马克思曾经说过:“一门学科只有成功的应用了数学,才能真正达到了完善的地步。”这句话充分显示了数学知识的广泛应用及学习数学的必要性和重要性。因此,数学作为认识世界的基础性学科,它可以在思想上支持不同学科的深入发展。的小编精心为您带来了乘法分配律教案设计优秀7篇,在大家参照的同时,也可以分享一下给您最好的朋友。
教学内容:
教科书第64页例6,第64页做一做中的题目和练习十四的第1、2题。
教学目的:
使学生理解并掌握乘法分配律,培养学生的分析推理能力。
教学重难点:
乘法分配律
教具、学具准备:
教师把下面复习中的口算写在卡片上;在一张纸条上画5个白色的正方形和3个红色的正方形,如□□□□□■■■,共做4条。
教学过程:
一、复习
教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。
二、新课
1、教学例6。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
图中一共有多少个正方形?你是怎样想的?先请一个学生回答,教师把学生所列的算式写在黑板上。
还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
(5十3)4 54十34
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形; 第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出一共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
这两个算式的计算结果怎样?
这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:
这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5十3)4=54十34
等号左面的算式是什么意思?(5与3的和乘以4。)
等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18十7)6 186十76
左面的算式是什么意思?(18与7的和乘以6。)
右面的算式是什么意思?(18与7分别乘以6,再把两个积相加。)
算一算左面的算式等于什么?(18加7是25,25乘以6是150。)
算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150。)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它们连起来,教师边说边在两个算式中间画一个等号。
这两个算式相等,说明18与7的和乘以6等于什么?(说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20(15十9) 20xx十209
先来计算一下这两个算式各等于多少?
两个算式都等于多少?
这两个算式相等,说明20乘以15与9的和等于什么?
2、进行抽象概括。
教师指着上面的算式提问:
仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数,第三个等式是一个数乘以两个数的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
再看等号右面的三个算式有什么相同的地方?学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做乘法分配律。同时板书乘法分配律。让学生看教科书第64页下面的方框里的结语,全班齐读两遍。
教师:如果用 表示三个数,乘法分配律可以写成下面的形式:
(a+b) c=ac+bc
等号左面(a+b) c表示什么意思?(表示两个数的和同一个数相乘。)
等号右面ac+bc 表示什么意思?(表示把两个加数分别同这个数相乘,再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)27,提问:
1、这个算式中是哪两个数的和乘以哪个数?
根据乘法分配律,这个算式等于哪两个乘积的和?
教师在黑板上再写算式:18527十1527,提问:
这个算式中是哪两个数分别乘以哪一个数?
根据乘法分配律,这个算式等于哪两个数的和乘以哪一个数?
2、做第64页做一做中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
在(32十25)4中,两个数的和指的是什么?同一个数相乘指的是哪个数?
根据乘法分配律这个算式应该等于哪两个数分别同4相乘再相加?
第一小题的方框里应该填什么数?(根据乘法分配律,32与25的和乘以4,应该等于32与25分别乘以4再相加,所以两个方框里应该分别填32和25。)
第二小题应该怎样填?根据什么运算定律?(根据乘法分配律,64与12的和乘以3,应该等于64与12分别乘以3再相加。)
四、作业
练习十四的第1、2题。
一、教材依据
义务教育课程课程实验教科书(北师大版)小学数学四年级上册第三单元《乘法》探索与发现(三)乘法分配律(教材48、49页)
二、设计思想
“乘法分配律”的内容,被作为学生探究活动的题材,编排在《乘法》单元的“探索与发现”一节中,意在通过学生经历数学规律的探索过程,体验探索数学规律的基本步骤。根据教科书的编写意图,我在设计这节课时,力图在教学目标、教学方式及学生的学习方式等几个方面有所创新、有所突破。
在在教学目标的确定上,主要是通过经历探索乘法分配律的活动,发现乘法分配律,希望通过数学活动,为学生提供充分探究的空间,使学生经历知识的形成过程,体现探究性学习的特征和要求。同时通过探究活动,引导学生用数学的思维方式、沿着“发现——猜想——验证——总结——应用”的轨迹去发现、去探索,经历探索数学规律的过程,达到启迪数学思想方法的目的。教学的重难点定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。
三、教学目标:
1、经历探索的过程,培养学生观察、归纳、概括等初步的逻辑思维能力;
2、理解和掌握乘法分配律并会用字母表示;
3、能够运用乘法分配律进行简便计算;
4、使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。
四、教学重点:
引导学生运用数学思维方式探索乘法的分配律,归纳乘法分配律。
五、教学难点:
乘法分配律的应用,进行一些简便计算。
六、教学准备
多媒体教学课件
七、教学过程
(一)情境导入,发现问题
昨天,老师和两位小朋友去参观了正在装修中的学生食堂三楼多功能教室,善于观察的小朋友给我们带来了一道数学问题,你们能不能帮忙解决下?
课件出示:图片一共贴了多少块瓷砖?
(1)谁能估一估,贴了多少块瓷砖?
(2)谁来用自己的方法来验证估计是否正确?
还有不一样的方法吗?谁来说说看?(生口答,师板书)
板书:6×9+4×9(6+4)×9
=54+36=10×9
=90(块)=90(块)
(3)请同学们观察,看看有什么发现?(学生讨论,汇报)
(二)引导探究,发现规律
1、猜想、验证
(1)能不能利用你的发现举些例子来呢?
生:举例
(2)提出猜想:还有更多的算式吗?是不是所有的算式都具有这一规律呢?
(学生小组合作尝试,进行探索)
2、概括、归纳
(1)说说你们刚才验证的情况。
生1:我按照这个规律写出的两个算式是:7×5+3×5和(7+3)×5的得数都等于50。
生2:我按照这个规律写出的两个算式是:42×64+42×36和42×(64+36)的得数都等于250。
生3……
生4……
(2)看来这个规律是普遍存在的。其实我们发现的这个规律叫做乘法分配律。刚才我们举了很多这个规律的例子,这样的例子能列举完吗?
问:我们能不能用一个式(字母)把乘法分配律表示出来呢?
生:(a+b)×c=a×c+b×c
(3)等号表示什么意思?(这个等式反过来也成立)
(三)加强应用、深化理解
我们发现了乘法分配律,它又有怎样的应用呢?
(课件分步出示练习)
1、填一填(课本49面练一练第一题)
2、请同桌同学合用研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
(1)学生讨论研究;
(2)汇报计算方法,重点说为什么这样算;
(3)小结:通过研究,应用乘法分配律可以使一些计算简便。
(四)巩固练习、解决问题
(课件分步出示)
1、填一填
(10+7)×6=__×6+__×6
8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)
2、同桌合作研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
2、下面这些题,能用简便方法计算吗?怎样计算?
(20+4)×2532×(200+3)38×29+38×1
39×10138×29+3825×41
(五)课堂小结
1、说说今天我们研究了什么?
2、大家想一想,我们是怎样发现乘法分配律的呢?
3、乘法分配律有什么应用?
教材分析:
本课时是苏教版小学数学第八册第七单元的第一课时,乘法分配律涉及到乘法和加法两种运算。教材中实际情境中引出问题,引导学生用不同的方法进行解答,引导学生观察、比较列出两道算式,发现他们的内在联系,再让学生例举同类算式,分析共同点,从中发现乘法分配律,并用字母表示出来,练习中安排了应用乘法分配律进行简便计算,以及把乘法分配律延伸到它的逆应用和类推到两个数的差与一个数相乘,使乘法分配律的概念得到了有效的延伸。
学情分析:
学生在第七册学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2周长=(长+宽)×2
教学重点与难点:
重点:理解乘法分配律的意义
难点:引导学生经历探索并发现乘法分配律的过程。
设计理念:根据学生已有的知识经验和教材的实际内容,本课的教学主要是教师创设情境,让学生对知识进行主动的探索,从而发现规律,并应用规律灵活地解决计算问题。
教学主要流程:
一、 创设情境,导入教学
挂图出示例题:买5件夹克衫和5条裤子,一共要付多少元?
[创设与学生生活相联系的情境,让学生感受生活中的数学问题,激发学生学习的兴趣]
二、 经历探索、分析比较、得出规律
1、让学生独立解答,得到两种不同的方法,集体订正,说出两个算式计算过程的含义
2、分析两个算式的联系,形成两个算式相等的共识(结果都是求出的是5件夹克衫和5条裤子的总价)即:(65+45)× 5=65 ×5+45× 5
3、建立初步的概念,写出类似的几组算式
4、小组合作,说说这样的算式所蕴涵的规律,得到乘法分配律公式并用字母来表示。
[新课标强调要让学生经历、体验知识获得的过程,主动参与探索,从而发现规律。在学生独立解答的过程中,教师引导学生感悟两种方法的相同点和不同点,经历观察、比较、分析,在学生的合作交流中,概括出乘法分配律的含义,从乘法分配律的认识由感性逐步上升到理性。培养了学生初步的归纳推理的能力]
三、 巩固应用、深化延伸
1、做第1题,讲解2、3小题时重点强调相同乘数提出来,不相同的乘数相加,指出是乘法分配律的逆应用。
2、完成第2题,提示第3小题74×1的1可以省略不写,
第4小题中什么数是相同的乘数
3、完成第3、4题,比较两种方法中的哪种方法比较简便,渗透简便计算的思想
4、做第5题,重点提示学生第2题 48×3-45×3可以写成(48-35)×3
把分配律中的加法类推到减法。
[乘法分配律的逆应用虽然在例题中没有出现,但现在这个知识结构中是很重要的一部分,乘法分配律在减法中的应用也是非常重要的,所以在教学中应该重视,使乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解]
四、 课堂小结:
今天我们学习了什么知识,我们是怎么来学习的?
知识与技能目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、能够运用乘法分配律进行一些简便的计算。
过程与方法:
培养学生观察、归纳、概括等初步的逻辑思维能力。
情感与价值观:
渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。
教学重点
理解并掌握乘法分配律
教学难点
乘法分配律的推理及运用
教学准备
多媒体电脑、课件
教学过程
一、用简便方法计算下面各题。
452+199+24838×125×8×3
二、比赛激趣,提出猜想
(1)热身赛。(请看大屏幕,男同学做第一小题,女同学做第二小题,看谁做的又对又快。)
10×37+10×63
10×(37+63)
(2)评出胜负。(做完的同学请举手,汇报计算过程,并提问这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
10×37+10×63=10×(37+63)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
(设计意图:通过一道题目里的两种不同的计算方法,让学生通过观察、类比、发现、概括、归纳,初步了解其中的规律。)
三、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)
2、(1)谁能估计一下一共贴了多少块瓷砖?
(2)请大家用自己的方法来验证他的估计是否正确。
(3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?(板书)
(设计意图:学生用不同的方法列式计算,为探讨规律做准备。
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
4、讨论交流:交流学生的举例是否符合要求,并交流算式的共同特点,你发现了什么?
5、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)()(运算顺序不同但结果相同)
(设计意图:找到两个式子之间的特点,是理解乘法分配律的关键。)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?
(a+b)×c=a×c+b×c
(5)等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?这个等式从左到右成立,反过来从右到左呢?也是成立的。
四、探索发展,应用规律
(1)我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(80+4)×2534×72+34×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
(3)刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?
38×29+3843×102
(4)小结:如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。
(设计意图:特别注意引导学生找到式子中的运算方法与数字的不同。)
五、巩固练习,解决问题(我们刚才认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)
1、请大家根据运算定律在下面的_里填上适当的数。
(10+7)×6=______×6+______×6
8×(125+9)=8×______+8×______
7×48+7×52=______×(______+_______)
2、将得数相等的算式用线连起来。
3、饮料送货车给大成饮食店送去24箱苹果汁和26箱橘子汁。每箱都是24瓶,一共有多少瓶?每箱饮料36元,付1500元够吗?
六、全课小结
请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
探索与发现(三)乘法分配律(教案)
教学内容:北师大版小学数学四年级上册,第48——49页内容
目的要求:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
教学重点:探索发现规律,体会理解乘法分配律。
教育点: 使学生通过探索发现规律,体会探索的乐趣,从而乐于探索。
教学准备:课件一套
教学过程
一、复习导入
1、口算: 25×4= 125×8 = 25×9×4= 18×25×4=
125×16= 75+25= 89×100= 268×56+256×44= 要求学生说出部分题的口算依据及简算过程;最后一题,学生不会,师快速口算结果,形成悬念。
2、谈话导入
上节课,经过同学们的探索,我们发现了乘法交换律和结合律律,并会应用这些定律进行简便计算,今天咱们继续探索,看能否发现乘法还有没有其它规律。(板书:探索与发现 三)
二、探索新知
1、出示情景图
师:这是工人师傅,为立新幼儿园厨房的某一墙面镶嵌的瓷砖。
引导:
(1)先估算一下,一共贴了多少块瓷砖?
(2)验证估算的结果。
(3)回报验证的方法和结果。
(4)比较算式及结果的异同。
2、师举例让学生验证是不是也有其特征。(40+4)×25和40×25+4×25)
3、观察讨论算式的特点。
计算后,观察比较:
师提问:这两个算式的左边、右边有什么共同特点?每个算式的左右两边有什么特点?两边的结果怎样?
学生可能回答:
(1)两个算式 :左边都是三个数,并且是两个数先加,再和另一个数相成;
右边都是两边相乘,中间相加,并且都乘以同一个乘数。 (2)每个算式 :左边是两个数的和与一个数相乘;
右边是这两个加数都与这个数相乘,再把积相加。
(3)结果:左右两边的结果相同
4、学生举例验证。举例后交流,注意:举例是否符合要求;交流不同算式的共同特点。
5、要求学生用字母表示:(a + b)×c = a×c + b×c
这叫做乘法分配律
( 板书:——乘法分配律)
6、寻找简算原因:学习乘法结合律和交换律可以使计算简便,那么学习了乘法分配律能否简便,比较上面两个算式,看哪边的计算简便,为什么?
7、试一试
利用乘法分配律,计算下列各题
(80+4)×25 34×72+34×28
(做后说做题依据及为什么这样简便?)
三、课堂总结
谈收获。这节课,通过探索你发现了什么?乘法分配律有什么特点?在什么情况下,怎样使计算简便?比较乘法结合律与分配律的异同。
四、练一练
1、判断
(1) (20 + 4)×25 =20 ×4 + 4 ( )
(2) 35×(2 + 20)=35×2×20 ( )
(3) (80 + 4)×125 = 80×125 + 4×125 ( )
2、填一填
(1)(10+7)×6=□×6+ □ ×6 (2)8×(125+9)=8× □ +8×□
(3)7×48+7×52=□× (□+□) (4)25× (4+8)=□× □+□×□
五、六、拓展
思考、讨论:
(1)68×101= (2)98×99 + 98 = (3)189×98 - 89×98=
(讨论后,下节课向老师汇报,不明白的下节课一同研究)
板书:
探索与发现(三)
——乘法分配律
(6 + 4)×9 6×9 + 4×9
= 10×9 = 54 + 36
= 90 = 9
(6 + 4)×9 = 6×9 + 4×9
学生举例: (1)
(2)
(3)
字母表示:(a + b)×c = a×c + b ×c
这叫做乘法分配律
教学内容:北师大版小学数学四年级上册,第48——49页内容
目的要求:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
教学重点:探索发现规律,体会理解乘法分配律。
教育点: 使学生通过探索发现规律,体会探索的乐趣,从而乐于探索。
教学思路:
本活动的探索过程与上节课基本相同,也是在活动中发现问题、提出假设、举例验证、建立模型。所以,教学的重点仍应放在探索过程的指导上。
本课首先出示口算题,为新授作准备,最后一题,形成悬念,激发学习兴趣;接着通过出示情景图后,先让学生估一估贴了多少块瓷砖,使学生初步形成印象,也是对前面所学估算的巩固和应用,接着让学生用自己的方法验证估算的结果,学生通过验证过程,从中发现不同的方法可结果是一致的。那么这个发现是否适用不同的数据呢?接着再师生举例验证。验证时,注意指导学生观察算式的特点,学生独立举例后,全班交流,抽象概括出乘法分配律及字母表示的方法。
练习题的设计:
试一试、练一练这两题是基本练习,目的是为了加深理解乘法分配律,通过练习进一步体会运算定律,培养学生的简算意识。拓展题是内容的加深,也是下节课研究的内容。以书本练习为主,尽量淡化不必要的技巧训练。
教学内容:教科书第68页例5,第69页做一做中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。
教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。
教学过程 :
一、复习
教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。
二、新课
1.教学例5。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
图中一共有多少个正方形?你是怎样想的?先请一个学生回答.教师把学生所列的算式写在黑板上。
还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
(5+3)4 54+34
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。
第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
这两个算式的计算结果怎样?
这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5+3)4=54+34
等号左面的算式是什么意思?(5与3的和乘以4。)
等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18+7)6 186+76
左面的算式是什么意思?(18与7的和乘以6。)
右面的算式是什么意思?(18与7分别乘以6,再把两个积相加)
算一算左面的算式等于什么?(18加7是25,25乘以6是150。)
算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。
这两个算式相等。说明18与7的和乘以6等于什么?说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20(15+9) 20xx+209
先来计算一下这两个算式各等于多少?
两个算式都等于多少?
这两个算式相等,说明20乘以15与9的和等于什么?
2.进行抽象概括。
教师指着上面的算式提问:
仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。
教师:如果用a、b、c表示三个数,可以写成下面的形式:
(a+b)c=ac+bc
等号左面(a+b)c表示什么意思?(表示两个数的和同一个数相乘)。
等号右面ac+bc表示什么意思?(表示把两个加数分别同这个数相乘;再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)27,提问:
1.这个算式中是哪两个数的和乘以哪个数?
根据,这个算式等于哪两个乘积的和?
教师在黑板上再写算式:18527十1527,提问:
这个算式中是哪两个数分别乘以哪一个数?
根据,这个算式等于哪两个数的和乘以哪一个数?
2.做第69页做一做中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
四、作业
练习十四的第1、2题。
教学目标
1.引导学生探究和理解乘法分配律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:借助实际问题体会、认识乘法乘法律。
教学难点:用乘法交换律和结合律算式。
预设过程
一、引入
1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?
2、理解题意
二、探新
1、学生独自列式
2、小组交流想法
3、汇报:根据学生的回答板书
25×(4+9)=25×4+25×9=325
25×(4+9)=25×4+25×9
指名学生说出每一步表示的意义
(4+9)×25=4×25+9×25=325
(4+9)×25=4×25+9×25
4、改题:如果改为买45副,你又可以怎样算?
45×(4+9)=45×4+45×9
(4+9)×45=4×45+9×45
5、观察:请你们仔细观察上面这几题,
6、你们发现了什么?
相同点:左边都是两个数的和与一个数相乘,
右边都是两个数和这个数相乘再相加。
不同点:算式左边和右边有什么不同?
联系:算式左边和算式右边有什么联系?
6、举例:这样的算式你能再举出一些吗?
7、概括:你们能把上面的规律概括成一句话吗?
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
你能用字母表示吗?(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
8、质疑:还有什么问题?
三、巩固
1、做一做
判断并说明理由
2、第5题:下面哪些算式运用了乘法分配律
3、第6题
103×1220×5524×20525×24
四、:你们还有什么问题?
五、布置作业:
1、口算
2、作业本
3、寻找生活中乘法分配律的例子。
板书设计
作业设计:
课堂作业本P15
口算训练P16
课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。
在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,
生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。
生2:是呀,一个数好像是公共财产,都是它们共有的。
这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。