初中数学教学设计案例 初中数学教学设计案例(5篇)

成功的教学往往在于细微处见精神显功力。下面是的小编为您带来的初中数学教学设计案例 初中数学教学设计案例(5篇),希望可以启发、帮助到大家。

初中数学教学设计案例 初中数学教学设计案例 篇1

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

通过学生自己探索出法则,让学生获得成功的喜悦。

运用有理数乘法法则正确进行计算。

有理数乘法法则的探索过程,符号法则及对法则的理解。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

学生:26米。

教师:能写出算式吗?学生:……

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的。问题

(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

① 2 ×3

2看作向东运动2米,×3看作向原方向运动3次。

结果:向 运动 米

2 ×3=

② -2 ×3

-2看作向西运动2米,×3看作向原方向运动3次。

结果:向 运动 米

-2 ×3=

③ 2 ×(-3)

2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

2 ×(-3)=

④ (-2) ×(-3)

-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

(-2) ×(-3)=

(2)学生归纳法则

①符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)=( ) 同号得

(-)×(+)=( ) 异号得

(+)×(-)=( ) 异号得

(-)×(-)=( ) 同号得

②积的绝对值等于 。

③任何数与零相乘,积仍为 。

(3)师生共同用文字叙述有理数乘法法则。

(1)教师按课本p75 例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

(3)学生做练习,教师评析。

(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

初中数学教学设计案例 初中数学教学设计案例 篇2

1.了解推理、证明的格式,理解判定定理的证法。

2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。

3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。

4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。

1.教师教法:启发式引导发现法。

2.学生学法:积极参与、主动发现、发展思维。

(一)重点

判定定理的推导和例题的解答。

(二)难点

使用符号语言进行推理。

(三)解决办法

1.通过教师正确引导,学生积极思维,发现定理,解决重点。

2.通过教师指导,学生自行完成推理过程,解决难点及疑点。

1课时

三角板、投影仪、自制胶片。

1.通过设计练习,复习基础,创造情境,引入新课。

2.通过教师指导,学生探索新知,练习巩固,完成新授。

3.通过学生自己总结完成小结。

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的`证明,培养学生的逻辑思维能力。

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).

学生活动:学生口答第1、2题。

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。

教师将第3题图形画在黑板上。

学生活动:学生口答理由,同角的补角相等。

师:要求学生写出符号推理过程,并板书。

【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行。第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点。

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角。

师:它们有什么关系。

学生活动:互补。

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题。

初中数学教学设计案例 初中数学教学设计案例 篇3

平行四边形是“空间与图形”领域中最基本的几何图形,它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包含其性质在生产、生活各领域的实际应用。

平行四边形,是建立在前面学习了四边形的概念和性质的基础之上,将要学习的特殊的四边形。本节课是平行四边形的第一课时,主要研究平行四边形的概念和边、角的性质。

关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复。本节课,平行四边形的定义采用的是内涵定义法,即“种概念+属差=被定义的概念”。在平行四边形的定义中,大前提是“四边形(种概念)”,条件是“两组对边分别平行(属差)”。“两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在。平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性。同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质。

关于平行四边形边、角的性质,“平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关★WWW.BAIHUAWEN.com★系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行”,是由“相邻的角互补”产生的思维的一种深化。同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段。

在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧。关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位。

教学重点:平行四边形的概念和性质。

(1)教学目标:

①掌握平行四边形的概念及性质。

②学会用分析法、综合法解决问题。

③体会特殊与一般的辩证关系。

④逐步养成良好的个性思维品质。

(2)目标解析:

①使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明。

②通过有关的证明及应用,教给学生一些基本的数学思想方法。使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力。

③通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等。使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点。

④通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质。

初中数学教学设计案例 初中数学教学设计案例 篇4

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

利用二次函数的图象求一元二次方程的近似根。

教学难点:

理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

启发引导合作交流

课件

计算机、实物投影。

[活动1]检查预习引出课题

预习作业:

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解。

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

[活动2]创设情境探究新知

问题

1.课本p16问题。

2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

(结合预习题1,完成课本p16观察中的题目。)

师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

二次函数y=ax2+bx+c的

图象和x轴交点

两个交点

一个交点

没有交点

教师重点关注:

1.学生能否把实际问题准确地转化为数学问题;

2.学生在思考问题时能否注重数形结合思想的应用;

3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验

[活动3]例题学习巩固提高

问题:例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4]练习反馈巩固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根两个相异的实数根两个相等的实数根没有实数根根的判别式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac < 0

问题:(1)p97.习题1、2(1)。

师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

[活动5]自主小结,深化提高:

1.通过这节课的学习,你获得了哪些数学知识和方法?

2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

设计意图:

1.题促使学生反思在知识和技能方面的收获;

2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。

[活动6]分层作业,发展个性:

1.(必做题)阅读教材并完成p97习题21。2:3、4.

2.(备选题)p97习题21。2:5、6

设计意图:分层作业,使不同层次的学生都能有所收获。

1.注重知识的发生过程与思想方法的应用

《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。

探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方

法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

2.关注学生学习的过程

在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。

3.强化行为反思

“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

4.优化作业设计

作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

初中数学教学设计案例 初中数学教学设计案例 篇5

1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质;

3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

1、一次函数与正比例函数的定义:

一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2. 一次函数与正比例函数的区别与联系:

(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

平行的一条直线。

基础训练:

1. 写出一个图象经过点(1,- 3)的函数解析式为: 。

2.直线y = - 2x - 2 不经过第 象限,y随x的增大而。

3.如果p(2,k)在直线y=2x+2上,那么点p到x轴的距离是:。

4.已知正比例函数 y =(3k-1)x,,若y随

x的增大而增大,则k是: 。

5、过点(0,2)且与直线y=3x平行的直线是: 。

6、若正比例函数y =(1-2m)x 的图像过点a(x1,y1)和点b(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

9、已知圆o的半径为1,过点a(2,0)的直线切圆o于点b,交y轴于点c。(1)求线段ab的长。(2)求直线ac的解析式。

教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的`刺激活动,学生没有保持住持久的紧张状态。

课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问

题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂

一键复制全文保存为WORD