小学数学《圆柱的表面积》教学设计【优秀7篇】

数学《圆柱的表面积》教学设计 篇1

【教学目标】:

1、理解圆柱的侧面积和表面积的含义。

2、掌握圆柱侧面积和表面积的计算方法。

3、会正确计算圆柱的侧面积和表面积。

【教学重点】:

理解求表面积、侧面积的计算方法,并能正确进行计算。

【教学难点】:

能灵活运用表面积、侧面积的有关知识解决实际问题。

【教学过程】:

一、以旧引新

1、圆柱体有( )个面,分别是( )、( )、( )。

2、圆柱体上底和下底之间的距离,叫做( ),有( )条。

3、长方形面积=( )×( )

圆的周长=( )c=( )

圆的面积=( )s=( )

二、新课

1.圆柱的侧面积。

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.侧面积练习:练习七第5题

(1)学生审题,回答下面的问题:

①这两道题分别已知什么,求什么?

②计算结果要注意什么?

(2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

(3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3、理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.教学例4

(1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

①帽子的侧面积:3.14×20×28=1758.4(平方厘米)

②帽顶的面积:3.14×(20÷2)2=314(平方厘米)

③需要的面料:1758.4+314=2072.4≈2080(平方厘米)

5.小结:

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

三、巩固练习

1.做第14页“做一做”。(求表面积包括哪些部分?)

2、练习七第6题。

数学《圆柱的表面积》教学设计 篇2

教学内容:教科书第21-22页,练一练1、2题、练习六1-2题。

教学目标:

1、让学生经历操作、观察、比较和推理,发现圆柱侧面展开的形状,并能正确计算圆柱的侧面积。

2、理解圆柱表面积的含义,探究计算圆柱表面积的计算方法。

3、能正确运用公式计算圆柱的侧面积和表面积。

教学重点:

1、理解圆柱侧面积和表面积的意义。

2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。

教学难点:能正确计算圆柱的侧面积和表面积。

教学具准备:圆柱形状的罐头,外面有可以展开的商标纸。

预习作业:

1、预习课本第21-22页的例2、例3。

2、掌握圆柱侧面积和体积的计算方法。

3、在作业本上完成第22页练一练第1题、第2题。

教学过程:

一、预习效果检测

1、圆柱的侧面积=

2、什么叫做圆柱的表面积?

3、圆柱的表面积=

4、一个圆柱,底面半径是2厘米,高是6厘米。求它的侧面积。

二、合作探究

(一)、教学例1

1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。

问:你能想办法算出这张商标纸的面积吗?

⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。

⑵交流:你们是怎么算的?

沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。

⑶讨论:商标纸的面积就是圆柱中哪个面的面积?

观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?

使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。

2、出示例1中的罐头。

⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据比较方便?

⑵出示数据:底面直径11厘米高:15厘米

⑶学生算出商标纸的面积。

⑷交流:你是怎么算的?先算什么?再算什么?

如果知道的是底面半径,怎么算呢?

3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。

追问:怎么算圆柱的侧面积?

根据学生回答板书:圆柱侧面积=底面周长×高

4、练习:完成“练一练”第1题。

(二)、教学例3

1、出示例3中的圆柱。

⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?

⑵让学生算一算后交流。师板书:

长:3.14×2=6.28(厘米)宽:2厘米

⑶圆柱的两个底面的直径和半径分别是多少厘米?

板书:直径2厘米半径1厘米

2、引导画出圆柱的展开图。

⑴这个圆柱有几个面?分别是什么?

⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?

⑶在书上方格纸上画出这个圆柱的展开图。

⑷交流:你是怎么画的?

3、认识圆柱的表面积。

⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?

板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积

⑵算出这个圆柱的表面积。

算后交流,提醒学生分步计算。

4、练习:完成“练一练”第2题。

(三)、全课总结

这节课我们学习了什么?(板书:圆柱的表面积)

三、当堂达标检测

1、完成练习六第1题。

2、完成练习六第2题。

数学《圆柱的表面积》教学设计 篇3

教学内容:《圆柱的表面积》是小学数学第十二册的教学内容。

教学目标:

1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学媒体:圆柱形物体、学具、多媒体课件

教学重点:圆柱侧面积的计算方法推导。

准备:课前布置学生用纸片试做一个圆柱体。

教学过程:

一、交流做圆柱体的情况。

师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。

生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。

生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。

生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。

师:这说明什么呢?

一生抢着说:“原来底面圆的周长等于长方形的长”。

二、探索圆柱表面积的计算方法。

(1)引入

师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?

生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)

师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?

生:把圆柱剪开,变成我们学过的图形。

师:下面分小组探索圆柱的表面积的计算方法。

(2)小组汇报

生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2

生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2 。

师:还有不同方法吗?

生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。

师:这样做的结果是一样的,有什么道理呢?

(生陷入思考)

师:从公式看2个底面圆跑到哪去了呢?

一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。

师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。

师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?

生1:半径或直径和高。

生2:有周长和高也行。

生3:我发现已知周长和高,用第二种方法计算比较快。

师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。

三、自学例3

师:注意思考:(1)这个圆柱形水桶,有什么不一样,计算时要注意什么?

(2)什么叫“进一法”?什么情况下要运用进一法?

生1:这个水桶只有一个底面,不能多算成2个。

生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。

师:在一些用料问题上,我们要根据实际情况来考虑。

四、 计算练习(出了3道题)

由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。

教学反思

这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。

一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。

二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。

三、我也体验到了怎么教数学。

(1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。

(2)立足发展学生的能力,设计课堂教学的策略。

(3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。

四、不足改进。

在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。

数学《圆柱的表面积》教学设计 篇4

一、学习目标:

1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

二、学习重点:

掌握圆柱侧面积和表面积的计算方法。

三、学习难点:

运用所学的知识解决简单的实际问题。

四、学习过程:

(一)、旧知复习

1、圆柱有几个面?分别是xx、xx和xx。

2、底面是xx形,它的面积=xx 。

3、侧面是一个曲面,沿着它的高剪开,展开后得到一个 xx形。它的长等于圆柱的xx,宽等于圆柱的xx。

4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

(二)列式为

1、圆柱的侧面积

(1)圆柱的侧面积指的是什么?

(2)圆柱的侧面积的计算方法:

圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积= xx,所以圆柱的侧面积= 。

(3)侧面积的练习

求下面各圆柱的侧面积。

①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。

小结:要计算圆柱的侧面积,必须知道圆柱的 xx和xx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

2、圆柱的表面积

(1)圆柱的表面是由和组成。

(2)圆柱的表面积的计算方法:

圆柱的表面积=

(3)圆柱的表面积练习题

一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

分析,理解题意:求需要用多少面料,就是求帽子的。需要注意的是厨师帽没有下底面,说明它只有个底面。

列式计算:

①帽子的侧面积=

②帽顶的面积=

③这顶帽子需要用面料=

小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

3、巩固练习

一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

4、总结:通过这节课的学习,你掌握了什么知识?

圆柱的侧面积

圆柱的表面积

五、教学结束:

布置学生课下复习本节课内容。

教学反思

本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

数学《圆柱的表面积》教学设计 篇5

教学目标:

1、让学生经历操作、观察、比较和推理,发现圆柱侧面展开的形状,并能正确计算圆柱的侧面积。

2、理解圆柱表面积的含义,探究计算圆柱表面积的计算方法。

3、能正确运用公式计算圆柱的侧面积和表面积。

教学重点:

1、理解圆柱侧面积和表面积的意义。

2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。

教学难点:

能正确计算圆柱的侧面积和表面积。

教学具准备:

圆柱形状的罐头,外面有可以展开的商标纸。

预习作业:

1、预习课本第21-22页的例2、例3。

2、掌握圆柱侧面积和体积的计算方法。

3、在作业本上完成第22页练一练第1题、第2题。

教学过程:

一、预习效果检测

1、圆柱的侧面积=

2、什么叫做圆柱的表面积?

3、圆柱的表面积=

4、一个圆柱,底面半径是2厘米,高是6厘米。求它的侧面积。

二、合作探究

(一)、教学例1

1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。

问:你能想办法算出这张商标纸的面积吗?

⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。

⑵交流:你们是怎么算的?

沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。

⑶讨论:商标纸的面积就是圆柱中哪个面的面积?

观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系?

使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。

2、出示例1中的罐头。

⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据比较方便?

⑵出示数据:底面直径11厘米高:15厘米

⑶学生算出商标纸的面积。

⑷交流:你是怎么算的?先算什么?再算什么?

如果知道的是底面半径,怎么算呢?

3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。

追问:怎么算圆柱的侧面积?

根据学生回答板书:圆柱侧面积=底面周长×高

4、练习:完成“练一练”第1题。

(二)、教学例3

1、出示例3中的圆柱。

⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米?

⑵让学生算一算后交流。师板书:

长:3.14×2=6.28(厘米)宽:2厘米

⑶圆柱的两个底面的直径和半径分别是多少厘米?

板书:直径2厘米半径1厘米

2、引导画出圆柱的展开图。

⑴这个圆柱有几个面?分别是什么?

⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大?

⑶在书上方格纸上画出这个圆柱的展开图。

⑷交流:你是怎么画的?

3、认识圆柱的表面积。

⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积?

板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积

⑵算出这个圆柱的表面积。

算后交流,提醒学生分步计算。

4、练习:完成“练一练”第2题。

(三)、全课总结

这节课我们学习了什么?(板书:圆柱的表面积)

三、当堂达标检测

1、完成练习六第1题。

2、完成练习六第2题。

《圆柱的表面积》教学设计 篇6

教学内容:

小学数学第十二册教材P33~P34

教学目标:

1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

教学媒体:

圆柱形物体、学具、多媒体课件

教学重点:

圆柱侧面积的计算方法推导。

教学过程:

一、猜测面积大小,激发情趣导入

1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

2、这两个圆柱谁的侧面积谁大?为什么?

3、复习:圆柱的侧面积=底面周长×高

刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

二、组织动手实践,探究圆柱表面积

1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

2、你们觉得这两个圆柱谁的表面积大?为什么?

生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

生:计算的方法

师:怎么计算圆柱的表面积呢?

圆柱的表面积=侧面积+两个底面的面积(板书)

4、那现在你们就算算这两个圆柱的表面积是多少?

生:(不知所措)没有数字怎么算啊?

师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

生1:我想知道圆柱体的底面半径和高。

生2:我想知道圆柱体的底面直径和高。

生3:我想知道圆柱体的底面周长和高。

师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

5、汇报展示:

情况一:半径:31.4÷3.14÷2=5(cm)

底面积:3.14×5×5=78.5(平方厘米)

侧面积:31.4×18.84=591.576(平方厘米)

表面积:591.576+78.5×2=748.576(平方厘米)

情况二:半径:18.84÷3.14÷2=3(cm)

底面积:3.14×3×3=28.26(平方厘米)

侧面积:31.4×18.84=591.576(平方厘米)

表面积:591.576+28.26×2=648.096(平方厘米)

师:通过我们计算验证了我们刚才的判断是正确的。

接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

生2:这样做挺麻烦的有没有更简单一点的方法呢?

6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

所以圆柱体表面积=长方形面积=底面周长×(高+半径)

用字母表示:S=C×(h+r)

我们用这个方法来验证一下我们的例2看是不是比原来简单?

汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

三、分组闯关练习

1、多媒体出示题目。

第一关(填空)

沿圆柱体的高剪开,侧面展开后会得到一个()形,长是圆柱的(),宽是圆柱的(),因此圆柱的侧面积=()×()。

第二关

一个圆柱的底面直径是2分米,高是45分米,它的侧面积是()平方分米,它的底面积是()平方分米,它的表面积是()平方分米。

第三关(用你喜欢的方法完成下面各题)

一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

2、汇报结果,给予评价。

我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

四、质疑(同学们还有什么疑问吗?)

五、反馈小结:

教学反思

1、自主探究,体验学习乐趣

以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

2、合作交流,加深对知识的理解深度。

给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

数学《圆柱的表面积》教学设计 篇7

教学过程:

一、导入

1、圆的半径是5cm,圆的周长是多少?面积呢?

2、长方形的面积的计算公式是:(说一说,做一做)

3、长方体和正方体的表面积怎么计算的?(小组交流汇报)

4、那么圆柱的表面积该怎么计算?

二、新授

(一)1、出示圆柱实物,师生共同探讨“圆柱的表面积指的是什么?”圆柱的表面积=?(结论:圆柱的表面积=圆柱的侧面积+两个底面的面积)

2、圆柱的底面积你会计算吗?(圆形面积s=πr2)

3、圆柱的侧面积你会计算吗?

①圆柱的侧面是什么形状?(长方形)

②圆柱侧面(长方形)面积=长方形的面积=长×宽,

圆柱侧面(长方形)的长=?

圆柱侧面(长方形)的宽=?

③圆柱的侧面积=?

(组内观察交流讨论汇报说明理由)

4、小结:圆柱的表面=圆柱侧面积×圆柱的高

(二)一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要多少面料?(得数保留整十平方厘米)

①求需要多少面料,就是求帽子的……?

②厨师帽是由那几个面组成的?

(三)一个圆柱地面半径是2cm,高是4.5cm,求它的表面积。本题与上一例题有何不同?

三、练习(练习二)

四、总结

通过本课学习你有哪些收获?

五、知识拓展

1、制作一个底面直径是40cm圆柱形水桶,用掉了9420cm的铁皮,这个水桶有多高呢?

2、一座风动力磨坊,高 10m,底面直径 6m,现在要为这座磨坊粉刷涂料,粉刷1平方米需要涂料 2公斤,那么需要买多少公斤的涂料呢?

板书设计:

圆柱的表面积

圆柱的表面积=两个底面的面积+圆柱的侧面积

圆柱的侧面积=底面周长×圆柱的高

教学目标:

1、通过已知长方体、正方体的表面积迁移到圆柱的表面积。

2、在交流中让学生逐步理解圆柱表面积的含义,了解圆柱侧面积与表面积的关系。

3、圆柱表面积=两个底面(圆形)的面积+圆柱的侧面(长方形)面积,在推导过程中使学生们了解到圆柱侧面(长方形)的长等于底面的周长,侧面的宽就是圆柱的高,从而得出圆柱侧面积=底面周长×圆柱的高。

重点难点:

1、理解圆柱的表面积含义,推导计算圆柱表面积,并能正确计算圆柱的表面积。

2、灵活运用圆柱表面积公式,解决生活实际问题。

教具学具:实物展台、圆柱实物、学生自制圆柱模型、生活中的圆柱

预习要求:圆柱的表面积是由哪几部分组成的?怎样计算出圆柱的表面积呢?

教学反思:

在教学过程中师生共同探讨、研究,利用多媒体课件与学生实践操作相结合的方法,很好的使学生理解并掌握了圆柱的表面积的推导和实际应用,完成了本课的预设目标。在今后的教学过程中应该多增加一些实际圆柱物体的表面积的计算和应用,因为学习知识的目的就在于应用。

一键复制全文保存为WORD