作为一名优秀的教育工作者,有必要进行细致的教学设计准备工作,编写教学设计有利于我们科学、合理地支配课堂时间。我们该怎么去写教学设计呢?下面是的小编为您带来的人教版可能性教学设计优秀8篇,在大家参照的同时,也可以分享一下给您最好的朋友。
教材分析
在三年级的学习中,学生已经认识了可能性的大小,在四年级的学习中,他们又认识了等可能性,而本学期所学的概率知识主要是用分数表示可能性的大小,所以说,本学期所学的内容是在前两个年级的基础上的一个延伸与发展。教材在呈现本专题的内容时分为三个部分:首先呈现了提供给学生开展试验活动的材料,通过学生的试验进一步体会摸出一个球颜色的可能性的大小;其次呈现了“想一想”的内容,通过讨论第1盒与第2盒摸球的结果,将描述可能性的语言“不可能”与“一定能”转化为数据表示,即客观事件中“不可能”出现的现象用数据表示为“可能性是0”,客观事件中“一定能”出现的现象用数据表示为“可能性是1”,通过这种描述语言转化为数据表示的过程,为学生后续用分数表示可能性作了铺垫;再次呈现了“说一说”的内容。由于学生已有前面的基础,在“说一说”的过程中,将重点讨论第3盒与第4盒摸球结果的表述方法,即用分数的形式,具体地表述可能性大小的结果。
教学策略分析
在教学活动中,根据教材呈现的内容及学生的实际情况拟安排以下教学的程序。
一是在实验操作中,复习可能性大小的认识,同时通过这个实验操作起到激发学生学习兴趣及导入课题的作用。在三、四年级,学生已经有了可能性大小的认识,所以在导入新授的阶段,教师组织学生进行“摸球比赛”活动。本活动按“摸球比赛——猜想——验证——导入”的活动过程,让学生可从活动中体验出可能性是有大有小的,从而导入课题。并以此活动为后续教学埋下伏笔,当然还起到一个激发学生学习热情的作用。
二是探究如何将“不可能”、“一定能”、“可能”等描述性语言转化为数据表示。学生通过自己的探究及全班同学的合理筛选后,得出像第1盒这种不可能摸出白球的,可以表示为摸出白球的可能性是0,而像第3盒这种一定能摸出白球的,可以表示为摸出白球的可能性是1。接着,教师可趁热打铁,让学生用“可能性是0”和“可能性是1”来说明生活中的不可能事件和必然事件。之后,教师把重点放在探究第2盒这种可能摸出白球的情况,可用什么数据来表示合适?这是本课的重点也是难点。最后让学生在思辨中得出可用分数来表示可能性的大小。
三是通过一定的练习让学习会用数来表示事件发生的可能性大小。这个练习重点放在不确定事件的发生的可能性大小上,且练习的要求是逐层提高,以让不同的学生能有不同层次的发展。
教学内容:北师版五年级上册第87页内容 摸球游戏
教学目标:
1、通过试验操作活动,进一步认识客观事件发生的可能性大小。
2、能用适当的数表示事件发生的可能性大小 。
教学重难点:
重点:会用数表示可能性的大小。
难点:会用数表示可能性的大小。
课前准备:
1、1、3个箱子,里面分别装着5黄球、1白球4黄球、5白球。3个放球盆。
2、8个放球盆,里面放1白球2黄球。
3、每生2张表格。多媒体课件一套。
教学设计:
[ 片断一] 游戏激趣,导出课题
1、游戏激趣:教师提供三个箱子,里面分别放有5个黄球,1个白球4个黄球,5个白球,让学生分组进行摸球比赛,看哪个组摸到的白球最多为胜。
(请3个学生参加,每人代表一组。每次只摸出1个球,摸出后要先把球先放去才能再摸,每人摸6次)
2、引疑揭题:由不公平的比赛让学生产生疑问,再从摸出的结果中导出“不可能、可能、一定能”,并从“可能”中引出可能性有大有小,同时引导学生质疑,难道只能用以前学过的这些文字来表示可能性的大小吗?进而由此引出课题。(教师板书课题)
[设计意图:兴趣是最好的老师,课初以学生熟悉喜欢的游戏比赛引入,生动有趣,激起学生的学习欲望和疑问,并从学生的争辩意见中引出课题,起到较好的导入效果。]
[ 片断二] 动手操作,自主探究
1、引导学生独立思考,自主探究:要分别用什么数表示这三个箱子摸到白球的可能性的大小。让学生把数填在表格上,同时课件出示如下表格。
2、学生汇报,教师板书出学生的不同的表示法。 [ 设计意图:把课堂交给学生,要让学生尽可能地自己去发现,去创造,教师只是这个过程的引导者,这样培养出来的学生才有创新能力。本环节是在学生强烈的学习欲望被调动后,马上抓住最佳的思考契机,让学生探究“可以用什么样的数”分别表示三个箱子摸到白球的可能性大小,由此能产生较好的探究需要,也为下面的讨论研究提供了平台和素材。]
[ 片断三 ]质疑筛选,形成新知
1、先引导质疑:是不是几位同学所举的这些数可以用来分别表示上述三种摸球的结果呢?接着让学生先探究“不可能”和“一定能”的两种情况分别用什么数表示比较合适。
引导学生从“不可能发生的”的几种方法中,找出合适的表示方法(可能性是“0”——用“0”表示简单明了)。再用同样方法找出“一定能发生”的现象——用可能性是“1”来表示。
2、适时解释应用:让学生例举生活中上述两种现象的例子,并用语言进行相应的表达。
[ 设计意图:通过学生生成的资源,让他们在争辩中分析取舍,教师在关键处给予引导,在学生对“不可能”可用“0”表示、“一定能”可用“1”表示的意见认同后,及时联系生活实例,能使学生感悟到数学源于生活又高于生活;这样的设计不但体现学生的学和教师的导的和谐统一,而且针对性强,课堂效率高。]
3、再组织学生通过对2号箱摸到白球的可能性大小及同学所写的不同数的分析中,确定可以用分数“ 1/5”来表示比较恰当。
(1)启发引导:为什么可以用1/5来表示呢?
教师:(拿出2号箱的1个黄球)这个球有可能被摸到吗?这就是一种可能;(再拿出另1个黄球)这个球有可能被摸到吗?现在有几种可能?(指着箱中所有的球)这个箱子中的5个球都有可能被摸到吗?总共有几种可能?其中摸到白球的可能有几种?所以,摸到白球的可能性大小用数来表示应该是多少?从而让学生理解用分数表示可能性大小的意义。
(2)适时练习:教师通过往2号箱中先加入1个黄球,再加入1个白球,再加入1个白球,让学生分别说出能摸到白球、黄球的可能性的大小,来巩固新知。
[设计意图:本环节是本课的重点也是难点,学生只是初步知道可以用1/5来表示2个箱摸到白球的可能性的大小,但对到底为何能用且要用这个分数来表示并不完全理解。所以这里教师的启发引导显得特别重要。当学生初步了解用分数来表示可能性大小的意义后,及时进行练习,使学生学得扎实有效。]
(2)适时练习:教师通过往2号箱中先加入1个黄球,再加入1个白球,再加入1个白球,让学生分别说出能摸到白球、黄球的可能性的大小,来巩固新知。
[设计意图:本环节是本课的重点也是难点,学生只是初步知道可以用1/5来表示2个箱摸到白球的可能性的大小,但对到底为何能用且要用这个分数来表示并不完全理解。所以这里教师的启发引导显得特别重要。当学生初步了解用分数来表示可能性大小的意义后,及时进行练习,使学生学得扎实有效。]
[ 片断四 ] 归纳总结,提升认识,发展思维
1、归纳总结:
师:以前我们只会用文字来表示可能性的大小,通过今天的学习,我们又懂得了用数来表示可能性的大小,会更加准确明了。
2、 提升认识,发展思维:
借助线段图
让学生知道,可能性的大小还可以通过线段上的点来表示。在教学时,注意引导学生观察某一点从线段的左端到右端,从线段的右端到左端的位置移动引起可能性大小的变化情况,直观描述可能性的变化趋势。
[ 设计意图:在这个环节,教师引导学生进行归纳总结,让他们对知识有一个系统的认识是非常重要的。同时,教师在介绍用线段上的点来表示可能性的大小的同时,抓住有利时机,结合作线段图等动态的演示过程,自然而然地向学生渗透了“数形结合”和“极限”的数学思想。]
[ 片断五 ] 应用数学,活用数学
(一)基本性练习
1、填空:
(1)抛掷一个骰子,出现3点朝上的可能性是( ) 。
(2)某单位有73名员工举行抽奖活动,总共有73张奖票,每个员工都能中奖。设有一等奖3名,二等奖10名,三等奖60名,第一个抽奖者能抽中一等奖的可能性是()。
(3)如右图,转动转盘,指针指向阴影部分
的可能性是()。
2、判断:
(1)据推测,今天本地降雨的可能性是4/5,意思是今天本地一定有雨。( )
(2)抛掷一枚硬币,正面朝上的可能性是1/2,也就是说,抛20次就一定有10次正面朝上。( )
(二)拓展延伸:
*挑战自我:盒子中放着只是颜色不同的3个球,其中2个黄球1个白球,现在要求一次拿出两个球,你认为拿到2个都是黄球的可能性是多少?
师根据学生的回答板书出 1/3、1/2、2/3
合作,交流:学生先认真观察,然后再在小组内交流:用哪个数表示才对?教师巡视。
学生汇报,争辩。针对学生不同意见,教师作如下引导:
1、化抽象为形象。
请1男2女3个同学上台,分别代表1白球和2黄球。
问:把其中不同的两个球(同学)配成一对,总共有几种结果?(几种可能)?(生:3种)而拿到2个都是黄球的可能有几种?(1种)所以可能性是?(生:1/3)
2、化形象为抽象。
师:(课件)把这三个球排成一排,并分别标上字母a、b、c;
问:你能用以前学过的搭配中的学问来解释这个问题吗?(生:可能是ab也可能是ac,也可能是bc) [“课标”中强调,要让学生学有价值的、必需的数学,让不同的学生能有不同层次的发展。所以这部分的拓展练习,不仅使学生加深对用分数表示可能性的大小的意义的理解,而且还能让不同的学生能有不同层次的发展。在练习中,教师让学生先进行独立思考,观察、分析,在形成自己的认识后,再进行交流。这样留足了思维空间,使学生能有效地学习。同时教师的引导也十分讲究,为帮助学生理解,先通过模拟演示,化抽象为形象,再联系已有知识,进行,化形象为抽象,体现了数学化的建构过程。]
教学目标:
1、生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用“一定”可能”“不可能”等词语描述生活中一些事情发生的可能性。
2、够列出简单实验中所有可能发生的结果。
3、养学生学习数学的兴趣,形成良好的合作学习的态度。
教学重、难点:
正确判断事件发生的可能性,并正确使用一定。可能,不可能这些词描述事件发生的可能性。
教学准备:
媒体课件,黄色,红色气球若干个,布袋。
教学过程:
一、联系生活,激趣引入。
师问:“今天,智慧爷爷带了一个幸运王冠,你们想不想得到它?但它只属于善于思考,敢于质疑,勇于回答问题的小朋友。你们还有信心得到它吗?猜猜谁可能得到它?
师强调可能。指一男生,可能会是他吗?(不可能),为什么呢?智慧爷爷悄悄告诉大家,那是穿红衣服的女孩,你能判断出什么结论吗?一定吗?为什么不猜a,b了?在智慧爷爷没给我们缩小范围之前,可能是a,也可能是b,在我们的生活中,很多事情一时是不能确定的,都有他的可能性,这就是我们今天要学习的新本领“可能性”(师板书课题)
二、创设情境探索新知
小朋友们喜欢玩游戏吗?智慧爷爷带来了三种颜色的球,装在四个口袋里,我们来个比手气游戏,智慧爷爷悄悄告诉大家,第一组一定会胜。李老师不相信,你们相信吗?我们一起来试试。宣布规则:摸的同学不许看,每人摸5次。开始后,张老师说第一次,你们开始摸,说了第2次才能摸第2次。记录的同学看好你们组小朋友摸到球的颜色,摸一次就在对应颜色旁打钩。每组派2个同学,一个摸球,一个上黑板记录。哪一组小朋友摸到代表喜气的红球次数最多,哪一组就获胜。每组推选代表。下面的同学先猜一下,哪组可能获胜呢?(学生猜测)
他们都摸了5次,分别摸出了什么球?哪一组获胜了?看到这样的结果,你们是不是很惊讶啊,智慧爷爷告诉小朋友,他为什么猜得那么准呢?原来这四个口袋里分别有秘密呢?你能猜出来吗?请大家在小组里商量商量。谁来大胆猜测一下第一组的口袋里到底有什么秘密?都是红球。那么任意摸一个,会是什么情况呢?一定是红球。如果学生能说出一定,教师表扬。小朋友的这个词用得真好。(师板书一定)。一一出示可能,不可能。
小结:通过刚才的游戏,我们发现在全是红球的袋内任意摸一个,(“一定”是红球,)在没有红球的袋内任一摸一个,(“不可能”是红球,)在既有红球又有其他颜色的球的袋内任一摸一个,(有“可能”是红球。)
三、找找好朋友
智慧爷爷觉得小朋友们刚才的表现非常棒,决定再和大家做个交朋友的游戏。看,他请来了一些小伙伴和大家来做好朋友。大家看看,都是谁来了?
(出示小黑板,分别贴有米老鼠,唐老鸭、蓝精灵,小狗,机器猫,小兔,猫)你想和谁教朋友呢?每个小动物下面都有号码,老师给每组发一个股子,你转到几就能和几号小动物交朋友了?四人为一组,先小组里猜猜自己可能会转到哪个朋友,轮流自己转转,每人转1次,看看分别转到了谁。集体交流:你们通过转转发现,除了可能和米老鼠交朋友,还可能和谁交到朋友?还可能呢?谁交到唐老鸭了?为什么没有人交到呢?(没有7号)所以我们不可能交到。张老师想和2号的小动物交朋友,你能设计一个股子,不管怎么转,一定是和米老鼠交到朋友?
四、摸果冻
小朋友们真了不起,智慧爷爷拿来三种口味的果冻招待小朋友和你们的新朋友。师出示3袋果冻,全是草莓味,柠檬味和橘子味。
师问:每袋内任意摸一个果冻,一定是草莓味的吗?
(2)如果你最想吃柠檬味的果冻,你会到哪个口袋里摸,不愿到哪个口袋摸呢?为什么?
五、小小装配员
智慧爷爷今天为我们带来了许多果冻,在分给大家之前,还想考考小朋友的智慧呢?你们愿意接受智慧爷爷的考验吗?请小朋友当小小装配员。按定单要求装果冻,看哪组合作的又快又好。订单:1随意拿一个,一定是草莓味的。2随意拿一个,可能是草莓味的。3随意拿一个,不可能是草莓味的一一出示定单,说说是怎样放的,为什么那样放。(小组合作完成)
六、联系实际,拓展延伸。
说说可能性我们生活中,哪些事是可能发生的,哪些事是一定发生的,哪些事是不可能发生的。
七、做游戏。
出示转盘,分布均匀,转动指针,会停哪呢?出示另一转盘,分布不均。(标设奖品)商家为什么这样设计呢?
八课堂总结:
今天这节课你学会了什么?最高兴的是什么?对自己的学习满意吗?你觉得老师表现得怎样?
学 生在第一学段,初步认识了确定性事件和不确定现象。知道在确定的事件里,事情一定发生或者不可能发生;在不确定事件里,事情有可能发生,也可能不发生。而 且,有些事情发生的可能性大,有些事情发生的可能性小。在这些知识和经验的基础上,本单元继续教学可能性,用分数表示事情发生的可能性有多大。从感性描述 可能性到定量刻画可能性,对可能性的体验深入了一步。当然,现在的量化只能是初步的,为以后学习概率略作准备。教材编排有两个特点。
第一,把熟悉的素材,尤其是第一学段进行过的活动作为研究对象。学生对在口袋里摸球、桌面上摸牌、抛小正方体、旋转转盘等活动里的可能性已经有所感受,再现这些活动,容易回忆知识,唤醒已有体验。再联系分数的意义和计算,就能顺利地用分数表示可能性有多大。
第二,本单元篇幅不多,教学内容还是比较丰富的。从选择的素材看,例1是十分简单的随机事件,事情的可能性是1/2;例2的 情境复杂一些,要用其他分数表示可能性的大小。从研究的可能性看,两道例题都是等可能性,可以用相同的分数表示;“试一试”和练习出现可能性不相等的现 象,要用不同的分数分别表示。从问题的难度看,先是摸到某只球、某张牌的可能性,然后是摸到某种花色的牌、某种颜色的球以及转到某种颜色区域的可能性。显 然,教材从学生实际和有利于教学出发,编排成一个动态发展的结构。
一、 低起点、小步伐——教学猜一次、摸到一个球或一张牌的可能性。
例1、第94页“试一试”、例2的第(1)个问题,分别用1/2表示猜对与猜错的可能性,用1/2或1/3表示摸到红球的可能性,用1/6表示摸到某张牌的可能性。它们是同一认知层次的教学内容,教材预设的教学策略是,着力教学用1/2表示可能性,把其中的思想方法向其他问题情境迁移,带出用其他分数表示可能性。
例1选择很简单的现象,用最简单的分数描述可能性。首先用图画呈现情境,乒乓球比赛常用猜左右的方法决定谁先发球。裁判员把1个 乒乓球握在手里,不让任何人知道球在哪只手里,给参加比赛的运动员猜。由于乒乓球可能在左手,也可能在右手,所以,有可能猜对,也可能猜错。教学活动是讨 论大卡通提出的问题:“这个方法公平吗?为什么?”从中突出猜对与猜错的可能性相等,为接受新知识搭建认知平台。然后教学猜对与猜错的可能性都是1/2,首次用分数表示可能性,是新知识。为什么可以用1/2来表示猜对与猜错的可能性?有两个原因:一是猜的结果只有两种可能,二是两种结果的可能性相等,这两点与1/2的分数意义完全吻合。为了让学生体会用1/2表示猜对与猜错的可能性是合理的,要引导他们进行这样的推理:由于“乒乓球在哪只手里”只有两种可能,所以猜的结果只有“对”或“错”两种可能;由于猜对与猜错的可能性相等,所以猜对与猜错的可能性都是1/2。学生经历这样的推理过程,不仅能有意义地接受新知识,还为下面继续教学可能性打下了扎实基础。
第94页“试一试”编排的两个问题承前启后。左边的口袋里摸到红球的可能性是1/2,这题和例1紧密衔接,编排意图是引导学生把例1里习得的思想方法应用到相似的情境中,加强对可能性是1/2的理解。右边口袋里摸到红球的可能性是1/3, 稍微变化些问题情境,开启用其他分数表示可能性的窗口。教学“试一试”要促进学生有条理地思考,先想任意摸一个球有哪几种可能,再体会摸到各个球的可能性 是相等的,然后用分数表示摸到红球的可能性。教学“试一试”还可以安排一次比较,为什么两个口袋里摸到红球的可能性分别是1/2和1/3?进一步体验怎样用分数表示可能性。
例2的第(1)题延伸例1和“试一试”,连续提出三个问题,从摸到红桃a的可能性是1/6、摸到黑桃a的可能性是1/6,联想摸到其他每张牌的可能性也是1/6,从而得出摸到每张牌的可能性都是1/6。这个结论包含了三个问题的答案,在认识上是一次概括。教学这道题要注意两点:一是帮助学生得出概括性的结论,正确理解摸到每张牌的可能性都是1/6的含义;二是引导学生回忆例1和“试一试”里用1/2、1/3表示可能性,以及现在用1/6表示可能性,小结这一阶段的教学。
二、 在迁移中提升——教学摸到一类牌、一类球以及一类数的可能性。
例2的第(2)题,在3张红桃、3张黑桃共6张牌里任意摸1张,求摸到红桃的可能性是几分之几。第95页“试一试”在3个红球和2个黄球里任意摸1个球,求摸到红球的可能性是几分之几。这些问题是本单元第二层次的内容,与前一层次的不同在于,求的是一类对象(红桃牌、红色球)的可能性。既与前一层次的知识有联系,又发展、提高了前一层次的认识。
鼓 励学生自主探索,独立解决新颖的问题。教材这样安排的原因,首先是三年级教材里和本单元第一层次的教学中,学生已经具有解决新颖问题的知识。通过应用旧知 识解决新问题,能加强基础、发展数学思维,培养应用知识的能力。其次是与新颖问题有关的旧知识比较多,解决问题的背景很宽。学生可以从自身实际出发,应用 熟悉的旧知识解决问题。由于联系的知识多样,解决问题的思路和方法必定多样,能为教学生成很多有价值的资源。教材仅呈现了三种比较典型的方法。“小鸟”卡 通应用了前一题里学到的知识,其想法是红桃牌有3张,分别是红桃a、红桃2和红桃3,摸到每张牌的可能性都是1/6,摸到红桃的可能性是3个1/6。这种思考比较严密,有条理。“兔子”卡通应用了三年级教材里的知识,把3张红桃牌看成一部分,3张黑桃牌看作另一部分。两部分牌的张数相等,都占牌总数的1/2。任意摸1张,摸到红桃和黑桃的可能性相等,所以摸到红桃的可能性是1/2。这种思考充分利用了情境的直观成分,简单快捷。各种解法是相融、相通的,在交流中能互补、共享,有助于学生完善自己的思考,选用最适合自己的方法。还要提醒一点,在例2的6张牌里任意摸一张,还能提出其他求可能性的问题,如摸到黑桃牌的可能性是几分之几?摸到“a”(或“2”“3”)的可能性是几分之几?适当从中选择几个问题进行解答,能调动学习的兴趣,进一步巩固求可能性是几分之几的方法。
第95页“试一试”的口袋里红球和黄球的个数不同。任意摸一个球,摸到红球的可能性比摸到黄球的可能性大,这道题用分数表示可能性不等的现象,是例2的又一次变式。在求得摸到红球的可能性和摸到黄球的可能性之后,要组织学生先比比两种颜色球的个数,再比比摸到的可能性。进一步体会红球个数占总数的3/5与摸到红球的可能性是3/5之间的必然联系,黄球个数占总数的2/5与摸到黄球的可能性是2/5之间的因果关系,进一步掌握求可能性的技巧。
第96页第3题,9个数里有5个奇数、4个偶数。先求摸到每个数的可能性,再求摸到奇数的可能性和摸到偶数的可能性,综合练习了全单元教学的知识。第(3)小题里的游戏规则显然是不公平的。在三年级,学生曾经从可能性的感性体验出发作出判断,在这里,要利用求得的可能性,根据两个分数的大小不相等作出判断,体现用分数表示可能性的现实意义。
教材简析:
教材让学生通过实践活动认识某些事件可能发现的机会,并学习有关的统计内容。这是在学生进行过简单的统计和己经初步认识某些事件发生的不确定性基础上安排的。教材让学生摸球的实验,引导学生先估计,再实验,从实验中发现事件发生的可能性是差不多的,在此过程中,学会用画“正”字的方法收集、记录数据。
这部分内容的重点是让学生实验活动中探索出事件发生的可能性的大小并做出适当的解释。
教学目标:
1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集、记录数据。这部分内容的重点是让学生在实验活动中探索出事件发生的可能性的大小并做出适当的解释。
2、使学生经历实验的具体过程中,能对实验可能发生的结果或某些事件发生的可能性的大小做出简单判断和适当的解释。
3、培养学生积极参与数学活动的意识,初步感受实验是获得科学结论的一种有效方法,进一步发展与他人合作交流的意识和能力。
实验活动准备:每组各3个大小相同黄、白球,一个不透明塑料袋,一条蒙眼睛的带子,一个正方体,由正方体上分别两面写上(1、2、3)红、白颜色的小棒各4根。
教学过程:
一、激情引人
师:今天,老师要带每小组到数学乐园去玩个痛快,高兴吗?还要评出合作好的小组给予奖励。
二、展开活动,探究问题
1、活动一:瞎子摸球。
学生从装有3个白球,3个黄球的袋子里每次摸1个球,摸出以后把球再放回口袋,一共摸40次。
(1)向学生说明活动要求。
(2)学生估计白球和黄球可能各摸到多少次。
(3)学生按要求在小组内分工合作。
(4)小组内交流:统计的结果和你的估计差不多吗?你发现了什么?
(5)汇报交流:根据你们组统计的结果,你们发现了什么?
2、活动二:掷骰子。
学生把两个面上写“l”,两个面上写“2”,两个面上写“3”的小正方体抛30次。
(1)说明活动要求。
(2)学生完成表1后由小组长收集,另外三个小组的数据填入表2。
(3)小组内交流:你发现了什么?
(4)汇报交流。
3、活动三:放小棒
在袋子里放4根小棒,怎样放才可能分别达到下面的要求?
a、任意摸一根,不可能是红小棒。
b、任意摸一根,可能是红小棒。
c、每次任意摸一根,摸50次,摸到红小棒和白小棒的次数差不多。
(1)学生依次按要求先在小组内讨论,再验证小组内的说法。(在口袋里放小棒)
(2)汇报交流。
三、活动总结
l、由学生评出本次活动中完成得较好的小组给予奖励
2、说说你在这次快乐的活动中知道了什么?
教学目标:
1、使学生初步体验有些事件的发生是确定的,有些则是不确定的。
2、初步能用“一定”、“可能”、“不可能”等词语来描述生活中一些事件发生的可能性,知道事情发生的可能性有大有小,感受数学与生活的联系。
3、通过猜测验证感悟,培养学生的猜测、实验和观察能力。
4、培养学生数学学习的兴趣及反思追问的学习习惯。
教学重点:
通过活动体验有些事件发生的确定与不确定。理解“一定”、“可能”与“不可能”。
教学难点:
理解可能性的大小与条件之间的关系。
教具与学具:
多媒体课件、箱子、乒乓球、统计表、彩笔、题卡等。
教学过程:
一、故事导入、体验可能性。
1、谈话:同学们,这节课老师给大家带来了一位老朋友,如果你能通过老师的描述确定他是谁,就快速地说出它的名字。
教师描述:他是个充满智慧的人,总愿意帮助穷人,他生活在新疆,长着八字胡,总是愿意骑着一头小毛驴。(学生猜是阿凡提)
师:在老师的描述中同学们确定了他一定是阿凡提。
2、(出示图片)大家一定很奇怪,阿凡提怎么被关进大牢了?因为阿凡提总是帮助穷人,不小心冒犯了国王,国王大怒,决定将他处死。阿凡提被关进了死牢,按照法律,死囚在临刑前还有一次选择生死的机会,那就是大法官拿来一个盒子,盒子里有两张纸团,分别写着“生”和“死”。阿凡提如果摸到“生”则生,如果摸到“死”就死。
3、你们认为阿凡提这时摸纸团结果会怎样呢?(先说结果再抽,说清为什么?)(既有可能生,也有可能死,看运气了。)
4、可是国王偏偏要让阿凡提死,于是派人偷偷地把盒中的“生”字拿掉,换成了“死”字,而大法官并不知道。
阿凡提这时摸纸团结果又会怎样?(先说结果再抽,2人,)还用抽吗?为什么?有可能生吗?(不可能生。)
5、有人把这个情况悄悄地告诉了阿凡提。阿凡提想了一夜,终于想出了一个好办法。
6、我们来看看阿凡提是怎么做的:临刑前,当大法官把盒子拿来要阿凡提选择生死时,阿凡提拿起盒中的一个纸团,看也不看迅速地把它吞进肚子里。在场的人不知道他究竟拿了哪张纸。大法官只好命人看看盒子中剩下的纸团,只见上面写着“死”。法官说:“阿凡提一定吞下了‘生’字,他不该死。”法官是怎样判断的呢?(吞下了一个,剩下的一定是“死”。)
7、师小结:阿凡提的命运真是一波三折,盒子中是一生一死两个纸团时,他的命运是(可能生可能死,板书:可能);盒子中改成两个死时,他的命运变成了(一定死,不可能活,板书:一定、不可能);当吞下一个纸团,只剩下一个死时,他的命运变成了(一定活,不可能死)
8、小结:“一定”、“可能”、“不可能”就是这节课我们要学习的数学中的可能性。(板书)
二、判断、描述生活中的确定事件和不确定事件
1、师:生活中有许多事可以用“一定”“不可能”“可能”(指板书)来进行描述,出示例2
2、选词填空,进一步感悟“一定”“不可能”“可能”
3、学生举生活中确定或不确定事件的实例并描述
过渡:刚才是书中收集了身边一些现象让我们来判断,那么生活中还有哪些现象可以用“一定”“不可能”或“可能”来描述呢?
三、游戏探索,理解“可能性大小”
过渡:同学们说了那么多生活中的有关现象,老师也想到了一个游戏,想玩吗?
我们来玩个摸球游戏。
1、游戏一:
(1)(出示一黄一白两球)问:你们喜欢那个颜色?(黄)那我们就来玩个摸黄球的游戏。
(2)(出示四个盒子)问:要想一下子摸出黄球,你选哪个盒子?为什么?(一定会摸到黄球,不可能摸到白球)不可能选哪个呢?为什么?(4号。一定摸到白球,不可能摸到黄球)
过渡:既然4号盒子中不可能摸出黄球,我们把它拿走吧!1号盒子中一定能摸出黄球,摸起来没有什么挑战性,我们把它拿走吧!
(3)问:不可能摸出黄球的盒子和一定能摸出黄球的盒子都去掉了,中间两个盒子呢?(可能)中间的两个盒子都有可能,你选哪个?为什么?(4黄2白,可能性大。揭示可能性有大有小)板书:大、小
(4)师:刚才同学们认为,2种球比较黄球数量多,摸中的可能性大,白球少摸中的可能性小。光猜测行吗?(不行,还要验证。)我们就用4个黄球、2个白球,小组合作研究一下我们所猜测的可能性大小。
(5)小组活动:摸球规则:
1)按顺序每人每次摸一个,记录员记录颜色之后放回,小组一共摸20次。
2)摸球时安静不许偷看盒子里面。每次摸完后组长充分摇晃盒子。
3)统计小组共摸到黄球()次,白球()次。能得到怎样的结论?
汇总结果
(6)现在请每个小组的记录员汇报你们这组摸球的情况。(生边说,师边填表)
2、小结:在摸球游戏中,当盒子中是4个黄球,2个白球时,我们发现什么?(黄球比白球多,摸到黄球的可能性就大)
3、出示3号盒子,问:从3号盒子中摸一个球,摸到哪种颜色球的可能性大?为什么?
师:同学们,通过玩摸球游戏,我们一起经历了猜想————验证—得出结论的过程,下面我们再来玩一个摸球游戏。
四、游戏二:可能性大小发生变化
(1)出示摸球的盒子,(师:这是一个空盒子,)一个一个地放入3个黄球和3个白球。说一说会摸到什么颜色的球?能确定吗?为什么?(学生猜一猜会摸到什么颜色的球,请猜的同学摸一摸。多叫几人)
(2)继续猜一猜,当学生摸出一个球后,把这个球拿出,让学生再猜会摸到什么颜色的球,并摸一摸;当学生摸出一个球后,把这个球又拿出,让学生再猜会摸到什么颜色的球,(多找几人,问:摸到谁的可能性大?)再摸一摸……让学生感悟到在条件变化的情况下,“可能”也会变成“一定”或“不可能”,“一定”或“不可能”也会变成“可能”。可能并不代表一定。(渗透偶然性)
(3)总结:看来,随着条件的变化,可能性的大小也会发生改变。
五、设计游戏,应用“可能性”。
1、师:设计师请你帮忙。中奖规则:转到红色区域就中奖,白色不中奖。
2、师:如果你们是设计师怎样设计这个抽奖转盘呢?(让学生思考一会儿,自己完成)
3、学生设计好后将设计结果贴到黑板上。学生汇报,说清理由。教师将不同设计贴到板书的相应位置。
4、师:在全班同学的努力下同学们设计出了多种方案。看着黑板你能说说你的发现吗?(涂红色的部分多时,中奖的可能性就大;涂红色部分少时,中奖的可能性就小。)涂红色的部分和白色的部分一样多的时候,可能性就相等。是这样吗?在同学们今后的学习中我们再来继续研究吧!
六、全课小结
今天通过游戏与学习,我们知道了用一定可能不可能来描述生活中的现象。下课前,老师再送给大家几句话:理性对待生活中事情发生的可能性:对不可能发生的事情不要痴心妄想;对可能发生的事情不要存在侥幸心理;对一定发生的事情千万要做好准备。
特色与亮点:
学校是公平教育的主阵地,教育公平主要体现在每节课的课堂教学当中,这是一节以公平为素材的课,主要有以下几处特色与亮点:
1本活动是以学生为中心的参与式教学活动,通过学生亲身体验,合作探究获得知识。
2在设计活动时,给学生给出活动目标,即让学生明确通过活动,学到那些知识和技能,获得那些体验,得到那些发展;其次选择的材料是学生容易获得的,符合学生心理特证和年龄特征的,整节课以活动为中心,通过活动学生掌握了知识和技能,个性发展等方面达到了预期目标。
3为学生创设了问题情景,让学生自己提出假设,通过亲身活动,感受知识,从而获得知识和技能。
4突出了课堂的公平性,达到公平教育教学的目的。
课前分析:
本节课是以公平为素材的课,因此在本节课上教师要着重注意以下几个问题;1要为学生营造公平和谐的课堂氛围;2提高课堂参与均等机会;3还要为学生提供课堂提问均等性;4提高课堂公平进程。
【材料一】:一个袋中装有10个黄球和10个红球,任意摸出一个球后放回,求摸出红球和黄球的可能性是多少?如果摸出黄球甲胜,摸出红球乙胜,这个游戏公平吗?
【材料二】:如图转动转盘,球转盘停止后指针停在阴影部分的可能性,和空白部分的可能性,如果停在阴影部分甲方赢,停在空白部分乙方赢,这个游戏公平吗?
【目的】
1.学生初步体验有些事件发生是确定的,有些则是不确定的,会结合已有的经验对一些事情发生的可能性进行判断并能简单地说出原因。
2.学会列举记录简单事件有可能发生的结果。
3.学生知道事件发生的可能性的大小是不同的,能对一些简单事件发生的可能性大小进行比较。
4.能由一些简单事件发生的可能性大小逆推比较事件多少。
5.培养学生简单的逻辑推理、逆向思考和与人交流思考过程的能力。
【活动一】
摸球
【活动二】
转盘游戏
【目标】
1能由一些简单事件发生的可能性大小逆推比较事件多少。
2培养学生简单的逻辑推理、逆向思考和与人交流思考过程的能
3感受公平的重要性。
【时间】
40分钟
【材料】
1两种颜色的玻璃球各10个。(黄色10个,红色10个)小布袋一条。
2游戏转盘一个。
3活动记录表各两份
第---------组
猜测数据摸球总次数摸到红球次数摸到黄球次数实际操作摸球总次数摸到红球次数摸到黄球次数
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性总结
第---------组
猜测数据转动次数指针停在阴影部分次数指针停在空白部分次数实际操作转动次数指针停在阴影部分次数指针停在空白部分次数
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
【活动过程】
1分组活动。
按学生实际情况进行均衡分组,力求公平。
2第一组;做摸球活动。先猜测把猜测结果填入下表,然后摸球各成员每人摸出一球后观察颜色后放回小球并搅匀布袋中的小球,下一位摸球。将小组各成员摸到红球的次数和黄球的次数纪录在下表。
第---------组
猜测数据摸球总次数摸到红球次数摸到黄球次数实际操作摸球总次数摸到红球次数摸到黄球次数
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
第二组:转盘游戏活动。先猜测结果填入下表。然后各组成员每人转动一次转盘,当转盘停止转动后,观察指针停在那个区域,并把结果纪录下表。
猜测数据转动次数指针停在阴影部分次数指针停在空白部分次数实际操作转动次数指针停在阴影部分次数指针停在空白部分次数
第一轮第一轮
第二轮第二轮
第三轮第三轮
可能性可能性
3交换活动场地。第一组做转盘游戏活动,并根据猜测实际操作填表。第二组做摸球活动,并按照猜测,实际操作填表。
4根据上表纪录,在小组内讨论可能性,并说出理由,填可能性一栏。并讨论为什么和我们猜测的结果一样或不一样呢?
5各组展示两次活动的结果并回答下列问题:
猜测结果和实际操作结果是否一致?你猜测的依据是什么?若不一致是什么原因造成的?这个游戏公平吗?
7分组讨论下列问题:
在三轮摸球过程中,摸出红球和黄球的可能性与球的总数有什么关系?
指针停在阴影部分和空白部分的可能性与什么有关系?
在现实生活中怎样才能够做到公平公正?
8各组展示讨论结果。
9评介与总结。
【案例反思及说明】
1本活动旨在是参与者通过亲手实验,从随机事件中发现规律,从而建立真确的可能性的直觉,体验感受可能性的稳定性。
2随即现象结果的出现是偶然的,出现一个结果事先无法预料,但在大量的实验中它明显出现规律性————稳定性。
3本活动中,布袋中虽然所放红球数量和黄球数量虽然相等。但三轮摸球的纪录也不尽相同,摸球的次数越多红球出现的可能性和黄球出现的可能性就越稳定,依此做出的推断就越准确。
4本活动中,虽然在转盘上,黄色区域的面积占转盘总面积的八分之六(即四分之三),但指针并不一定都停在黄色区域,但随着转动转盘次数的增多,指针停在黄色区域内的可能性就越稳定。
5本活动中,让学生通过动手做实验知道只有可能性相等时,这个游戏才公平。
教学目标:
1、通过摸球、抽奖、抽奖等活动,初步体验有些事件的发生是确定的,有些事的发生是不确定的,并能用“一定”、“可能”、“不可能”等词语来描述事件发生的可能性,获得初步的概率思想。
2、通过设计摸奖活动使学生体验可能性的大小。
3、培养初步的判断和推理能力。培养学生的猜测、观察和探究的能力。
4、感受数学就在自己身边,体会数学学习与现实的联系。进一步培养学生求实态度和科学精神。
教学重难点:
1、体验有些事件发生是确定的,有些事件的发生是不确定的,并能用“可能”“一定”和“不可能”来描述时间发生的可能性。
2、通过活动能知道事件发生的可能性是有大有小的。能对一些简单事件发生的可能性大小进行比较。
教学准备:三个组三个盒子,乒乓球,(黄色、绿色、蓝色、红色)玻璃珠、课件
教 法:启发式教学法
教学过程:
一、准备
师:同学们,你们喜欢做游戏吗?谁能告诉老师你们平时都喜欢做什么游戏吗?那么这节课我们就一起来做游戏。
首先,我们来玩个“猜一猜”的游戏,好吗?
老师这里有一枚硬币,它就在我其中的一个拳头里,你们猜猜它会在哪只手里呢?(可能在右手中,也可能在左手中)
看来大家意见不统一,那么老师来帮帮你们吧,(慢慢张开空着的手),现在你们能肯定自己的答案了吗?(一定在右手中)
为什么你们那么肯定硬币一定是在右手里呢?那么这枚硬币会不会在最后那位同学手中呢?(不可能)(不可能在他手中)
二、诱发
师:在日常生活中,有些事情我们不能肯定它发生的结果,有些事情我们可以肯定它发生的结果,类似的例子还有很多,大家有兴趣研究一下吗?这节课我们就一起来研究关于“可能性”的知识。(板书课题)
三、探究
师:下面我们一起再来做“摸一摸”的游戏。
1、体验“一定”。(盒中放入一些白球)
(1)介绍:大家看好了,老师这儿有一个盒子,还有一些白球(把球放入盒中,摇一摇),请问:从盒中会摸出什么颜色的球?
(2)谁愿意来摸摸看?
(3)如果再请一位同学来摸一摸,摸出的会是什么颜色呢?为什么?
(4)师:那就是说,不管怎么摸,摸出来的结果只有一种情况,那就是一定会是白色的球,对吗?
(5)当我们知道摸的结果只有一种情况时,我们可以用“一定”这个词来说。(板书“一定”)
师:刚才只有几位同学参与了摸球,其他同学是不是也想玩玩呢?下面我们大家一起来玩好吗?
2、体验“可能”与“不可能”
(1)介绍玩法:老师为每组的桌上准备了一个盒子,和一些玻璃球,请大家先看一下这些玻璃球的颜色,然后倒进去。注意听老师讲玩法:首先请每组中的一个同学从中摸一个珠子出来,注意摸之前先猜猜是什么颜色,再摸,摸完后再看看猜的对不对,然后记下自己摸的颜色,再把珠子放入盒内,摇一摇,再让其它同学摸,这样按次序,每人先后摸两次,听明白了吗?
(2)学生分组活动,然后汇报。
(3)师:看来大家摸出来的颜色都不一样,那么如果老师也从中摸一颗,你们认为会摸出什么颜色的呢?为什么?(可能是黄色,也可能是绿色。)
看来对老师摸的结果,大家也不能确定,对吗?
那么当遇到不能确定事情的结果这种情况时,我们就可以用“可能”这个词来说(板书:可能)
(4)那么从我们刚才的摸球情况来看,一件事情的发生会出现几种结果呢?(一定、可能)
(5)师:如果老师想从中摸出一颗黑色的玻璃球,你们认为?为什么?(板书:“不可能”)
3、体验“可能”与“不可能”的关系。
师:那么有什么办法可以使我们在这个盒子里也可能摸到黑色玻璃球呢?说一说,试一试。
4、通过整个摸一摸的活动的研究,你们对一件事情所发生结果有什么看法?
5、师小结:一般事情的发生都有“可能”“不可能”“一定”三种情况,当然,不同情况下,它们有时也会发生变化。
四、运用
1、他们都从口袋里任意摸出一个球,摸出的一定是红球吗?(三个不同的口袋)
2、从每个口袋里任意摸一个球,一定是黄球吗?(三个不同的口袋)
3、把球按要求放入口袋:
(1)任意摸一个不可能是绿球。
(2)任意摸一个,可能是绿球。
(3)任意摸一个,一定是绿球。
4、练习二十四1、2、题。
5、用“一定、可能、不可能”说一说生活中的事情。
五、课堂小结
通过这节课的学习,你有什么心收获?
数学在我们生活中无处不在,我相信,只要大家能够用心去发现,去探索,将来一定会成为一个伟大的数学家。
板书设计: 可能性
一定
可能
不可能
一、谈话导入
同学们,兔子家族正在运动场上举行长跑比赛,推选出的6名运动健将个个雄心勃勃,想取得胜利,你们猜猜谁能得第一?(指名回答)要是再来一场比赛呢?
是呀,在不同的比赛中,每一只兔子都有可能取得胜利,这就是可能性。
(板书课题)
这节课,我们就一起动手动脑体会可能性。
二、小组游戏
师:接下去我们一起玩摸球游戏。每个小组里都有一个袋子,袋子里放有4个白球,2个黄球。摸球要求如下(小黑板出示):
1、每组4个人,再分成两个小组,分别为白队和黄队。
2、每次摸一个球,摸球时不可打开袋口看,摸完后再放回袋中。
3、每组的2人中,一人摸球,共摸30次;一人记录,把结果记录在练习纸上。
4、摸到白球次数多的算白队赢,摸到黄球次数多的算黄队赢。
师:按这样的游戏规则,你们猜一猜谁赢的可能性大一些?
学生游戏。
同学之间交流结果。
三、引导探究
1、师:现在我要给赢的队颁奖,你们有意见吗?
2、黄队为什么不同意?指名学生说说自己的想法。
3、师小结:黄队认为袋中的黄球个数比白球少,摸到的可能性就小;反之,白球的个数比黄球多,摸到的可能性就大,所以,这个游戏规则从一开始就是不公平的。对于这样的分析,大家同意吗?
4、学生发表意见:比赛要公平,取胜才光荣。
5、你们认为怎样修改这个游戏规则,比赛才公平?
(小组讨论,修改规则)
6、集体交流得出:在袋中再放入2个黄球或拿掉2个白球,使白球和黄球的数量一样多。
7、学生根据新的游戏规则重新开始游戏,并统计结果。
8、活动反思:通过刚才两组摸球游戏,你对游戏的公平性有什么认识或想法?在刚才的合作过程中,你们小组有没有什么好的做法或不足?
四、巩固应用
1、完成“想想做做”1-3题
2、阅读资料。
学生先自己阅读再交流体会。认识到:随着实验次数的不断增加,正反面向上的次数会越来越趋向于相等,硬币正反向上的可能性是相等的。
五、课堂总结
用一句话说说这节课的收获或体会。
反思:
本节课我以游戏贯穿整堂课的探究新知中,使学生在好奇、有趣的情感体验中有序、有效地完成了新知的探究、尝试应用的学习任务。
1、实践是学生最好的老师,学生在实践活动中学到的知识往往会记忆深刻。因此,我在这节课中创设兔子赛跑的情境,调动学生的学习兴趣;以摸球的游戏形式,让学生亲身参与到摸球的实践活动中,只有这样,学生的思维才能展开,问题才会自然而然地被学生发现并解决。
2、课堂上时间分配比较合理,学生参与面广,游戏的广度深度符合学生的特点,整堂课气氛活跃,能够体现学生的主体地位。
3、虽然是一节实践活动课,数学的思维方法还是要渗透的。在第一次师生共同摸球时,就渗透了一些摸球的方法:摇一摇,不能偷看,为后面的小组实践打下了基础。
4、尊重相信每位学生,给他们充足的探索空间。
5、数学学习是充满这观察与猜想的活动,因此,运用观察、猜想这些策略是非常有价值的,本课的摸球游戏是按“现实情境--猜想--实验――验证猜想――分析原因”这一数学思考的线索展开的。经过两次的循环,帮助学生建构起正确的数学认知,同时培养了学生合作学习的能力及自主探究新知的能力。