圆柱体体积教学设计5篇

圆柱的表面积指圆柱的底面积与侧面积之和。设圆柱的底面半径为r,底面周长为C,圆柱高为h,则:这次漂亮的小编为您带来了圆柱体体积教学设计5篇,在大家参照的同时,也可以分享一下给您最好的朋友。

圆柱体体积教学设计 篇1

教学目标

1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。

2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。

3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

掌握和运用圆柱体积计算公式进行正确计算。

教学难点:

理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

教学过程:

一、情景导入:

1、教师:(出示课件)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?

学生:

1.比平日多了两个蛋糕。

2.两个蛋糕一个大一个小。

3.蛋糕都是圆柱形的。

2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?

学生:蛋糕大,意味着圆柱的体积大。

3、教师:那你还知道什么是圆柱的体积吗?

学生:圆柱的体积就是圆柱体占空间的大小。

4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?

学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。

教师:板书:圆柱的体积

二、课上探究

1、教师:同学们回忆一下我们还学过那些立体图形?

学生:还学过正方体和长方体。

教师:它们的体积怎样计算?(多媒体课件出示长方体)有什么共同点?

学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。

2、猜测圆柱的体积与什么有关

师:拿出圆柱体,让学生猜想圆柱体积与什么有关。

生1.圆柱的体积与圆柱的高有关。

生2.圆柱的体积与圆柱的底面积有关。

生3.圆柱的体积与圆柱的底面周长有关。

生4.圆柱的体积与圆柱的底面半径有关。

3、推导圆柱体积公式

①师:同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?

生:把圆转化成近似长方形来求面积的。

②师:我们一起来回忆把圆转化成近似长方形的过程,(课件)

师:你发现了什么?

生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。

③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的'每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?

生:把圆柱转化成近似的长方体。

④师用圆柱体演示转换过程,让学生说怎样转换的。

生:把圆柱平均分成16份拼成一个近似的长方体。

⑤师:为了让大家看的更清楚,我们再演示一下这个转化过程。

课件再次演示把圆柱等分16等份,拼成近似的长方体。

再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?

生:分成的份数越多,拼成的图形越接近长方体。

⑥师:课件出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?

学生分组讨论,汇报:

生:长方体的高和圆柱的高相等。

生:长方体的底面积和圆柱的底面积相等。

⑦师:你是怎么想的?

生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。

⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。

生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径

师:课件演示长方体的体积=底面积×高

⑨师:那么圆柱的体积等于什么呢?

生:圆柱的体积=底面积×高

⑩下面我们再一起回忆一下转化的过程,(课件)

让学生独立填答案,汇报:

三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。

四、学生谈收获。

小学六年级数学教案《圆柱的体积》 篇2

教学内容:

人教版小学数学六年级下册《圆柱的体积》P25-26。

教学目标:

1.经历探究和推导圆柱的体积公式的过程。

2.知道并能记住圆柱的体积公式,并能运用公式进行计算。

3.在自主探究圆柱的体积公式的过程中,体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。发展学生的观察能力和分析、综合、归纳推理能力。

4.激发学生的学习兴趣,让学生体验成功的快乐。

5.培养学生的转化思想,渗透辩证法和极限的思想。

教学重点:

掌握和运用圆柱体积计算公式

教学难点:

圆柱体积公式的推导过程

教具学具准备

教学课件、圆柱体。

教学过程:

一、复习导入

1.同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

2.回忆一下圆面积的计算公式是如何推导出来的?

(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分割,无限分割就变成了一个长方形。长方形的长相当于圆周长的一半,可以用πR表示,长方形的宽就当于圆的半径,用R表示。所以用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式是S=πR。

3.课件出示一个圆柱体

我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?

二、探索体验

1.学生猜想可以把圆柱转化成什么图形?

2.课件演示:把圆柱体转化成长方体

①是怎样拼成的?

②观察是不是标准的长方体?

③演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。

3.借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。

课件出示要求:

①拼成的长方体与原来的圆柱体比较什么变了?什么没变?

②推导出圆柱体的体积公式。

学生结合老师提出的问题自己试着推导。

4.交流展示

小组讨论,交流汇报。

生汇报师结合讲解板书。

圆柱体积=底面积×高

‖‖‖

长方体体积=底面积×高

用字母公式怎样表示呢?v、s、h各表示什么?

5.知道哪些条件可以求出圆柱的体积?

6.计算下面圆柱的体积。

①底面积24平方厘米,高12厘米

②底面半径2厘米,高5厘米

③直径10厘米,高4厘米

④周长18.84厘米,高12厘米

三、课堂检测

1.判断

①圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。()

②圆柱的底面积扩大3倍,体积也扩大3倍。()

③一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。()

④圆柱体的底面直径和高可以相等。()

⑤两个圆柱体的底面积相等,体积也一定相等。()

⑥一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。()

2.联系生活实际解决实际问题。

下面的这个杯子能不能装下这袋奶?

(杯子的数据从里面量得到直径8cm,高10cm;牛奶498ml)

学生独立思考回答后自己做在练习本上。

3.一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?

4.生活中的数学

一个用塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。

①覆盖在这个大棚上的塑料薄膜约有多少平方米?

②大棚内的空间大约有多大?

独立思考后小组讨论,两生板演。

四、全课总结

这节课你有什么收获?

五、课后延伸

如果要测量圆柱形柱子的体积,测量哪些数据比较方便?试一试吧?

六、板书设计

圆柱体积=底面积×高

长方体体积=底面积×高

《圆柱的体积》的教学设计 篇3

教学目标:

1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历类比猜想――验证的探索圆柱体积的计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。

教学重、难点:掌握圆柱体积公式的推导过程。

教学流程:

一、复习引入

1、什么是体积?

2、怎样计算长方体和正方体的体积?

3、引入:这学期我们新学了两个立体图形,分别是?大家想不想知道圆柱的体积怎样计算?这就是我们今天这节课要研究的问题。

二、活动导学、精讲点拨

1、观察比较,建立猜想

引导学生观察例4的三个立体图形,提问:

⑴ 三个立体图形的底面积和高都相等,它们的体积有什么关系?

⑵ 长方体和正方体的体积一定相等吗?为什么?

⑶ 猜一猜,圆柱的体积与长方体和正方体的体积相等吗?

2、实验操作

(1)谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,那你能否再大胆猜一下,圆柱的体积计算公式会是什么呢?指名说。(等于底面积乘高)。

大家都认为圆柱的体积=底面积×高,老师先写下来,这个公式对不对呢?(打上问号)这只是我们的猜想,我们还需要验证。那用什么办法验证呢?请独立思考。

(手拿着圆柱,指着底面)老师提示一下:想一想圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成已经学过的立体图形呢?

(2)出示底面被分成16等份的圆柱,谈话:老师这里有一个圆柱,底面被平均分成了16份,你能想办法把这个圆柱转化成已经学过的立体图形吗?

(3)指名两位同学上台操作教具,让学生观察。

师:大家看,圆柱的底面被拼成了什么图形?(长方形);再看整个圆柱,它又被拼成了什么形状?(长方体)也就是说,把圆柱的底面平均分成16份,切开后能拼成一个近似的长方体。

(4)引导想像:如果把底面平均分的份数越来越多,结果会怎么样?(闭上眼睛,在头脑里想象。)

演示一组动画(将圆柱底面等分成32份、64等份……)课件演示。问:和你的想象一样吗?使学生清楚地认识到:拼成的立体图形会越来越接近长方体。

3、观察比较,推导公式

(1)提问:拼成的长方体与原来的圆柱有什么关系?出示讨论题。

a、拼成的长方体的底面积与原来圆柱的底面积有什么关系?

b、拼成的长方体的高与原来圆柱的高有什么关系?

c、拼成的长方体的体积与原来圆柱的体积有什么关系?

指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

(2)想一想:怎样求圆柱的体积?为什么?

根据学生的回答小结并板书圆柱的体积公式:

圆柱的体积=底面积×高

(3)如果用v表示圆柱的体积,s表示圆柱的底面积,h表示圆柱的高,那么,圆柱的体积计算公式你能写出来吗?试试看。

指名同学到黑板板书:v=sh

我们发现圆柱拼成长方体后体积,底面积,高没有变,那什么变了呢?

指名回答。(形状变了;表面积变大)

4、回顾反思

回顾圆柱体积公式的探索过程,你有什么体会?

三、练习运用、迁移创新

1、做练习三第1题。

让学生口头列式并完成填表。问:要求体积必须知道底面积和高吗?

2、教学“试一试”。

⑴让学生列式解答后交流算法。

⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

(s和h,r和h,d和h,c和h)

3、做“练一练”第1题。

⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

⑵各自练习,并指名板演。

⑶对照板演,说说计算过程。

4、做“练一练”第2题。

已知底面周长和高,该怎么求它的体积呢?引导学生先根据底面周长求出底面积。

5、做练习三第2题。

学生读题后,提问:计算电饭煲的容积,为什么要从里面量尺寸?

6、拓展题

把一个高是20厘米的圆柱切拼成一个近似的长方体,表面积比原来增加了200平方厘米,圆柱的体积是多少立方厘米?

四、课堂小结

这节课我们学习了什么?有哪些收获?还有什么疑问?

《圆柱的体积》的教学设计 篇4

一、教学对象及学习内容特点分析:

圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式V=Sh的延续。

二、教学目的:

学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。

学生能应用圆柱体积公式进行圆柱体积的计算。

学生能利用知识之间相互"转化"的思想探索解决新的问题。

三、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。

四、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。

五、教学过程的设想和点评

教师的教学行为学生的学习行为点评

第一阶段:创设情景,设疑引趣。

教师故事引入:圆柱形状的"转笔刀"和"浆糊笔"迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,"转笔刀"很自信地说:"看我这么胖,肯定是我的体积大!""浆糊笔"很不服气地说:"我比你高多了,一定是我的体积大!"就这样你一言我一语,争论了很久还没个结果。

提问:小组讨论寻找解决这两个圆柱体积大小的方法。

1、学生小组讨论解决的方法。

2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。

通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。

第二阶段: 自主探究。概括规律

1、电脑提供学生探索资源:

(1)平面图形(长方形、正方形、平行四边形、三角形、梯形、圆形)面积公式和立体图形(长方体、正方体)体积公式的导出过程。

(2)把圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个近似的长方体。

2、学生反馈自学内容,师生共同导出圆柱的体积公式V=Sh1、学生打开电脑"自能学习"中的"寻方法",有选择地看学过的平面图形的面积公式和立体图形体积公式的导出过程,从中找到推导圆柱体积公式的方法

2、学生通过观察圆柱公式的推导过程。

3、小组讨论填写实验报告

4、师生导出圆柱的体积公式后,学生自学课本例题,并完成例4内容。通过利用资源、自能学习,让全体学生都能动脑、动口、动手参与到学习中去,使学生学会学习、学会协作,所学知识的理解更为深刻、透彻。在自学的过程中教师通过监控密切观察着学生的学习情况,发现问题及时解决。

圆柱体积公式的推导过程,学生会有不同的方法,如用课本的方法或用类比的方法,教师应给予恰当的评价。

第三阶段:拓展公式,自能训练。

1、公式拓展。

在日常生活中,圆柱的底面积通常没有直接给出,那么我们通过什么条件也能求出圆柱的底面积呢?

2、教师小结:无论已知圆柱的底面半径、直径还是底面周长,我们都必须根据V=Sh,先求出圆柱的底面积,然后乘以高才能求出圆柱的体积。

3、质疑

1、学生可根据已学的"圆的面积"公式导出。

(当已知圆柱底面的半径时V=∏r2h、当已知直径时V=∏(d÷2)2h、当已知周长时,先求半径,再求底面积,然后求圆柱体积。

2、判断。并说明原因

(1) 一个圆柱体的底面积是8平方厘米,高是6厘米,这个圆柱体的体积是48立方厘米。

(2) 一个圆柱的底面积是10平方米,高是10米,它的体积是100平方米。

(3) 一个圆柱体铁罐,底面直径是2米,高是3米,求它的体积。 列式是:3.14×22×3

1、根据生活实际,当知道圆柱底面半径、直径或周长时,怎样求圆柱的体积这个问题,可以让学生充分拓展思维,不要停留在只会死记公式、生搬硬套的低层次上。并大力鼓励、表扬爱动脑筋的同学

2、通过练习,学生对基本知识有一定的理解,教师也了解了学生对知识的掌握情况。

第四阶段:反馈学习、应用提高。

1、提出练习要求:先做"巩固"练习,有余力的再做"提高"练习。

2、小结练习情况,及时表扬对而快的同学及小组

3、回应开头,解决"浆糊笔"和"转笔刀"争论的问题。学生在电脑上完成。

1、赛车游戏:看谁跑得快。

(1)圆柱的底面积是15平方米,高是3米,体积是( )立方米。

(2)已知圆柱的高是20厘米,底面积100平方厘米,圆柱的体积是( )平方厘米。

(3)一个圆柱形的粮囤,从里面量底面半径是2米,高是2.5米。这个粮囤能装稻谷( )立方米。

(4)一个圆柱的体积是80立方分米,底面积是16平方分米,它的高是( )分米。

2、提高练习。考你智慧:看谁攀得高。

(1)一个圆柱,它的底面直径4厘米,高是3米,体积是( )立方厘米。

(2)一个圆柱体铁架,它的底面周长是62.8分米,高是6分米,它的体积是( )立方分米。

在计算过程中,学生会遇到不少问题,可通过师生交流或小组互相帮助解决,从而实现互帮、互学共同提高。

六、归纳总结、自我评价

1、提出要求,学生谈收获。

2、总结本节情况。 谈收获,并作出自我评价。通过谈收获,体现学习的自主性,体验获得成功的乐趣。

七、对教学过程的设想和点评:

新课程标准注重小学生对周围世界与生俱来的探究兴趣和需要,在小学阶段,学生的知识积累与思维能力较为有限,强调用符合小学生年龄特点的方式学习,提倡课程贴近小学生的生活,这节课从学生身边学习用品"卷笔刀"和"浆糊笔"的入手,通过拟人的方式,由它们上学过程中引起的争论导出学习的内容,激发学生学习的积极性。这样在教学进程中安排好相关的情景组织学生参与其中,亲历过程,自主地开展活动,通过看、做、玩、想等方式,让学生既学会知识与技能,又培养智能、情感态度与价值观,促进学生科学素养的形成。

新课标还积极倡导让学生亲身经历以探究为主的学习活动,培养他们的好奇心和探究欲,使他们学会探究解决问题的策略,为他们终身的学习和生活打好基础。这是一节在网络环境下开展的探究型数学课,引入后,教师则大胆放手,营造了一个开放的探究空间,通过学生小组讨论寻找比较圆柱大小的方法,引导学生通过自主、合作探究这种学习方式进行实践活动,观察由圆柱转变成已学过长方体的过程,在观察中相互启发,共同提高,形成共识后并加以记录。再将大家的记录结果对比、讨论、从而得出结论:圆柱的体积=转变成的长方体的体积,从而导出圆柱的体积公式V=SH。在这一过程中,教师以学生的发展为本,关注每一位的发展,珍视每位学生的探究体验及独特见解,在学生探究结果的表述过程中,对同一个问题,不同的人可以得出不同的结论,他们通过互相交流互相讨论,思维更是得到发展与创新。不仅激发了每一位学生主动参与探究实践活动,更让学生在探究中学会合作、懂得思考、大胆发表自己的独特见解,更学会倾听、尊重他人的意见,从而实现互帮、互学共同提高,并在探究中发现、学习,激发学生学习的兴趣,培养了实践的能力。

网络环境下的教学方式不仅改变了以往教师满堂灌的现象,在拓宽学生知识面的同时,更培养了学生搜集信息、处理信息并进行合理解释的能力,大大地激发了学生自主学习的积极性,学生的创新意识日渐增强,真正实现了利用信息技术为教学内容服务。

圆柱体体积教学设计 篇5

教学目标

知识与能力

1.运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

4.借助实物演示,培养学生抽象、概括的思维能力。

过程与方法

1.通过观察、实验、讨论,学生理解所学知识。

2.通过新旧知识的转化贯通,学生对所学知识形成体系,领悟数学思想迁移的重要性。

3.在讲解例题与巩固练习中,学生掌握基本的解题方法。

情感、态度与价值观

1.使学生感觉到数学就在身边,激发其学习数学的兴趣。

2.通过实验操作及设问,培养其创造性思维和大胆的猜想。

教学重点

圆柱体体积的计算

教学难点

圆柱体体积的公式推导方法

教学突破

本节的内容是这单元的重点的内容,且与实际生活有着密切关系。在教学上对于圆柱体积的计算,首先应从圆的面积推导人手,可以借助一些教具演示及鼓励学生实验操作来明确。

教 具

圆柱的体积公式演示教具,多媒体课件

教学过程

一、情景引入

1、出示圆柱形水杯。

(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?

(2)你能用以前学过的方法计算出这些水的体积吗?

(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。

(4)说一说长方体体积的计算公式。

(5)在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

2,复习相关知识,为新课教学作铺垫。

(1)什么叫物体的体积?我们学过什么立体图形的体积计算?(学生自由回答)

(2)出示圆柱体物品,指名学生指出各部分名称。

二、新课教学

设疑揭题:

我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。

1.探究推导圆柱的体积计算公式。

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决上面三个问题:

① 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

② 拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

③ 圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)

讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:V=Sh)(设计意图:要用这个公式计算圆柱的体积必须知道什么条件?

填表:请同学看屏幕回答下面问题,

④ 底面积(㎡)高(m)圆柱体积(m3)

4 3

5 6

9 2

(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,)

例:一个圆柱形油桶,底面内直径是6分米,高是7分米。它的容积约是多少立方分米?(得数保留整立方分米)

解: d=6dm,h=7dm.r=3dm

S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)

V =S底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分

(设计意图:使学生注意解题格式,注意体积的。单位为三次方)

三、巩固反馈

1.求下面圆柱体的体积。(单位:厘米)

同学板演,其余同学在作业本上做。板演的同学讲解自己的解题方法题。

⑤ ,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?

四、拓展练习

1.一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(结果保留π)

2.一个底面直径是20cm的圆柱形容体里,放进一个不规则的铸铁零件后,容体里的水面升高4cm,求这铸铁零件的体积是多少?、

五、课堂小结

1.谈谈这节课你有哪些收获。

2.解题时需要注意那些方面。

六、布置作业

1.课后练习1,2题

2.拓展练习2题

板书设计

圆柱的体积

长方体的体积=底面积x高

圆柱——长方体 圆柱的体积=底面积x高

V=sh

一键复制全文保存为WORD