每天早晚都分别给每只猴子四只桃子。几年后,老人的经济越来越不充裕了,而猴子的数目却越来越多,于是他就和猴子们商量说:“从今天开始,我每天早上给你们三只桃子,晚上还是照常给你们四只桃子,不知道你们同意不同意?”猴子们听了,都认为早上怎么少了一个?于是一个个就开始吱吱大叫,而且还到处跳来跳去,好象非常不愿意似的。

老人一看到这情形,连忙改口说:“那么我早上给你们四只,晚上再给你们三只,这样该可以了吧?”猴子们听了,以为早上桃子已经由三个变成四个,跟以前一样,就高兴的在地上翻滚起来。听了这个故事,你们有哪些想法?

让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老人采用了加法交换律。

5、完成“想想做做”第4题。

男生做第一行,女生做第二行。表扬女生快,知道为什么吗?

使学生初步感受应用加法运算律可以使计算简便。

6、完成“想想做做”第5题。

师:你能很快地找出哪两片树叶上的数的和是100吗?

学生在书上连线,同桌相互校对。

师:看来,在计算过程中,要有一双敏锐的眼睛,看到数字就能很快地判断出能不能凑成整百数。

五、课堂总结。

通过本节课的学习,你有什么新的收获?

教学反思:这节课主要教学加法的`交换律和结合律,从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生

的发散性思维,并培养学生

的问题意思。同时也符合新课程“创造性使用教材”理念。在教学中主要通过让学生观察几组算式,从中总结出加法的交换律和结合律。学生能较快的体会出这两种加法的运算律,但在总结、交流加法的结合律时,学生的语言表达能力较差,教师应适当的进行指导和帮助。同时要鼓励学生用自己最喜欢的方法记忆加法的运算律,提高学生掌握能力。学生的记忆方法过于单调,教师应在开发学生思维上多下功夫。几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。在练习“想想做做”第1题第4小题时,注意让学生说清应用的运算律,这样才能为以后教学应用运算律进行简便计算作好铺垫。很可惜,我引导得不是最合适,学生自己发现的不多。整节课,由于新授部分花时较多,显得稍有拖沓,导致了有些练习来不及处理。

《加法交换律和结合律》说课稿 篇4

教学内容:

青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

教学目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

4.初步形成独立思考、合作交流的意识和习惯。

教学重点:

理解掌握加法的交换律和结合律,并会用字母表示他们。

教学难点:

引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

教学准备:

课件、投影仪、卡片

教学过程:

一、拟定导学提纲,自主预习

(一)创设情境

1.谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。

以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

请同学们仔细观察,你能获得了哪些数学信息?

学生观察汇报,

生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万平方千米,中游是34万平方千米,下游是2万平方千米;)

教师适时板书相应的信息条件。

2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

问题(1)黄河流域的面积是多少万平方千米?

问题(2)黄河全长多少千米?

(二)出示学习目标

同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

2.在探索运算律的过程中,发展学生的。观察、比较、抽象、概括能力,培养学生的符号感。

(三)出示自学指导

为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

(自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

(5分钟后,比一比谁汇报得最清楚。)

(四)学生自学

师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

二、汇报交流,评价质疑

(一)调查

师:看完的同学请举手?

(二)全班汇报

1.问题一:黄河流域的面积是多少万平方千米?

学生在列式解答时,可能会出现两种情况:

(1)39+34+2和34+2+39

(2)(39+34)+2和39+(34+2)。

2.问题二:黄河全长多少千米?

学生可能出的情况:

(1)、3470+1210+790和1210+790+3470

(2)(3470+1210)+790和3470+(1210+790)。

今天我们要学的知识就在这两组算式中。

(设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

3.观察、比较、发现规律

(1)观察这些算式,你们发现了什么?

生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

例如:

(39+34)+2=39+(34+2)

(3470+1210)+790=3470+(1210+790)。

(2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

生汇报:

(35+63)+15=35+(63+15)

(325+82)+18=325+(82+18)…

(3)把你的发现告诉大家?(将学生的举例用实物投影展示)

(三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

师指出这条规律叫做加法结合律。

(4)你能用你喜欢的方法表示这加法结合律吗?

学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

(设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

4.学法迁移,探索加法交换律。

那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

(1)游戏:找朋友。

在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

(2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

《加法交换律和结合律》说课稿 篇5

教学内容:

苏教版小学数学第七册第七单元运算律

第56――58页例题,“想想做做”的第1――5题。

教学目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算,初步感受到应用加法交换律和结合律可以使一些计算简便。

2.在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

教学重点:

发现规律,理解和掌握运算律。

教学难点:

概括运算律并用字母表示。

教学过程:

一、师生合作,探索加法交换律

1.创设情境,解决问题

(1)谈话:随着学校开展的“植根童趣,放飞童心”的活动以来,课间同学们的活动变得更加丰富多彩了。(出示挂图)

提问:从这张图片中,你获得了哪些数学信息?

(2)你能根据这些信息提出一些用加法计算的问题吗?

指名口答。

(3)今天这节课,我们就一起来研究其中的这两个问题

(出示问题)

(4)先解决第一个问题:参加跳绳的一共有多少人?

①应怎样列式计算?

指名回答,教师板书:28+17=45(人)

②追问:还可以写成什么?

指名回答,教师板书:17+28=45(人)

2.观察、比较、发现规律

(1)这两道算式都是求什么的人数?结果都是多少?

(2)你能用一个符号把它们连接起来吗?

板书:28+17=17+28

(3)仔细地观察这个算式,在等号的两边,什么变了?什么不变?你有什么发现?

同桌交流

(4)你们能够自己模仿写出几个这样的算式吗?试试看。

追问:这样的算式能写几个?

指名回答,教师板书。

(5)你能用自己喜欢的方法把我们发现的'规律简单明了地表示出来吗?可以用符号、字母、文字等。

学生试着写一写。

指名回答,教师板书。

(6)谈话:刚才同学们能用自己喜欢的方式表示了我们发现的规律,这些规律叫运算律。但是自己创造的符号只有自己明白,还要学习数学界公认的表示方法,那就是用字母a、b分别表示两个加数,我们发现的规律就可以写成a+b=b+a,这个规律我们给它起个名字叫加法交换律。

(7)谁来说说加法交换律用字母怎样表示?用语言怎样表达?

齐读。

(8)其实加法交换律我们早就会用了,想想看,什么时候我们用过?

指出:在验算加法时用的就是加法交换律。

3..练习:

96+35=35+()

204+57=()+204

a+45=45+()

二、学法迁移,探索加法结合律

1.解答例题,发现规律

(1)刚才通过解决第一个问题,我们得到了加法交换律,现在我们再来研究第二个问题,看看有没有新的发现?

(2)齐读问题。你会列式解决这个问题吗?

你打算先求什么?再求什么?

学生练习,教师巡视。

学生汇报,教师板书:(28+17)+23=68(人)

28+(17+23)=68(人)

(3)比较一下这两道算式,他们有什么相同点和不同点?

(4)这两道算式结果相同,我们可把它写成怎样的算式?

2.板书(28+17)+23=28+(17+23)

(5)练习:

下面的○里能填上等号吗?

(45+25)+23○45+(25+23)

(36+18)+22○36+(18+22)

(6)观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律,和你的同桌交流一下。

和不变,这就是我们今天所学的第二个运算律――加法结合律。

3.练习

(45+36)+64=45+(□+□)

560+(140+70)=(560+140)+□

a+(27+b)=(□+□)+b

三、组织练习

1.第58页想想做做第1题。

仔细观察,同桌交流后汇报。

重点讨论第四个等式,引导学生发现这里同时运用了两种加法运算律。

2.想想做做第3题。

学生计算第1小题,并用加法交换律验算,请学生板演。

评讲,让学生体会加法交换律的价值。

3.想想做做第4题

(1)下面我们来比一比谁做得对又快。

男生计算每组题中的第1小题,女生计算每组题中的第2小题。

(2)交换题目再来比一比。

(3)问:如果让你来选,你愿意做哪一题?为什么?

(4)小结:因为运用了加法运算律可以使计算简便,而每组中的第2小题都运用了加法运算律,所以第2小题做得快。

4.想想做做第5题

(1)谈话:在做第4题时,大家觉得先把和是100的两个数加起来,下一步就容易算了,那么什么样的两个数和是100呢?下面我们来做第5题,你能很快找出哪两片树叶上数的和是100吗?

(2)学生独立连线,同桌互相校对。

(3)提问:什么样的两个数和是100?

(4)小结:看来,在计算过程中,要有一双敏感的眼睛,看到数字就能很快地判断出能不能凑成整百数。

四、回顾总结

有个成语叫“学有所成”,请同学们说说看,这节课你学到了什么?有什么新的收获?

五、作业:想想做做第3题剩下的题目。

教学反思:这节课主要教学加法的交换律和结合律,创设学生熟悉的生活情境出发,让学生根据信息自由地提问,培养了学生的发散性思维,以及问题意识,同时也符合新课程“创造性地使用教材”的理念。在教学中通过对两个算式的观察比较,唤醒学生已有的知识经验,使学生感知加法交换律,组织学生写出类似的等式,帮助学生积累感性材料,丰富学生的表象,同时鼓励学生用自己最喜欢的方法总结出加法交换律和加法结合律,学生能较快的体会出这两种运算律,使学生体会到符号的简洁性和概括性,发展学生的符号感。通过几个层次的练习,使全体同学都参与到有趣的数学学习中,体会到数学的乐趣,又复习巩固了全课的内容,为以后教学应用运算律进行简便计算作好铺垫。

加法交换律和加法结合律 篇6

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:配套课件。

教学过程:

一、课前谈话。有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。

二、教学加法交换律。1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人? ②参加活动的女生一共有多少人? ③跳绳的男生和踢毽子的女生一共有多少人? ④参加活动的一共有多少人?   设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。2、今天这节课,我们就一起来研究其中的这两个问题:在黑板上张贴:参加跳绳的一共有多少人? 参加活动的一共有多少人?我们先来解决第一个问题:参加跳绳的一共有多少人?3、你们能马上口头列式并口算出结果吗?指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)为什么这两个算式的结果一样?4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。9、练习:完成想想做做第一题前面两小题。 设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。

三、学习加法结合律。1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。3、学生回答,教师有意识地板书:(28+17)+23=68(人)28+(17+23)(28+23)+1728+(23+17)(23+17)+2823+(17+28)让回答的同学说说这么列式是怎么思考的?下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。 4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:(28+17)+23=28+(17+23)5、电脑出示:下面的ο里能填上等号吗?(45+25)+13ο45+(25+13)(36+18)+22ο36+(18+22)学生回答,教师板书:(45+25)+13=45+(25+13) (36+18)+22=36+(18+22)6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。板书:(a+b)+c=a+(b+c)教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。8、完成“想想做做”第1题的后面两个小题。设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。

四、巩固练习。

1、完成“想想做做”第2题。第4小题引导学生发现是运用了加法交换律和加法结合律。

2、完成“想想做做”第3题第1行。

3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。

4、完成“想想做做”第4题。使学生初步感受应用加法运算律可以使计算简便。设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。

五、课堂总结。通过本节课的学习,你有什么新的收获?设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。 板书设计:

加法交换律

28+17=45(人) 17+28=45(人)

加法结合律

(28+17)+23   28+(17+23) 28+17=17+28    =45+23 =28+40              =68 (人) =68(人)

(28+17)+23=28+(17+23)

(45+25)+13=45+(25+13) (36+18)+22=36+(18+22) a+b=b+a           (a+b)+c=a+(b+c)

《加法交换律和结合律》说课稿 篇7

一、说教材

“加法交换律和结合律”是国标版苏教版小学四年级上册第7单元中的内容。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。然后安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。

二、说教学目标

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

三、说教学重点、难点

教学重点:使学生理解并掌握加法交换律和结合律,能用字母表示加法交换律和结合律。

教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

四、说教学过程

(一)故事导入,激发兴趣:

(播放《朝三暮四》视频)师:同学们,听了这个故事你想说什么?猴子很笨,同学们很聪明,栗子的总颗数有没有变化呢?什么发生变化?

引入:这个故事的名字叫《朝三暮四》,在数学中也有类似《朝三暮四》故事里的规律,同学们想不想研究一下?

设计意图:故事导入激发学生学习的兴趣,初步体验加法交换律,唤起求知欲。

(二)创设情境,联系生活

谈话:天气渐渐转凉,学校要组织大家参加冬季比赛了,看,四年级同学正在操场上开展体育活动。

(课件出示例题情境图)

提问:从图中你了解到哪些数学信息?(指名说一说)

提问:你能提出用加法计算的问题吗?

学生提到的问题可能有:跳绳的有多少人?女生有多少人?参加活动的一共有多少人?

设计意图:创设贴近学生的生活情境,让学生提问可以培养学生的发散性思维。同时学生提出的问题,作为后继探究的学习材料,符合新课程“创造性使用教材”的理念。

谈话:同学们提出的问题都非常好,下面我们先来解决第一个问题。

(三)探索加法交换律,初步感知

课件出示问题(1)要求参加跳绳的有多少人?

提问:应该怎样列式?

指名口答,教师板书:28+17=45(人)

提问:还可怎么列式?板书:17+28=45(人)

提问:这两道算式都是求什么的人数?(跳绳的人数)结果都是多少?

谈话:既然得数相同,我们就可以把这两个算式用“=”连接起来。改写成28+17=17+28

板书:28+17=17+28(学生齐读这个等式)

提问:比较这两个算式,你有什么发现?(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。

提问:你能照样子再写出几个像这样的等式吗?试试看。(学生动笔写,指名学生回答,教师把学生说的等式有序地板书在黑板上,板书三个)。

提问:像这样的等式你能写得完吗?

谈话:既然写不完,可以用省略号表示(板书省略号)

提问:请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?

提问:你能用自己喜欢的方法表示出像这样的等式吗?可以用符号、字母、文字等等表示,试试看。

师:在数学上,我们通常是用字母a、b来表示两个加数,说来说说怎么表示?

生:a+b=b+a

提问:a和b分别代表什么?

小结:两个数相加,交换这两个加数的位置,和不变。这是加法运算律中的一条很重要的规律加法交换律。

设计意图:本环节能紧密围绕并运用问题情境,师生之间积极互动,教师引导学生自己去感知规律,发现规律,并学会用字母表示。整个过程,学生在观察中感知,在模仿中理解,在探索中发现,培养了学生的抽象括能力。

师:下面老师想考考大家。

考考你

(1)您能在()里填上合适的数字吗?

96+35=35+()204+57=()+204

指名回答,为什么?

(2)下面的等式符合加法交换律吗?为什么?

75+25=25+75

46+59=46+59

90+10=5+95

(没有交换加数的位置;等号两边的加数不同。)

(3)同学们学的真不错,接下来我们来玩个游戏,看看同

学们的反应快不快。游戏:对口令

师:83+17=生:17+83=

97+44=35+65=

88+75=300+600=

a+b=785+68=

设计意图:加深学生对加法交换律的理解,知道加法交换律只是交换加数的位置,其余的'不变。

(4)提问:同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?

下面一道题357+218,请同学们计算并用加法交换律进行验算。

(四)探索加法结合律,自主合作

谈话:同学们,刚才我们通过解决“跳绳的有多少人”这个问题,得到了加法交换律,现在我们再来研究同学提到的问题,看看有什么发现。

出示问题(2):参加活动的一共有多少人?

提问:你会列综合算式解决这个问题吗?

指名回答,教师板书:28+17+23

提问:如果老师想突出强调先算跳绳的人数,可以怎么做?

生:添上小括号

教师给28+17加上小括号。

提问:还是这个式子28+17+23,如果要先算参加活动的女生人数,应该怎么办?

学生同桌交流,指名说说。

教师添上括号:28+(17+23)。

提问:比较这两道算式:它们有什么相同点和不同点?(数学符号相同,得数相同,但运算顺序不同)

师:既然得数相同,我们可以写成等式:

板书:(28+17)+23=28+(17+23)

课件出示:算一算,下面的○里能填上等号吗?

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

指名学生口答。

归纳加法结合律:

提问:观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律?和你的同桌交流一下。

提问:你能用字母a、b、c代表这三个加数,把上面的规律表示出来吗?(学生独立写一写)教师板书:(a+b)+c=a+(b+c)

小结:三个数相加,先把前两个数相加,再与第三个数相加;或者先把后两个数相加,再与第一个数相加,它们的和不变。这就是我们今天所学的加法的第二个运算律——加法结合律。(板书:加法结合律)

考考你:运用加法结合律在括号里填上合适的数字

(45+36)+64=45+(□+□)

560+(140+70)=(560+□)+□

总结:这节课我们一起学习了加法的交换律和结合律,知道两个数相加,交换加数的位置和不变,还知道了三个数连加,改变运算顺序和不变。

设计意图:围绕“变与不变”这一关键点,通过比较每组的两个算式,初步感受规律。接着再经过学生个性化的验证及交流,从而确认加法结合律并学会用含有字母的式子来表示。这样发展了学生分析、比较、归纳、概括的能力。

(五)巩固应用,扩展提高

同学们刚才的表现真棒!那现在想不想和老师一起去闯关呀。我们的闯关开始啦!

1、第一关:火眼金睛

下面的等式各运用了加法的什么运算律?

82+0=0+82

47+(30+8)=(47+30)+8

(84+68)+32=84+(68+32)

75+(48+25)=(75+28)+48

2、第二关:大显身手

在途中,小熊遇到了麻烦,它想把树上的苹果摘下来,可是它必须答对问题,才能拿到苹果,你能帮助它吗?

相加等于100?

3、第三关:勇夺第一,想想做做4

38+76+2438+(76+24)

全班男生完成第1题,女生完成第2题。

提问:为什么每组两道题的得数相同?哪种方法简便,为什么?

观察(88+45)+1245+(88+12),哪题运算简便。

小结:可见,合理地运用加法的交换律和结合律可以使计算简便。

设计意图:几个层次的练习,为学生提供了具有价值的学习内容,开放学生的思维空间,提高思维含量,学生在观察辨析中比较,在思考对比中升华,促进学生灵活地理解和掌握知识。

(六)全课总结

今天这节课我们学习了什么知识?应用加法交换律和结合律,有时可以使计算简便。下一节课我们将继续学习。

设计意图:及时总结、巩固所学知识。使学生在自己的整理总结中再次巩固了本节课的重难点。同时为学生以后的学习作好了铺垫。

一键复制全文保存为WORD