在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?
各位老师,大家早上好!今天我将要为大家讲的课题是“平均数”,下面我将从以下几个方面进行说明,恳请各位老师和同学批评指正。
一、教材分析
(一)本节内容在全书及章节的地位
本节课是人教版八年级数学下册第20章《数据的分析》中,第一节内容。主要让学生认识数据统计中基本统计量,是一堂概念性较强的课,也是学生学会分析数据,作出决策的基础。本节课的内容与学生生活密切相关,能直接指导学生的生活实践。
(二)教学的目标和要求
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:
知识目标:理解算术平均数、加权平均数的含义,掌握算术平均数、加权平均数的计算方法,明确算术平均数、加权平均数在数据分析中的作用。
能力目标:会计算一组数据的平均数,培养独立思考,勇于创新,小组协作的能力。
情感目标:体验事物的多面性与学会全面分析问题的必要性,渗透诚实、进取观念,培养吃苦创新精神。
(三)教学的重点和难点
本着课程标准,在吃透教材基础上,我觉得本节课的重点是:
教学重点:算术平均数、加权平均数的概念以及其计算和确定方法;
教学难点:平均数的计算,加权平均数的理解和运算。
二、学生分析
1、学生与教材
(1)小学已学过平均数(2)生活接触过平均数
2、学生的特点(心理正处于一个重要的转折时期)
(1)他们一方面好奇心强,爱说爱动、争强好胜、学习的动力多来自兴趣激情,收获多来自“无意注意”。
(2)另一方面,他们的自觉性差、自控能力弱、情绪起伏较大,动力和效果都不稳定。
下面,为了讲清重点、难点,结合学生的心理特征,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
三、教法
数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我主要是以问题的方式启发学生,以生动有趣的实例吸引与激励学生;在整个过程中采用情境教学法。同时,注重培养学生阅读理解能力与小组协作能力,在教学过程中主要以学生“探究思考”“小组讨论”“相互学习”的学习方式而进行。采用了探究式的教学方法,整个探究式学习过程充满了师生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
四、学法
数学作为基础教育学科之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、归纳。在课堂结构上,根据学生的认知水平,我设计了以下6个成次的学法,①创设情境——引入概念②对比讨论——形成概念③例题讲解——深化概念④即时训练—巩固新知⑤总结反思——提高认识⑥任务后延——自主探究,它们环环相扣,层层深入,从而顺利完成教学目标。接下来,我再具体谈一谈这堂课的'教学过程:
五、教学程序及设想
(一)创设情境——引入概念
长期以来,很多学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。
首先由学生的平均成绩、平均年龄引入,复习算术平均数的求法。接着,我将以课本136页的问题
(二)对比讨论——形成概念
在学生计算出以上问题的平均数后,小组讨论研究,看谁做的对,学生得出自己的见解后,老师提问,然后引导对比分析以上两个问题的相同点与不同点,从而讨论归纳出加权平均数的概念。
(三)例题讲解——深化概念
接着以所学知识解决一个实际问题,一个很贴近实际的应聘问题,第一问设计很简单,用算术平均数易求,接着出示第二问,给每个数赋上“权”,让学生探讨用刚刚学到的知识解决,学生都有一种跃跃欲试的感觉,这样学生就很容易深化学生对概念的理解。
(四)即时训练——巩固新知
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的讨论研究,真正掌握算术平均数、加权平均数的计算方法,在教师的引导下加深了对新知识的巩固和提高。
(五)总结反思——提高认识
由学生总结本节课所学习的主要内容:⑴算术平均数、加权平均数的概念;⑵算术平均数、加权平均数的计算和确定方法。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质。
(六)任务后延——自主探究
学生经过以上五个环节的学习,已经初步掌握了算术平均数、加权平均数的计算和确定方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,其中包括了必做题和选做题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有余力的学生有进一步发展的空间和余地,这样也充分反映了新课改的精神,就是让不同的学生在数学上得到不同的发展。
以上是我教学的设计过程。在整个过程中我非常强调的一点是让学生从已有的生活经验出发,把这些生活中的问题抽象成数学的模型,并能加以解释和应用它。
六、简述板书设计。
我将黑板分为了四个板块,左边的一块用以引出概念,中间左边的一块我将书写教学的重点与难点,并用星号加以标注,而剩余两块用以向学生讲解例题。
以上是我说课的所有内容,不足之处,希望各位评委老师提出宝贵意见。谢谢!
各位老师:
你们好!今天我要为大家讲的课题是全等三角形的判定
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1.教材所处的地位和作用:
这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。本节内容是在本章内容中,占据重要的的地位。以及为其他学科和今后的几何学习打下基础。
2.教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。
②能够利用尺规画出全等的三角形,学生具有一定的作图能力。
③掌握并理解三角形全等判定定理中的SSS和SAS .
④能够运用SSS和SAS判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。
⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力
(3)情感目标:通过的师生共同摸索判断全等三角形全等的。方法,激发学生学习兴趣。
3.重点难点:
①掌握并理解三角形全等的判定定理
②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题
二、教学策略(说教法)
1.教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。这样学生就更容易理解和掌握定理。在用两个练习巩固知识。
2.教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。
3.学情分析:(说学法)
1 、八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
2 、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
3 、学生在在讨论学习中体验学习的快乐。讨论交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
4.教学程序:
(1)复习回顾上节课内容:
定义:能够完全重合的三角形叫做全等三角形,重合的边叫对应边,重合的角叫对应角
性质:全等三角形对应边和对应角相等
(2)探究1 :
三角形全等的性质让我们知道AB=A ’ B ’ BC=B ’ C ’ AC=A ’ C ’∠ A= ∠ A ’ ∠ B= ∠ B ’ ∠ C= ∠ C ’,满足六个条件中这一部分,能确定△ ABC ≌△ A ’ B ’ C ’,先让学生画出△ ABD,再让学生在画△ A ’ B ’ C ’过程中明白,确定一个条件或两个条件下不能确定两个三角形全等,通过适当时间的引导探究得出得出,当AB=A ’ B ’ BC=B ’ C ’ AC=A ’ C ’时,只能画出一个A ’ B ’ C ’满足条件,于是得出定理:三个对应边相等的两个三角形全等,简写成SSS .
(3)得出定理,我通过讲解简单的例题,让学生懂得定理SSS定理的运用。
(4)探究2 :
得出:定理两边和它们的夹角对应相等的两个三角形全等,简写成SAS
(5)通过解决生活实例,讲解三角形全等的运用
(6)练习:在适当的时间过后给出参考答案,并进行简单的讲解。
(7)小结:通过本节课的学习,你有哪些收获?
(8)我的板书:我会把复习内容和这节课的定理用红色粉笔标明在左边,中间板书探究和例题的内容,右边板书练习的参考答案。
八年级数学说课稿【优秀13篇】
我说课的内容是八年级上册第十四章《乘法公式》的第一课——平方差公式。我设计的说课共分四大环节:
一、教学设计理念
根据《课程标准》,数学课不仅是数学知识的学习,更要体现知识的认知发展过程,关注学生学习的兴趣,引导学生参与探索,在探索中获得对数学的体验与应用。
鉴于此,我对本节课的设计流程是:观察发现——归纳验证——应用拓展,以解决自主学
二、教材分析
(1)教材的地位和作用
平方差公式是多项式乘法的后续学习及再创造活动的结果,体现教材从一般——特殊的意图,教材为学生在数学活动中“获得数学”的思想方法、能力素质提供了良好的契机,是学生感受数学再创造的好素材,同时对平方差公式在整式乘法、因式分解及其代数运算中起着举足轻重的作用,是今后学习的坚实基础。
(2)教学目标
知识与技能:
理解和掌握平方差公式,并能灵活运用公式进行简单运算。
过程与方法:
经历平方差公式的探索,体会观察发现—归纳验证—应用拓展这一数学方法,培养学生分析、归纳能力。
情感态度与价值观:
感悟具体到抽象的探究方法(一般到特殊);通过几何验证感知数形结合思想。在应用中,激发学生学习兴趣和信心。
(3)教学重点、难点
教学重点:理解、掌握平方差公式并能正确运用公式。
教学难点:明确公式的结构特征及对公式的变式运用。
三、教法与学法
(1)教法
本节课采用探究式教学法,从两项式的乘法中发现规律,又通过多项式的乘法法则进行验证及探究平方差公式的几何意义,从而培养学生观察概括能力,在探索中由旧到新,由学到“思”,由“思”到知识方法的提升,体验探索数学的方法,同时展示学生探索成果,让学生感受学习数学是一件快乐的事。
(2)学法
让学生学会从观察发现——归纳验证——应用拓展这一数学方法,以问题为线索,学生在动口、动手、动脑中使知识再创造,从中让学生明确获取知识只有通过自己的探索才能不仅“知其然”,而且“知其所以然”,透过表象看公式特征,而不是死记硬背,在应用中学会知识的迁移,抓住公式的结构特征,提高灵活运用能力。
四、教学过程(略)
教学环节
教学内容
学生活动
设计意图
教案设计说明:
本节课主要是学习平方差公式,它是多项式乘法的再创造,采用体验探索式教学法,让学生观察发现——归纳验证——应用拓展中收获学习数学方法,在教学中,给学生留有充分的时间和空间,激发学生的学习积极性。
通过探究的教学设计,为学生提供数学活动的机会,帮助他们在自主探索和合作交流的过程中,真正理解代数的基础知识、技能和思想方法,获得广泛的数学活动经验,提高学生探索、发现和创新能力。并让学生有条理地表达自己的思考过程,让学生沉浸于知识的探索中,为突破难点,采用小组合作,先体验后归纳,从中感悟数形结合及整体的数学思想,趣味应用题激发兴趣。师生互动,着重培养学生的观察概括能力,有意培养学生的推理能力。
五、有效性辅导
有效性辅导是提高英语教学有效性的延伸。教师要诊断学生在听课、作业、检测中遇到了不明白的问题,教师辅导学生的目的在于让学生清楚、明白这些问题。辅导可采用个别辅导,集体辅导,也可采用要点辅导,评语激励,把学生遇到问题中的基础知识落实到实处,减轻学生心理压力,从而提高学生的学习兴趣,增强学生学习自信心。
六、有效性反思
有效性反思是提高英语课堂教学有效性的再创造。反思是科研中常用的一个术语,不少人认为,反思就是“找不足”,这不完包含了反思的内涵,反思可以说“找问题”,也就是说反思是发现问题、提出问题、分析问题、解决问题的思考过程。有效性教学反思是指教师借助一定的科研方法不断探究与解决自身在教学过程中的得失,将“学会教学”与“学会学习”有机结合起来,努力提升自身教学实践的科学性,优化自己的教学过程,使自己成为高水平,学者型的教师。教学反思贯穿整个教学过程的始终(教学前反思,教学中反思,教学后反思),在整个教学过程中,通过反思,优化备课,优化课堂教学结构,优化辅导,优化检测,优化作业,从而提高每个环节,每节课的有效性。
总之,在实施新课程以来,有效性英语课堂教学实践是课改的关键,要实现“教得轻松,学得有效,考得满意”为落脚点的实效性教学模式,请你不妨从“有效性备课,有效性授课,有效性作业,有效性检测,有效性辅导,有效性反思”等方面来实践。
对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教学背景、教法学法、教学过程、教学设计说明四个方面具体阐述我对这节课的理解和设计。
1、教材的地位和作用
本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、掌握分式有意义,值为0的条件。因为它是在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,为今后继续学习分式、函数、方程等知识作好铺垫,特别是对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。因此它起着承上启下的作用。
2、教学目标
一节课的教学目标准确与否,直接关系到这节课的整体设计,关系到学生发展的水平和教学效果的好坏,因此预设教学目标时,我力求准确。依据新课程的要求,我将本节课的教学目标确定为以下3个方面:
(1)知识与技能目标:让学生经历用分式表示现实情境中数量关系的过程,从而了解分式概念,学会判别分式何时有意义,进一步培养学生代数表达能力和分析问题、解决问题的能力、以及创新能力。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,使学生获得成功的经验,体验数学活动充满探索和创造,体会分式的模型思想,培养学生的辩证唯物主义观点。
3、教学重难点及关键:
分式概念是《分式》这一章学习的起点和基础,因此我把理解分式的概念确定为本节课的教学重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分式有意义、分式的值为0时的条件,自然就成了本节课的教学难点。而部分学生容易忽视分式的分母值不能为0这个条件,�
一、教法学法分析
1、学情分析
由于我校八年级学生,基础比较扎实,学习能力较强。通过小学分数的学习,学生头脑中已经形成了分数的相关知识。学生可能会用学习分数的思维去认识、理解分式。但是分式的分母不再是具体的数,而是抽象的含字母的整式,会随着字母的取值的变化而变化。为了帮助学生确实掌握所学内容,我在教学过程中特别设置了巩固性练习,对于教材中的例题和习题将作适当的延伸和拓展及变式处理。
2.教学方法:
针对本班学生情况,为了适合学生已有的认识水平和认知规律,更好地突出重点、化解难点,在教学过程中,我采用“引导——发现式教学法”,引导学生运用类比的思维方法进行自主探究。 在实施教学的过程中注意学生分析问题、解决问题等能力的培养。让学生全面地掌握分式的意义,体会到数学不是一门枯燥的学科,对学习数学充满信心。为了提高课堂效果,适当的辅以多媒体技术, 激发学生的学习兴趣,同时也增大教学容量,提高教学效率。
3.学法指导
观察、概括、总结、归纳、类比、联想是学法指导的重点。
在课堂教学中,不是老师单纯的传授知识,而是在老师指引下让学生自己学。要把教法融于学法中,在学法中体现教法。在活动过程中,我将引导学生体会用类比的方法,扩展知识的过程,培养他们学习的主动性和积极性。让学生通过对问题的讨论归纳,在与老师的交流中学习知识,从而达到 “学会”和 “会学”的目的。
二、教学过程(多媒体教学)
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”在教学过程中,我充分考虑到如何更多地向学生提供从事数学活动的机会,坚持以知识为载体,思维为主线,能力为目标的设计原则, 所以我将本节课的教学过程设为以下六个环节:
第一环节是“创设情景、提出问题 ”:为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,在这一环节里我设计一道有关四川汶川特大地震捐款的事例,并设置了6个问题。从学生熟悉的整式及其运算入手,引导学生从旧知中去发现分式,找到新知的“生长点”和学生思维的“最近发展区”,从而更好地进行分式概念的建构活动。落实教学目标。
针对学生的发现,在第二个环节 “类比联想 形成概念”
我将采用“议一议”的方式引导学生继续观察新式子的特征,类比分数,合理联想。从而使学生水到渠成地概括出分式的概念及一般表示形式。
第三环节“指导运用 巩固概念”
通过小组内互举例子,互说判定过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析 与 的本质区别和 不是分式的问题,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式� 同时还让学生明白:分数线具有 (1)表示括号;(2)表示除号双重意义。
到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,也是探究学习的好素材。课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,
我在第四环节“循序渐进 再探新知”
创设了以下活动供学生自主探究分式有意义的条件:
首先是组织学生独立填写表格:
表格的设计,是为了让学生通过对分式中的字母赋值,将“代数化”了的分式还原为他们熟悉的分数。通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:分式的值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,建立完整的分式概念,同时渗透从特殊到一般的数学思想。
我抓住这一契机,给出:
(2)、概括分式在什么条件下有意义(对一般表达式 里的分母B作出取值限定:B不能等于零)为了能让学生对刚获得的新知识进行最基本的应用,在这一环节我安排了例题1是一个有关分式求值及判别分式何时有意义的问题,比较简单,可以由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。
我又顺水推舟,再给出以下分式,让学生讨论,(实践练习1):当x取什么值时,下列分式有意义?你知道吗?(采用组内合作然后组间抢答的形式。)(1)、 (2)、 (3)、 接下来,我又乘胜追击,问学生:(变式练习):那么以上各分式,当 取什么值时,分式无意义?
几个问题由浅入深、由易到难,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,消化知识。
(五)、变式延伸,进行重构
在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,我将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。我问学生:例2:同样的,以上各分式,当 取什么值时,分式的值为零?
由于学生对新概念的理解在本质方面还是肤浅的,很多学生可能只考虑满足分子为零即可,所以我给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(2)(3)两个题发现问题并不是那么简单,找出了症结。这样我就能及时的对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:
(1)、分子的值为零;(2)、同时分母的值不等于零。从而进一步改善学生原有的认知结构
为了使这堂课所学到的知识与技能,顺利地纳入他们已有的知识结构中,
所以在接下来的第(六)环节“ 巩固深化 分层作业”里,我将引导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?最后教师整理学生的发言,归纳小结:
A、分式是两个整式相除的商,分数线可以理解为除号,并含有括号的作用.
B、分式的分子可以含有字母,也可以不含有字母,但分母必须含有字母.
C、分式分母的值不能为0,否则分式无意义.
D、分式的值要为0,需满足的条件是:分子的值等于0且分母值不为0
E、有理数的分类(有理数包括整式和分式)。
(2)、作业布置
(设计意图)考虑到学生的个体差异,以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。其中有一题自编涉及用分式表示数量关系的实际问题的题型。这样设计对学生是个挑战,可以激发他们的思维和兴趣,通过这样的逆向思维,可以更好地发展学生的数感、符号感,同时培养学生的创新意识。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
三、教学设计说明
回顾整节课的设计,我主要着力于以下三个方面:
(一)、关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:
1、通过创设情景、引导学生观察、类比;联想已有知识经验;分析新的问题等活动,让学生充分感受知识的产生和发展过程,让学生始终处于积极思维状态之中。
2、通过分式概念、分式有意义的条件等探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心,引发自行学习的内在动机。
3、在学生学习了分式的概念后,通过一组由浅入深、由易到难的题组(例题及变式训练),逐题递进,落实本节课的教学难点。在教学形式上采用学生“互举例子、组内合作、组间抢答等多种方式,激活学生的思维,营造良好的课堂氛围。
4、问题设计注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展
5、小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。
6、通过创设开放性问题发展学生的创造性思维能力。根据学生的个性差异,遵循因材施教的原则,设计分层作业,使不同层次的学生都能通过作业有所收获。
(二)、关于教与学方法的选择:我在设计中始终关注:如何精心组织,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导—发现教学法”,具体做法如下:
(1)、应用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;
(2)、加强应用性,通过再探新知、变式延伸两个环节,发展数学应用意识,突出分式的模型思想。
(三)、关于评价:学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情。我在活动中注重运用态势、语言对学生进行即兴评价,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。
总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。
一、教材分析
1、教材的地位和作用
本课位于苏科版义务教育课程标准实验教科书八年级下册第十章第四节第一课时。主要内容是探索三角形相似的条件,并利用两个角对应相等来判断两个三角形相似,它是三角形的重要基础知识,学习本节内容,既巩固了前面学习的三角形全等和相似三角形的性质,又为后面学习三角形相似的其他方法打下了坚实的“基石”,起到了承上启下的作用。
2、教学目标
(1)知识目标:探索探索三角形相似的条件,并利用两个角对应相等来判断两个三角形相似。
(2)能力目标:通过通过观察、思考探索,小组合作等活动归纳出有两个角对应相等的两个三角形相似,培养宪政“转化”的数学思想方法,提高学生动手和解决实际问题的能力。
(3)情感目标:让学生感受数学与生活的紧密联系,体会数学的价值,培养学生敢想、敢说、敢做的学习习惯和团队协作,勇于创新的精神。
3、教学重、难点
重点:通过探索活动归纳出三角形相似的条件,并运用条件解决实际问题。
难点:三角形相似的探索,特别“对应”的理解。
二、教学方法
根据新课标的要求以及八年级学生的认知水平,贯穿于本节课教学环节的主线是:观察---探究-----讨论----归纳-----巩固展示,采用启发式和师生互动式教学方式,同时利用课件辅助教学来突破重难点。
三、学法指导
(1)八年级学生已经学习了三角形全等和多边形相似,在学习本节内容时,对“相似”和“全等”易混淆,在教学过程中要简单明白、深入浅出的分析。
(2)八年级学生总体较好动,且喜欢表达自己的观点,所以在教学过程中要想方设法将学生的注意力集中到课堂中来,更多地创造条件和机会让学生发表自己的见解,充分发挥学生的主体作用。
四、教学流程
1、创设问题,引入新课 (5分钟)
问题:课本第94页,思考……………….
在这一环节中老师应注重:(1)复习:三角形全等的条件 (2)多边形相似的条件,强调边对应,角对应。
(3)相似三角形的性质;对应角相等,对应边成比例。
2、学生活动,探究新知 (10分钟)
学生活动1:课本第94页,思考:(1)如何画出三个三角形(2)三角形(1)与三角形(2)全等吗?由学生表述并书写。
学生活动2:(1)师提问:根据多边形相似的条件,你能判断三角形(1)与三角形(3)相似吗?引导学生从对应角相等、对应边成比例这两方面思考
(2)学生测量、计算、思考、探究……………………
(3)学生回答…………………
师生共同归纳本节课知识点1:
如果说一个三角形与另一个三角形有两个角对应相等,那么这两个三角形相似
数学语言:在△A“B”C“与△ABC中,若∠A“=∠A,∠B”=∠B,
则△A“B”C“∽△ABC
在这一环节中教师应注重:(1)学生对“对应”的把握 (2)不断激发学生思考和回答问题的积极性,并适当运用“不错”“很好”等话语来激励学生。 (3)学生的合作交流、讨论的能力和质量如何。
3、例题分析、讲解 (10分钟)
例1:课本第94页:例1 例2:课本第95页:例2
在这一环节中教师应注重:(1)在已知题知中如何寻找两个对应角相等 (2)进行规范的板书
学生活动3:课本第95页:思考:……………..
此环节由学生分析并书写出规范的推理过程
师生共同归纳本节课知识点2:平行于三角形一边的直线和其他两边的延长线相交,所构成的三角形与原三角形相似
4、趁热打铁,巩固新知 (10分钟)
本环节设计4小题,为课本第95页到96页练习1—4题,由学生单独思考并书写推理过程
在这一环节中,教师应注重:
(1)深入学生中,观察学生的分析过程是否合理,书写是否规范
(2)帮助学习能力较差的学生,并适时表扬书写规范,说理清楚的学生,通过肯定学生让学生感受到成功的喜悦。
5、学生成果展示 (6分钟)
展示内容与方法:巩固练习的4小题,在展台上进行分析过程并强调如何规范书写,教师和其他学生进行适当补充和肯定。
6、总结新知,强调数学思想方法 (3分钟)
设问法,学习了本节课你有什么收获?
在这一环节中,教师应注重:(1)学习小结的知识内容 (2)在能力和情感方面有什么提高和体会,这与“三维目标”相呼应。(3)教师强调数学思想方法:转化,将陌生的知识转化为熟悉的,将未知的转化为已知的。
7、布置作业(1分钟)
作业在讲学稿上,分为必做题和选做题,体现分层教学和分层作业的理念。
8、板书设计
(1)两个三角形相似的条件:文字语言和数学语言
(2)例题讲解 例1: 例2:
(3)平行于三角形一边的直线和其他两边的延长线相交,所构成的三角形与原三角形相似
一、说教材(教材分析)
《正方形》这节课是九年义务教育人教版数学教材初二年级下册第十九章章第二节的内容。纵观整个初中平面几何教材,《正方形》是在学生掌握了平行线,三角形,平行四边形,矩形,菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察,操作等活动经验的基础上出现的。目的在于让学生通过探索正方形的性质,进一步学习,掌握说理和进行简单推理的数学方法。这一节课既是前面所学知识的延续,又是对平行四边形,菱形,矩形进行综合的不可缺少的重要环节。
教材从学生年龄特征,文化知识实际水平出发,先让学生动手做,动脑思考,然后与同伴交流,探索,总结归纳,升华得出正方形的概念,再由概念去探索正方形的性质。这样的安排使学生在整个学习过程中真正享受到探索的乐趣。
本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形,矩形,菱形之间的内在联系。根据大纲要求及本班学生的实际情况,本节课制定了知识,能力,情感三方面的目标。
(一)知识目标:
1、要求学生掌握正方形的概念及性质;
2、能正确运用正方形的性质进行简单的计算,推理,论证;
(二)能力目标:
1、通过本节课培养学生观察,动手,探究,分析,归纳,总结等能力;
2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;
(三)情感目标:
1、让学生树立科学,严谨,理论联系实际的良好学风;
2、培养学生互相帮助,团结协作,相互讨论的团队精神;
3、通过正方形图形的完美性,培养学生品格的完美性。
二、说学生:(学生分析)
这节几何课是在初二年级三班上的一节课。该班学生基础一般,但上课很积极,有很强的表现欲,通过前一学期的培养,具有一定的独立思考和探究的能力。但该班学生的口头语言表达能力方面稍有欠缺,所以在本节课的教学过程中,设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。
三、说教法(教法分析)
针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。
通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察,讨论,归纳,总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义,性质理解,巩固加以升华。
整个教学过程中教师通过提问,观察,思考,讨论,充分调动学生非智力因素,让学生在老师的引导下自始至终处于一种积极思维,主动学习的学习状态。而教师在其中当好课堂教学的组织者。
四、说学法:(学法分析)
本节课重点以培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手,观察,思考,分析,总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。
五、说教学程序:
(一)(第一环节)相关知识回顾
以提问的形式联系平行四边形,矩形,菱形的定义及性质之后,引导学生发现矩形,菱形的实质是由平行四边形角度,边长的变化得到的。(由课件演示以上两种变化)并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形让学生们通过手上的学具演示以上两种变化,从而得出结论。
(二)(第二环节)新课讲解
通过学生们的发现引出课题"正方形"
1、(第一个知识点)正方形的定义
引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边,角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。(投影仪显示)再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另一个定义:一个角是直角的菱形是正方形。或者把一个角是直角与平行四边形组合成矩形,再加上一组邻边相等这个条件,可得正方形的第三个定义:一组邻边相等的矩形是正方形;此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。
{2、正方形的性质(由课件演示)
定理1:正方形的四个角都是直角,四条边都相等;
定理2:正方形的两条对角线相等,并且互相垂直,平分,每条对
角线平分一组对角。}(不念)以上是对正方形定义和性质的学习,之后进行例题讲解。
{ 3、例题讲解(由课件显示)
求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。}(不念)此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知,求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。从而培养他们语言表达能力,让学生的个性得到充分的展示
4、课堂练习(然后我又设计了两种不同类型的练习题
第一部分设计了三道有关正方形的周长,面积,对角线,边长计算的填空,目的是对正方形性质的进一步理解,并考察学生掌握的情况。
第二部分是选优题,通过这道生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的。综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。
5课堂小结(由课件演示)
此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样完美的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。
6、欣赏实际生活中正方形的应用(课件显示)
第6个环节是我设计了一些正方形在实际生活中应用的图片,在优美的音乐中欣赏实际生活中正方形的应用,再一次让学生们感受正方形的美。
7、作业设计(我设计的是教材159页,第12,14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。
六、说教学评价:
本课的教学注意挖掘教材中培养创新意识的素材,利用计算机辅助教学,为学生营造一种创新的学习氛围。把学生引上探索问题之路,为学生构造一道亮丽的思维风景线,必将调动学生学习的主动性,积极性,体现学生的主体地位。同时,本课以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学力水平,使传授知识与培养能力融为一体,体现素质教育的精神。
七、教学反思
一、本节课通过课件播放平行四边形一个角的变化和一组对边的变化得到正方形,成功的达到了学生对正方形直观认识,并轻松地总结出正方形的性质。
二、本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生语言描述,然后进行引导交流形成规范语言。
三、通过一道拓展延伸练习题,鼓励学生大胆尝试,同时鼓励其他同学进行互帮互助,交流自己解决问题的过程及成功的体验,给学生留下了充分的空间,不断激发学生的探索精神,培养了学生的动手操作,合作交流和逻辑推理能力,提高学生分析和解决问题的能力,使学生有成功体验。
一、 教材分析:
(一)教材所处的地位
这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上 对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:
1、 能说出勾股定理的内容。
2、 会初步运用勾股定理进行简单的计算和实际运用。
3、 在探索勾股定理的过程中,让学生经历"观察—猜想—归纳—验证"的数学思想,并体会数形结合和特殊到一般的思想方法。
4、 通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:
教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、 教学过程设计:
(一)提出问题:
首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是"已知一直角三角形的两边,如何求第三边?" 的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个"数学化"的过程。
(二)实验操作:
1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。
2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。
3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。
1、归纳 通过对�
2、验证 为了让学生确信结论的'正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍"勾,股,弦"的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。
(四)问题解决:
让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本"想一想"进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。
(五)课堂小结:
主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。
(六)布置作业:
课本P6习题1.1 1,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。
四、 设计说明
1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。
3、关于练习的设计,除两个实际问题和课本习题以外,我准备设计一道开放题,大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。
4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。
各位老师:
你们好 ! 今天我要为大家讲的课题是 全等三角形的判定
首先 , 我对本节教材进行一些分析 :
一、教材分析(说教材):
1、 教材所处的地位和作用 :
这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。本节内容是在本章内容中,占据重要的的地位。以及为其他学科和今后的几何学习打下基础。
2、 教育教学目标 :
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
( 1 )知识目标:
① 对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。
②能够利用尺规画出全等的三角形,学生具有一定的作图能力。
③掌握并理解三角形全等判定定理中的 SSS 和 SAS 。
④能够运用 SSS 和 SAS 判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力,
( 3 )情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。
3、 重点难点:
①掌握并理解三角形全等的判定定理
②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题
二、教学策略(说教法)
1、 教学手段: 为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。这样学生就更容易理解和掌握定理。在用两个练习巩固知识。
2、 教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。
3、 学情分析:(说学法)
1 、八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
2 、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
3 、学生在在讨论学习中体验学习的快乐。讨论交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
4、 教学程序:
( 1 )复习回顾上节课内容:
定义:能够完全重合的三角形叫做全等三角形,重合的边叫对应边,重合的角叫对应角
性质:全等三角形对应边和对应角相等
( 2 )探究 1 :
三角形全等的性质让我们知道 AB=A ’ B ’ BC=B ’ C ’ AC=A ’ C ’∠ A= ∠ A ’ ∠ B= ∠ B ’ ∠ C= ∠ C ’,满足六个条件中这一部分,能确定△ ABC ≌△ A ’ B ’ C ’,先让学生画出△ ABD ,再让学生在画△ A ’ B ’ C ’过程中明白,确定一个条件或两个条件下不能确定两个三角形全等,通过适当时间的引导探究得出得出,当 AB=A ’ B ’ BC=B ’ C ’ AC=A ’ C ’时,只能画出一个 A ’ B ’ C ’满足条件,于是得出定理:三个对应边相等的两个三角形全等,简写成 SSS 。
( 3 )得出定理,我通过讲解简单的例题,让学生懂得定理 SSS 定理的运用。
( 4 )探究 2 :
得出:定理两边和它们的夹角对应相等的两个三角形全等,简写成SAS
( 5 )通过解决生活实例,讲解三角形全等的运用
( 6 )练习 : 在适当的时间过后给出参考答案,并进行简单的讲解。
( 7 )小结:通过本节课的学习,你有哪些收获?
( 8 )我的板书:我会把复习内容和这节课的定理用红色粉笔标明在左边,中间板书探究和例题的内容,右边板书练习的参考答案。
( 9 )布置作业: P15, 第 1 , 3 题,预习 P10-P12 的内容。
各位老师:
你们好!今天我要为大家讲的课题是
首先,我对本节教材进行一些分析:
一、 教材分析(说教材):
1、 教材所处的地位和作用:
本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。
2、 教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,
(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3、 重点,难点以及确定依据:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
二、 教学策略(说教法)
1、 教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。
2、 教学方法及其理论依据:坚持"以学生为主体,以教师为主导"的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3、 学情分析:(说学法)
(1) 学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
(3) 动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
4、 教学程序及设想:
(1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为"猜想"继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书
(8)布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
教学程序:课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分
各位评委,老师们:
大家好!
很高兴参加这次说课活动,这对我来说是一次难得的机会,深切盼望专家和评委对我的说课内容提出宝贵意见。
今天我说课的内容是北师大版数学八年级上册第三章图形的平移与旋转的第一节《生活中的平移》。
下面,我从教材分析,教法与学法分析,教学过程分析,设计说明四个方面来谈谈我对这节课的教学设想。
一,教材分析
1,教材的地位和作用。
"生活中的平移"对图形变换的学习具有承上启下的作用。学生在前面已学习了轴对称及轴对称图形,在此基础上还将学习生活中的旋转与旋转设计图案等内容。同轴对称一样,平移也是现实生活中广泛存在的现象,是现实世界运动变化的最简捷的形式之一,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。为综合运用几种变换(平移,旋转,轴对称,相似等)进行图案设计打下基础。
2,教学重点与难点。
平移是现实生活中广泛存在的现象,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。探索平移的基本性质,认识平移在现实生活中的广泛应用是学习本节内容的重点。
平移特征的获得过程,教科书中仅用了一段文字,很少的篇幅,对于这个特征,不是要学生死记硬背,而是要学生具备一定的探究归纳能力,对八年级的学生来说,有一定的难度,因此本课的难点是平移特征的探索及理解。
3,教学目标:
根据上述教材分析,考虑到学生已有的认知结构,心理特征,制定如下教学目标
(1)知识目标:
通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。
(2)能力目标:
通过探究归纳平移的定义,特征,性质,积累数学活动经验,提高学生的科学思维能力。
(3)情感目标:
经历观察,分析,操作,欣赏以及抽象,概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。
下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
二,教法与学法分析
教学不只是传授知识,让学生单纯记忆前人的研究成果,更重要的是激发学生创造思维,引导学生去探究,发现结论的方法。正如先生所说:"教是为了不教"。这样方能培养出创造性人材,这正是实施创新教育的关键,鉴于教材内容特性是探索平移特征,性质,便于进行生成性学习,故选用探究式教学主动学习的教学策略与方法以及动手实践,自主探索,合作交流的。重要学习方式。引导学生根据现实生活的经历和体验及收集到的信息(感性材料)来理解理论知识。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践,学以致用,落实教学目标。
另外,我还运用多媒体投影为师生的交流和讨论提供了平台。
三,教学过程分析
课堂结构(一)创景引趣(二)探究归纳(三)反馈练习(四)实际运用(五)感情点滴(六)布置作业六个部分。
(一)创景引趣
导语:同学们,你们小时候去过游乐园吗在游乐园中你们玩过哪些游乐项目在玩这些游乐项目时你们想过什么你们想过它里面蕴含着数学知识吗现在,我就展示几幅画面,让大家在重温美好童年生活的同时,找一找这些项目中,哪些项目的运动形式是一样的(课件展示),观看游乐园内的一些项目,如:旋转木马,荡秋千,小火车,滑梯……,引出第三章内容,并进行初步分类,引出本节课研究内容:生活中的平移。)
(二)探究归纳
在引入的基础上,探索新知,(课件展示活动2),观看几个运动的图片,如:手扶电梯上的人,缆车沿索道缓缓上山或下山,传送带上的商品,大厦里的电梯,辘轳上的水桶。(小组讨论)以上几种运动现象有什么共同特点鼓励学生敢于在小组,班上交流自己的见解和探索的规律,培养学生自主探索,合作交流等良好的学习习惯。在自主探究合作交流中学生的自豪感和成功感得到升华,也增强了学习数学的自信心和创新能力。通过观察生活实例,让学生对平移运动形成直观上的初步认识。同时,通过两个问题的提出,帮助学生理解平移运动不会改变物体的大小,形状以及在平移过程中,物体上的每个部位都沿相同方向移动了相同的距离。通过课件演示以及让学生亲自参与,既使学生理解了平移运动的两大要素是方向和距离,也增强了学生的动手能力。借助于课件动态演示,有力启发学生,培养学生兴趣,使学生思维逐步展开,从而突破了学生学习的难点。为达到本课教学目的奠定了坚实的基础。课件将图形的平移运动分解为点,线,面的平移运动,利用不同颜色区分让学生能清晰而准确地找出对应点,对应线段及对应角,把平移的性质设计成了四个问题,深刻理解平移的性质,并能全面地对平移的性质进行概括。使重点突出,难点突破。
(三)反馈练习
学生对所学知识是否掌握了呢为了检测学生对本课教学目标的达成情况,进一步加强知识的应用训练,我设计了三组题目。第一组题走进知识平台;第二组题跨入知识阶梯;第三组题攀登知识高峰。由易到难,由简单到复杂,满足不同层次学生需求,针对解答情况,采取措施及时弥补和调整。
(四)实际运用
为了活跃课堂气氛,增强知识的趣味性和综合性,让学生举生活中平移实例。由学生在格纸上平移图形和动手在电脑上再现平移过程,再次激起学生的探究欲望。通过走进生活的图片欣赏引出下一节内容,并进一步使学生认识:数学源于生活,并运用于生活。这就将枯燥的数学问题赋予有趣的实际背景使内容更符合学生的特点,既激发了学生兴趣,又轻松愉悦地应用了本节课所学知识。使解决数学问题不再是一种负担,而是一种享受,激发学生学习数学的潜能,让学生亲身经历将实际问题抽象成数学模型并进行包括解释与应用的过程,体验数学来源于生活又服务于生活。
(五)感情点滴
可以从知识获得途径,结论,应用,数学思想方法等几个方面展开,在教师引导下由学生自主归纳完成。如"我发现了什么……我学会了什么……我能解决什么……"等,这样有利于强化学生对知识的理解和记忆,提高分析和小结能力。
(六)布置作业,结合学生实际水平,准备布置两部分作业,一部分是必作题体现新课标下落实"学有价值的数学",达到"人人都能获得必需数学",另一部分是选做题让"不同的人在数学上得到不同的发展"。
四,设计说明
本节课以观看游乐园内的一些项目创设了在学生已有的知识经验基础上的情境,引出第三章内容,激起学生的求知欲,再以学生熟悉的几个事例引出本节课研究内容:生活中的平移。由学生分小组讨论,教师通过课件演示,学生在观察,探索的基础上归纳出平移的定义,特征,性质。这既给学生提供了一个充分从事数学活动的机会,又体现了学生是数学学习的主人的理念。学生亲身经历了知识的形成过程,不但改变了以往学生死记硬背的学习方式,而且在教学活动中培养了学生自主探索,合作交流等良好的学习习惯。然后利用一组练习题由易到难加以巩固,最后由学生在格纸上平移图形和动手在电脑上再现平移过程,再次激起学生的探究欲望。通过走进生活的图片欣赏引出下一节内容,并进一步使学生认识:数学源于生活,并运用于生活。这是整节课的一条暗线,真正体现新课标的理念。本课的教学过程设计为:情境——问题——探究——反思(归纳)——提高,这充分体现了新课程理念数学课堂教学方式的根本转变。
以上是我对这节课的教学设想,恳请各位专家批评指正。
各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:
(一)本节内容在教材中的地位和作用
本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。
(二)说教学目标
基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:
知识技能:
1、理解直线y=kx+b与y=kx之间的位置关系;
2、会利用两个合适的点画出一次函数的图象;
3、掌握一次函数的性质。
数学思考:
1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;
2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。
情感态度:
1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;
2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
(三)说教学重点难点
教学重点:一次函数的图象和性质。
教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。
1、教学方法
依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:
1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导
做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。
1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。
2、指导学生观察图象,分析材料。培养观察总结能力。
(一)、创设情境,导入新课
活动1:观察:
展示学生作图作品(书p28例2),强调列表及图象上的点的对应关系。
课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。
目的有四:
1、根据学生的年龄特征:都具有强烈的表现自我的心理。大部分学生盼望在课上教师能展示自己的作品,这样将最大限度地调动学生的学习积极性,其作图会比平时更规范更准确;也可以说完成了变教师课上被动讲为学生课外主动学习的过程,这样以来学生的所获更多,印象更深;
2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。
3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。
4、令教师对学生有了更深层次的了解,能更好地把握课堂。
(二)尝试探索、体验新知:
活动1、观察探索:
比较两个函数图象的相同点与不同点?
第一步;根据你的观察结果回答问题。(书中原问题1、2、3)
目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。
第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现“直线y=--6x+5与坐标轴交点”并思考:一次函数y=--6x+5又如何作出图象?
目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。
活动2:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。
目的:进一步巩固两点作图法,为探究一次函数的性质作准备。
活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)
目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。
活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)
目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。
(三)课堂小结
引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。
目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。
(四)作业布置
加强“教、学”反思,进一步提高“教与学”效果。
采用了如下板书,要点突出,简明清晰。
一次函数
正比例函数图像的画法:确定两点为(0,0)和(1,k)一次函数选择的两点为:(0,k)和(-bk,0)
实践证明,在教学中,充分利用教学方法的优势,为学生创造一个好的学习氛围,来引导学生发现问题、分析问题从而解决问题。多媒体课件支撑着整个教学过程,令学生在一个生动有趣的课堂上,能愉快地接受知识
高尔基说:“好奇是了解的开端和引向认识的途径。”为此,我设计了两个小实验引入新课,让学生从身边的实例入手可以感受到科学就在身边。
1、要让静止的书(文具盒)运动,该怎么办?
2、停止用力,又会如何呢?(学生实验后上台演示)
误导学生:物理受力就会运动,不受力就停止。
得出谬论:物体运动要靠力维持。
教师实验演示:推一辆小车,撤去推力,小车没有立即停下。
得出结论:物体运动不需要力维持。
观察学生表情,出示亚里士多德和伽利略的两种截然不同的观点,激发
学生探究的兴趣,活跃课堂气氛。这样的实验学生既熟悉又好奇,带着想知道这是为什么的悬念进入新课,可以调动学生的探索兴趣。
第二环节:感受活动,总结观点(约3分钟)
让学生用力推书,圆珠笔,铅笔盒,小车,书包等,然后撤去推力,物体会慢慢停下来。让学生体会物体运动不需要力维持,运动的物体停下来是由于受到阻力的缘故。本环节的设计意图是让学生通过自身感受体验,观察现象,并提出自己的论点,培养分析问题的能力和表达能力。
第三环节:合作交流,实验探究(约20分钟)
本环节设计三个步骤:
第一步:用Flash展示实验,用严格的推理方法让学生感受伽利略观点是正确的。通过回顾历史培养学生严谨的科学态度,通过形象的Flash演示,使学生对伽利略理想实验有一个初步的了解,为接下去的分组实验探究做一个铺垫。
第二步:学生分组探究阻力对物体运动的影响。
教师出示以下问题,让学生结合问题学习教材,小组自选器材完成实验。
1、我们实验目的是什么?实验中观察什么?
2、几种不同的物体铺在木板上,作用是什么?
3、实验中怎样保证小车开始时的速度相同?
4、实验中,如果我们把表面换成更光滑的玻璃,小车的运动情况会有什么变化吗?
5、如果表面比玻璃更光滑呢?
6、如果表面绝对光滑,小车会怎样运动?
7、如果静止的物体不受力,会怎样?
通过这些难度不同的问题引导,让学生相互讨论,交流,自主制定方案,完成实验,不仅使他们印象深刻,还培养他们的实验探究能力。同时让学生知道观察和实验是学习物理的基础,对于不确定的观点应该通过实验来验证。
第三步:用Flash再次展示伽利略的理想实验,对学生的实验过程进行肯定和总结。
教师强调以下几点:
1、亚里士多德的观点“运动要靠力来维持”是错误的,伽利略的观点“运动不需要力来维持”是正确的。运动的物体之所以会渐渐停下来是受到了阻力的作用,所以说,力改变了物体运动状态,而不是维持物体的运动状态。
2、理想实验是建立在实验的基础上的合力推理,不是凭空想象。伽利略正是有敢于坚持真理,不迷信权威和对科学的执着精神,才完成了自己的理想实验,推翻了亚里士多德的长达2000年的错误理论,为后来笛卡尔等科学家的研究奠定了基础。
通过演示和总结,对前面提出的观点进行判断,为学生确立正确的观点。结合伽利略的实验进行思想教育,培养学生坚持真理、勇于探究的科学精神。
第四环节:科学推理,得出新知(约5分钟)
学生通过实验和观察动画能够得出:如果表面绝对光滑,运动物体受到的阻力为零,物体将以恒定不变的速度运动下去。
提问:运动的物体不受阻力时将永远运动下去,那静止的物体不受阻力时会怎样呢?
学生通过讨论能够得出:静止物体在不受力时,将保持静止状态。
教师讲解:为解决力与运动的关系,牛顿在伽利略、笛卡尔等前辈的研究基础上,提出牛顿第一定律:
引导学生得出:我们在科学正确的实验基础上,进行合理的推理,最终得出可信的结论,即一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态,这就是牛顿第一定律。同时教给学生一种实验+推理的研究方法。教师再通过展示图片使学生了解任何科学的发展都需要一个漫长的'过程,而学生通过实验得出的观点和探究过程与伟大科学家是一致的,从而获得了成就感,增强了探究的自信心,为终身学习打下基础。
第五环节:剖析定律,强化理解(3分钟)
如何把牛顿第一定律理解透彻,一直是很多学生学习的大难题,通过对这以下三个问题的思考,可以很好的突破本节难点。
1、牛顿第一定律的适用范围是什么?
2、牛顿第一定律的适用条件有哪些?
3、力和运动是什么关系?
解释牛顿第一定律时主要强调“一切”、“不受外力”、“总保持”的含义,并强调牛顿第一定律的理想性。这样,使学生加深了对牛顿第一定律的理解,并能准确的表述出牛顿第一定律。
用视频冰球比赛展示牛顿第一定律的理想性,强调现实生活中不存在。并阐述实验推理法的应用。
第六环节:应用迁移,巩固提高(5分钟)
1、回归课本
分析课本开头三幅图片,分析运动的物体为什么会停下来?
2、情景讨论
在体育上,我班同学都参加了哪些项目?现在请大家思考,假如你正在和同学赛跑时,突然,所有的力都消失了,会出现什么情形呢?
3、牛顿第一定律告诉我们,物体不受力时都有保持静止或匀速运动不变的性质。我们周围的物体都受到力的作用,是否也有这种性质呢?你能举个例子说明吗?
本环节通过理论联系实际使知识得到升华,通过练习,可以让学生更深刻地理解和掌握牛顿第一定律,第3题为下一节的惯性学习做好铺垫。
第七环节:课堂总结,布置作业(约4分钟)
让学生谈谈本节课的收获和困惑。用5分钟的时间对本节课的知识点进行回顾、梳理,这样既可以加深学生对所学知识的理解又可以在学生的头脑中建立一个知识点的整体印象。
布置作业:
1、书面作业::
(1)2008年奥运会即将在北京开幕,我国运动员将奋力拼搏,为国争光在下列比赛项目中,有关运动和力的说法中不正确的是( )
A 头球攻门,说明力可以改变物体的运动状态;
B用力拉弓,说明力可以改变物体的形状;
C用力向后划水,皮艇才能前进,说明物体间力的作用是相互的;
D百米赛跑时,很难停下,是因为运动员的惯性消失了。
(2)用下图所示的实验装置研究运动和力的关系。
(1)每次都让小车从同一个斜面的( )位
置由静止开始滑下 ,是为了使小车在滑到斜面底 端时具有相同的速度。
(2)比较图中小车在不同表面滑行的最大距离,可以得出:在初速度相同的条件下,水平面越光滑,小车受到的摩擦力越( ),小车运动的越( )。
(3)在此实验的基础上进行合理的推理,可以得到:运动物体不受外力时,它将( )。
(4)由此,我们可以得出,力的作用不是维持物体运动状状态,而是( )
物体的运动状态。
2、实践作业:
(1)上网查寻亚里士多德、伽利略、牛顿的相关资料,了解他们在物理学方面作出的贡献。
(2)以“假如力消失了,我们的生活会怎样?”为题,写一篇小论文。
本环节的设计意图有两个:通过书面作业,加深对所学内容的巩固。学生通过上网查资料进一步理解牛顿第一定律的含义;小论文的写作,需要学生深入生活,体验生活,同时通过实践作业的完成可以形成对知识的复习回顾。
四、板书设计
为了突出重点,形成完整的知识体系,我设计的板书如下:
第五节 牛顿第一定律
五、课堂反思
本节课的设计从学生的认知规律出发,力求教给学生探求知识的方法,教会学生获取知识的本领,通过“牛顿第一定律”的学习让学生经历主动参与,积极探求,创造性的发现物理知识的过程,力求让学生全身心的投入学习活动之中。
六、结束语
以上是我对“牛顿第一定律”第一课时教材的认识和理解,由于本人水平有限,上面过程肯定有许多缺点和漏洞,希望各位评委和老师们多多批评指正,谢谢!
一、说教材
(一)教材的地位和作用
今天我说课的内容是北师大版数学八年级上册第三章图形的平移与旋转的第一节《生活中的平移》。学生在前面已学习了轴对称及轴对称图形,在此基础上还将学习生活中的旋转与旋转设计图案等内容。同轴对称一样,平移也是现实生活中广泛存在的现象,是现实世界运动变化的最简捷的形式之一,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。为综合运用几种变换(平移,旋转,轴对称,相似等)进行图案设计打下基础。《生活中的平移》对图形变换的学习具有承上启下的作用。
(二)教学目标
根据上述教材分析,以及新课程标准,考虑到学生已有的认知结构、心理特征,制定如下教学目标
知识目标:
通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。
能力目标:
通过探究归纳平移的定义,特征,性质,积累数学活动经验,提高学生的科学思维能力。
情感目标:
经历观察,分析,操作,欣赏以及抽象,概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。
(三)教学重点与难点
平移是现实生活中广泛存在的现象,它不仅是探索图形变换的一些性质的必要手段,而且也是解决现实世界中的具体问题以及进行数学交流的重要工具。探索平移的基本性质,认识平移在现实生活中的广泛应用是学习本节内容的重点。
平移特征的获得过程,教科书中仅用了一段文字,很少的篇幅,对于这个特征,不是要学生死记硬背,而是要学生具备一定的探究归纳能力,对八年级的学生来说,有一定的难度,因此本课的难点是平移特征的探索及理解。
上面是对教材的地位与作用、教学目标以及教学重难点的分析,接下来我将说说学情:
二、说学情
1.学生已经学习学习了轴对称及轴对称图形,对图形的变换已经有了了解,有了一定的学习基础。
2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习。
下面为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:
三、说教法与学法
基于教材特点与学生情况的分析,为有效开发各层次学生的潜在智能,制定教法、学法如下:
1.遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、类比、归纳、学习。
2.借用多媒体课件与实物辅助教学,力求使每个学生都能在原有的基础上得到发展,既满足了学生对新知识的强烈探索欲望,又排除学生许学习几何方法的缺乏,和学无所用的顾虑,让他们在学习过程中获得愉快与进步。
四、说教学过程
课堂结构:(一)创景引趣 (二)探究归纳 (三)反馈练习 (四)实际运用 (五)感情点滴 (六)布置作业六个部分。
(一)创景引趣
课开始,我先由学生很熟悉的生活经历引入,让学生在轻松,愉快的心情下开始学习。如问同学们,你们小时候去过游乐园吗,在游乐园中你们玩过哪些游乐项目,在玩这些游乐项目时你们想过什么,你们想过它里面蕴含着数学知识吗?现在,我就展示几幅画面,让大家在重温美好童年生活的同时,找一找这些项目中,哪些项目的运动形式是一样的 (课件展示),观看游乐园内的一些项目,如:旋转木马、荡秋千、小火车、滑梯等等,引导学生发现这些项目有什么特征,从而引出本节课研究内容:生活中的平移。
(二)探究归纳
在引入的基础上,探索新知,出示课件观看几个运动的图片,如:手扶电梯上的人,缆车沿索道缓缓上山或下山,传送带上的商品,大厦里的电梯,辘轳上的水桶。
分小组讨论以上几种运动现象有什么共同特点,鼓励学生敢于在小组,班上交流自己的见解和探索的规律,培养学生自主探索,合作交流等良好的学习习惯。在自主探究合作交流中学生的自豪感和成功感得到升华,也增强了学习数学的自信心和创新能力。通过观察生活实例,让学生对平移运动形成直观上的初步认识。同时,通过两个问题的提出,帮助学生理解平移运动不会改变物体的大小,形状以及在平移过程中,物体上的每个部位都沿相同方向移动了相同的距离。通过课件演示以及让学生亲自参与,既使学生理解了平移运动的两大要素是方向和距离,也增强了学生的动手能力。借助于课件动态演示,有力启发学生,培养学生兴趣,使学生思维逐步展开,从而突破了学生学习的难点。为达到本课教学目的奠定了坚实的基础。课件将图形的平移运动分解为点,线,面的平移运动,利用不同颜色区分让学生能清晰而准确地找出对应点,对应线段及对应角, 把平移的性质设计成了四个问题,深刻理解平移的性质,并能全面地对平移的性质进行概括。使重点突出,难点突破。
(三)反馈练习
学生对所学知识是否掌握了呢 为了检测学生对本课教学目标的达成情况,进一步加强知识的应用训练,我设计了三组题目。第一组题走进知识平台;第二组题跨入知识阶梯;第三组题攀登知识高峰。由易到难,由简单到复杂,满足不同层次学生需求,针对解答情况,采取措施及时弥补和调整。
(四)知识拓展
为了活跃课堂气氛,增强知识的趣味性和综合性,让学生举生活中平移实例。由学生在格纸上平移图形和动手在电脑上再现平移过程,再次激起学生的探究欲望。通过走进生活的图片欣赏引出下一节内容,并进一步使学生认识:数学源于生活,并运用于生活。这就将枯燥的数学问题赋予有趣的实际背景使内容更符合学生的'特点,既激发了学生兴趣,又轻松愉悦地应用了本节课所学知识。使解决数学问题不再是一种负担,而是一种享受,激发学生学习数学的潜能,让学生亲身经历将实际问题抽象成数学模型并进行包括解释与应用的过程,体验数学来源于生活又服务于生活。
(五)及时总结
可以从知识获得途径,结论,应用,数学思想方法等几个方面展开,在教师引导下由学生自主归纳完成。如“我发现了什么……我学会了什么……我能解决什么……”等,这样有利于强化学生对知识的理解和记忆,提高分析和小结能力。
(六)布置作业
结合学生实际水平,准备布置两部分作业,一部分是必作题体现新课标下落实“学有价值的数学”,达到“人人都能获得必需数学”,另一部分是选做题让“不同的人在数学上得到不同的发展”。
五、说板书设计
本节课我将采用重点式的板书。重点式的板书将教材内容中最关键的知识加以概括、归纳,列成条文,按一定顺序板书,这种板书,条理清楚,重点一目了然。