不等式性质教学设计【优秀2篇】

教学过程: 篇1

(师生活动) 设计理念提出问题 教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:

1、天平被调整到什么状态?

2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?

3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?

4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢? 通过天平演示,结合自己的观察和思考,让学生感受生活中的不等关系。

探究新知 1、用或填空。

(1)-1 3 -1+2 3+2 -1-3 3-3

(2) 5 3 5+a 3+a 5-a 3-a

(3) 6 2 65 25 6(-5)2(-5)

(4) -2 3(-2)6 36

(-2)(-6) 3(一6)

(5)-4 -6 (-4)2(-6)2

(-4)十(-2) (-6)十(-2)

2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流。

3、让学生充分发表发现,师生共同归纳得出:

不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的。方向不变。

不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变。

4、你能说出不等式性质与等式性质的相同之处与不同

之处吗? 通过动手、动口、动脑,引导学生运用类比、归纳的数学思想去探究问题,在品尝成功的喜悦中激发出学数学的兴趣。

渗透类比思想。

探究新知 4、 下列哪些是不5、 等式x+3 6的解?哪些不6、 是?

-4,-2. 5,0,1,2.5,3,3.2,4.8,8,12

2、直接想出不等式的解集,并在数轴上表示出来:

(1)x+3 6(2)2x 8(3)x-2 0

巩固新知 1、 判断

(1)∵a b a-b b-b

(2)∵a b

(3)∵a b -2a -2b

(4)∵-2a 0 a 0

(5)∵-a 0 a 3

2、 填空

(1)∵ 2a 3a a是 数

(2)∵ a是 数

(3)∵ax a且 x 1 a是 数

3、 根据下列已知条件,4、 说出a与b的不5、 等关系,6、 并说明是根据不7、 等式哪一条性质。

(1)a-3 b-3 (2)

(3)-4a -4b 设置这几个练习,既可以培养学生独立思考的能力,又可强化对概念的理解,使学生真正认识不等式的性质。

总结归纳

在学生自己总结的基础上,教师应强调两点:

1、等式性质与不等式性质的不同之处;

2、在运用不等式性质3时应注意的问题。 学生通过总结,可以帮助自

己从整体上把握本节课所学知

识,培养良好的学习习惯,也为

下节课学好解不等式打下基础。

小结与作业

布置作业 1、必做题:教科书第134页习题9.1第4、5题

2、选做题:教科书第134页习题9. 1第7题。

3、备选题:

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本节课设计旨在让学生经历通过实验、猜测、验证,发现不等式性质的探索过程。用类比和实验探究法作为主要方法贯穿整个课堂教学之中,并以多媒体作为辅助教学手段。让学生充分进行讨论交流,在自主探索和合作学习中掌握不等式的性质。这样就能有效地突破本节课的难点,为学生今后的学习打下坚实的基础。

教学过程中贯穿了一条创设情境,引出新知实验讨论,得出性质探究辨析,突破难点运用性质,解决问题的线索,使学生真正成为学习的主人。在师生交流合作中营造互动的氛围,让学生积极主动地参与教学的整个过程,使他们的学习态度、情感意志和个性品质等都得到不同程度的提高。

为了突破教学难点,让学生能熟练准确地运用不等式性质3,本课设计了多样化的练习以巩固所学知识。在学生回答、板演、讨论的过程中,课堂气氛被激活,教学难点被突破,使学生在轻松愉快的氛围中扎实地掌握性质并灵活运用。同时,学习伙伴之间进行了思维的碰撞和沟通。

教学目标 篇2

1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;

2、初步体会不等式与等式的异同;

3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性。

一键复制全文保存为WORD