《三角形面积》的教学设计【优秀3篇】

作为一名优秀的人民教师,教学是重要的工作之一,写教学反思能总结我们的教学经验,那么你有了解过教学反思吗?这次漂亮的小编为您带来了《三角形面积》的教学设计【优秀3篇】,如果能帮助到您,小编的一切努力都是值得的。

五年级数学《三角形的面积》教案 篇1

教学目标

1.使学生理解什么叫做三角形,掌握三角形的特征和特性,能按角的不同给三角形分类.

2.通过引导学生自主探索、动手操作、培养初步的创新精神和实践能力

教学重点:

理解三角形的意义及其分类. 教学难点:掌握三角形的分类.

教具:

三根木条、三根钉子、四边形和五边形木框各一个,三角形图片、小棒、皮筋若干。

教学过程

一、创设情境,导入新课.

1.让学生说说生活中见到的三角形.

2.出示下图,指出哪些是三角形:

3.导入新课.

教师导入:

看来生活中的三角形无处不在.关于三角形你还想了解它什么?今天我们就一起来认识三角形.(板书课题:三角形)

二、师生互动,引导探索.

1.教学三角形的意义.

(1)每个小组利用教师事先为其准备的三根小棒,把小棒看成一条线段,利用这三条线段摆一个三角形。比一比,看哪一个小组做得最快!

(提供的小棒有一组摆不成的。) 教师:它们是三角形吗?

(2)思考讨论:

①三角形是几条线段围成的?

②什么样的图形叫三角形?

在讨论的基础上,引导学生概括:三角形是由三条线段围成的,由三条线段围成的图形叫做三角形.(教师板书)

(通过操作,进一步感知,建立空间观念。)

(3)练一练:图片中哪些是三角形?为什么?

2.教学三角形的特征:

(1)自学:

①三角形各部分名称叫什么?

②三角形有几条边、几个角、几个顶点?

(2)继续演示课件“三角形”出示三角形各部分名称.

教师提问:

什么叫三角形的边?三角形有几条边?

同桌讨论:这些三角形都有哪此共同的特征?

引导学生用一句话概括三角形的特征.

(3)让学生用准备好的木条、钉子每人做一个三角形,教师巡视指导。

3.三角形的特性

(1)出示自行车、屋檐、吊车等图片,为什么这些部位要用三角形?

(2)用三角形木框实验.

教师拿出手中的教具示范给孩子们看:拉动一下三角形与四边形,让学生看明白:三角形怎么拉也拉不动,四边形一拉就变形。这说明:三角形具有稳定性。三角形的稳定性在生活中广泛运用,引导学生把有关的数学应用到现实生活中。

4.三角形的分类

(1)让学生任意画一个三角形(或剪一个三角形)

(2)对三角形进行分类:

出示图形,组织学生观察并分组讨论:这些角有什么特点,可以分成几类?

教师引导学生明确:三个角都是锐角的三角形叫做锐角三角形;

有一个角是直角的三角形叫做直角三角形.

有一个角是钝角的三角形叫做钝角三角形.

(3)三角形按边进行分类.

全班同学共同测量课本137页上部的三角形.

教师提问:通过测量你发现这些三角形边、角各有什么特点?

引导学生得出:每个三角形的三条边长度都相等,每个三角形的三个角都相等.

教师指出并板书:三条边都相等的三角形叫做等边三角形,又叫做正三角形.等边三角形的三个角都相等.

引导学生比较等边三角形与等腰三角形,使学生明确:等边三角形是特殊等腰三角形.

三、游戏: 把磁力板上的三角形拿下全部放在一个盒子里,分别只露出三角形的一个角或两个角让学生猜各是什么三角形?

四、巩固练习

1.判断.

①由三条线段组成的图形叫做三角形.()

②三角形有三条边、三个角、三个顶点.()

③三角形具有稳定性.()

④直角三角形只有一个直角.()

2.实践题.

小红家的椅子用了很多年了,有点摇摇晃晃了.请同学们帮她想想办法,该如何修理?

五、教师小结

通过学习,你掌握或学会了什么?

六、布置作业

《三角形面积》说课稿 篇2

一、 说教材:

1、说课内容:

我说课的内容是人教版数学五年级上册第五单元《三角形的面积》。

2、教材的地位及作用:

三角形的面积计算是图形的面积(一)探索活动的第二课时,它是在学生掌握了长方形、正方形及平行四边形面积计算方法的基础上进行的。通过对这部分内容的教学,使学生理解并掌握三角形面积的计算方法,并解决实际生活中与三角形面积计算相关的实际问题;同时加深学生对三角形与长方形、平行四边形之间内在联系的认识,也为学生进一步探索并掌握其他平面图形的面积计算方法打下基础。

同时,三角形的面积推导过程蕴含着转化和迁移的数学思想,本课的学习,重在让学生经历学习的过程,在获得知识的同时,渗透初步的数学思想与方法,并培养科学的探究精神,进一步提高学生运用所学知识、技能解决一些实际问题的能力。本课内容编排的最大特点是加强了动手操作,让学生在动手实践中发现各种图形的内在联系,体会三角形面积计算的一般策略。让学生经历发现问题——探索问题——解决问题的过程,培养推理能力。这样的编排使学生理解三角形面积公式的来龙去脉,锻炼数学推理能力,从而感受数学方法的内在魅力。

3、教学目标:

(1)知识与能力目标:让学生通过平移、旋转等方法,探索并掌握三角形的面积计算公式,能正确运用面积公式进行三角形面积计算,加深学生对三角形与平行四边形面积公式之间内在联系的认识。

(2)过程与方法目标:使学生经历小组合作、动手操作、交流讨论、分析归纳等数学活动过程,体会转化的数学思想,发展空间观念和初步的推理能力。

(3)情感态度与价值观目标:培养学生的团结协作意识和勇于探索的精神,使学生在学习数学的过程中,体验到成功的乐趣。

4、 教学重难点:

(1)重点:掌握三角形面积的计算公式,能利用公式解决生活中有关三角形面积计算的实际问题。

(2)难点:理解三角形面积计算公式的推导过程,灌输迁移的数学方法和转化的数学思想。

(3)关键:引导学生理解三角形面积计算公式中除以2的意义。

5、教具、学具准备:

教师准备课件,学生以小组为单位准备完全相同的锐角、直角、钝角三角形各两个。

二、说教法与学法。

本节课,我根据五年级学生的知识面较广,学习自觉性较强的特点,采用尝试教学法、实验法、练习法等教学方法进行教学。让学生带着教师提出的问题在旧知识的基础上,通过自学课本,利用学具独立作业,互相讨论和巩固练习,去尝试解决问题,教师再根据学生尝试练习中的难点和教材的重点加以讲解和点拔,充分发挥学生的主体作用和教师的主导作用,有利于培养学生的探索精神和操作能力。教学时,我按导入新课、揭示课题、推导公式、实际应用、巩固练习、课堂总结这六个环节进行。

三、说教学过程。

1、旧知引入,激发思考:

在这一环节中,我先让学生回忆了长方形、正方形、平行四边形的面积计算公式。再出示一条三角形红领巾,提问你们会计算三角形的面积吗?(学生大部分会说出三角形的面积=底×高÷2),这时老师反问:为什么底×高÷2就能得到三角形的面积呢?那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)

2、回忆旧知,引导迁移:

回忆平行四边形的面积计算公式推导过程,提问:我们能不能像推导平行四边形面积公式一样,将三角形转化成我们以前学过的图形呢?(这一部分的设计在联系旧知的基础上学习新知,将平行四边形面积的推导方法迁移到三角形面积计算公式的推导,向学生灌输迁移的数学方法和转化的数学思想,为三角形面积计算公式的推导作好辅垫。)

3、小组合作,动手操作:

(1)以小组为单位,利用学具进行动手操作。看看三角形能转化成以前学过的什么图形?

(2)小组汇报:学生汇报的结果可能有长方形、正方形、平行四边形或一个更大的三角形,这时,教师作引导:三角形的面积暂时还不会计算,拼成长方形或正方形也是比较特殊的情况,而两个完全相同的直角三角形、锐角三角形和钝角三角形都可以拼成一个平行四边形,从而将三角形面积的计算公式的推导引导到平行四边形上来。(把学生拼出的图形一一摆在黑板上)

4、学生汇报,归纳总结:首先,小组交流讨论:拼成的平行四边形的底与原来三角形的底有什么关系?拼成的平行四边形的高与原来三角形的高有什么关系?其中一个三角形的面积与拼成的平行四边形的面积有什么关系?然后每个小组派代表发言,说说平行四边形与三角形的关系:拼成的平行四边形的底与原来三角形的底相等,高与原来的三角形的高相等,其中一个三角形的面积是拼成的平行四边形面积的一半。

师生一起归纳总结推导过程,得出各种推导的结论,结论一:两个完全相同的三角形可以拼成一个平行四边形,这个平行四边形的底就是原来三角形的底,高就是原来三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以,三角形的面积=底×高÷2。结论二:在高的一半的地方剪开,上半部分旋转一下,变成一个平行四边形,平行四边形的底就是三角形的底,它的高是三角形的高的一半,平行四边形的面积就是三角形的面积,三角形的面积=平行四边形的面积=底×高的一半,所以三角形的面积S=ah÷2。

例题的教学,是本课的重点。书上的例题,我着重让学生通过分组探究的方式去学习,在交流中把应掌握的知识有层次地一一呈现。这些知识是本节课的关键。估计到学生在操作的时候,有可能会出现只用一个三角形拼平行四边形的方法,这种方法与例题方法以及与“你知道吗?”的对比,可以从多角度来强化“÷2”的理由,我觉得花一些时间还是有必要的。而且这样的做法,也是基于学生的学习实际和对传统的数学文化了解。

5、简单应用,突出重点:

(1)验证结论:用公式计算法求出第一个环节中的三角形红领巾的面积。

(2)巩固练习:数学来源于生活,并应用于生活。

在学习了三角形面积计算公式后,我设计了一组练习,

(1)口算(熟练三角形面积计算公式)。

(2)判断(理解意义,突破难点)。

(3)选择(理解三角形的面积与平行四边形面积的关系)。

(4)应用(解决生活中的实际问题)。

练习的设计主要分这几个环节:

第一个环节的练习,主要是让学生能正确地应用三角形面积公式计算各个三角形的面积。在应用的过程中,规范学生的书写,培养良好的作业习惯。

第二个环节重点是放在“÷2”和“×2”的区别上。主要是因为从以往学生练习来看,这是错误中的主流,一定要引起学生的重视。

第三个环节是开发性的练习,数据具有更多的可能性,主要还是激发学生的探索欲望。通过这个开放练习,使学生又一次地认识到三角形与对应的平行四边形面积之间的联系。

6、课堂总结:这节课你有什么收获?让学生说说自己在这一节课中在知识方面及小组合作过程中的收获,教师对学生进行激励性评价。

四、说板书设计:

三角形的面积

三角形的面积 = 平行四边形的面积÷2

三角形的面积 = 底×高÷2

S=ah÷2

例1 S=ah÷2

=100×33÷2

=1650 (平方厘米)

《三角形面积》说课稿 篇3

教学内容:

《探索活动(二)三角形面积》

教学目标:

在实际问题情境中认识三角形面积必要性,在自主探究中体会有计划、有目的的选择适当的探究方法,锻炼学生动手操作的能力,进一步感知转化的数学思想和方法,学会用数学语言与他人交流,体验数学公式建立的过程,发展观察对比的能力、归纳概括能力及空间想象力。能正确地利用三角形面积公式计算,解决实际问题。

教学重点:

三角形面积公式的建立;利用分割与旋转进行图形转化

教学难点:

三家形面积公式的概括;利用分割与旋转进行图形转化

教法设计:

教学媒体的准备:

学具类:三个三角形(两个完全相同,一个不同)一个平行四边形;剪刀。

教具类:课件,与学具相应的教具。媒体:笔记本电脑、实物投影仪。

教学过程设计:

一、温故孕新,提出问题

⒈教师谈话:同学们,到现在我们已经学过哪些图形面积的计算了?你能说一说它们的面积计算公式吗?

学生口述,教师利用课件出示长方形、正方形、平行四边形图形及公式

教师提问:谁能说一说平行四边形面积计算公式的推导过程?

学生口述,教师利用课件再现平行四边形面积计算公式的推导过程。

(设计意图:通过再现平行四边形面积公式推导过程,重温将“未知”转化为“已知”的过程,为进一步探究三角形面积计算公式做好思维上的准备)

⒉教师利用课件出示教材p25主题图

教师引导审题:什么形状,给了什么条件,要求什么问题。学生观察后口述。

(设计意图:在实际问题中使学生认识三角形面积计算的必要性,激发学生学习的内驱力,为学生下面积极参与到探究过程中来做好心理上的准备)

⒊教师提问:你认为今天我们应该重点研究是什么?学生口述,教师板书:

三角形面积

教师谈话:今天这节课我们将通过“动手操作、观察对比”推导出三角形面积的计算公式。

(设计意图:学生在教师的指导下自我提出学习的内容,教师明确的只出击将采用的方法和学习的目标,使学生做到思维定向。)

二、观察对比,设想转化

⒈教师提问:你能用什么办法得到三角形面积呢?学生思考口述,

预计学生可能提出以下两种方案

⑴数方格的办法,(打开教材p25,数出三角形的面积) ⑵将三角形转化为已经学过的图形(平行四边形)

⒉教师利用电脑课件再出示一个平行四边形(如右图),

引导学生与三角形进行观察对比,

思考:“怎样将三角形转化为平行四边形”,学生独立思考,分组交流,口述自己的或小组的意见

(设计意图:将三角形与平行四边形进行对比,思考、交流转化的预想其目的都是培养学生有目的、有计划的进行探究活动,减少探究活动的盲目性和随意性,养成良好的思维习惯,发展学生空间想象的能力。)

三、动手操作,体验转化

⒈教师谈话:下面同学们可以按照自己的想法利用自己手中的学具进行转化,并思考一下的问题:(教师利用课件出示思考题)

在转化过程中的三角形和平行四边形有什么关系?

教师引导学生分析思考的含义

⒉学生按照自己的想法动手实践,根据思考题思考,在小组内交流,教师巡视,并作适当点拨。

⒊学生汇报探究的成果

预计有以下几种情况:

⑴拼:

①用两个完全相同的三角形拼成一个平行四边形

教师提问:这两个三角形有什么关系?完全相同是什么意思?如果不完全相同的两个三角形呢?

完全相同——形状,面积都相等(板书)

总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

②通过割补把一个三角形拼成平行四边形

教师提问:为什么选择两条边的中点连线进行分割?

(原因:平行四边形的对边相等)

总结:当三角形和平行四边形等底等积时,三角形的高是平行四边形高的2倍。

教师利用电脑演示揭示实质:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

⑵剪:将一个平行四边形剪成两个三角形

总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)

⒋教师提问:通过刚才一系列的活动,我们得到了一个怎样的结论?

学生思考,口述,

总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(或:三角形面积是与它等底等高的平行四边形面积的一半。)

(设计意图:通过动手、交流、汇报、归纳等教学活动,使学生在活动中“做”数学,体验知识形成的过程和自主获取新知的过程,积累数学实验的经验,发展分析、归纳等思维能力、空间想象能力、以及利用数学语言与他人交流的能力。)

四、建立公式,实践应用

⒈归纳公式

教师谈话:请同学们打开教材p25,学生阅读教材。

教师谈话:根据刚才得出的结论,请大家思考三角形面积应该怎样计算呢?在小组里说一说你的想法,然后把结论填在教材上

三角形面积=___________________________

如果用s表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积公式可以写成:

s=_______________

学生思考,交流,填写,口述,教师板书

三角形面积=底×高÷2;s=ah÷2

⒉剖析公式:教师提问:①计算三角形面积必须知道什么条件?②底乘以高等到的是什么?③为什么除以2?

⒊回归问题:

教师谈话:现在我们能求这个三角形的面积了吗?

学生重新审题,独立完成,口述,教师板书

4×3÷2=6(cm2);答:它的面积6cm2。

⒋巩固练习:完成教材p26试一试。

学生独立完成,板演,教师订正

(设计意图:以教材为引领,完成自主探究的学习过程,经历数学建模。)

作业设计:

⒈利用学具摆一摆、说一说三角形面积推倒的过程,复述重要的结论。

⒉完成教材p26练一练第1题。

板书设计:(略)

一键复制全文保存为WORD