在不断进步的时代,我们要有一流的课堂教学能力,反思意为自我反省。如何把反思做到重点突出呢?
“植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在四年级下册的“数学广角”中。其教学侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的能力。
本节课我教学了课本117页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:
一、重视数学模型的建立过程
学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。
二、注重数学思想的渗透
在教学中,我直接例题导入,引导学生用画图方法模拟实际栽树。由于我把例题的数据改大了,因此在模拟实际画图时发生了矛盾,数字太大,不可能全部画下来或是太麻烦、太浪费时间了,就此向学生渗透复杂问题简单化的思想,让学生选择短距离的路用画图的方式得出结果。在这个过程中,学生通过猜想、实验、推理、交流等活动,
既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。
三、注重探究精神和能力的培养
教学中,我创设情境,鼓励学生用画图的'方法来验证猜想的合理性。其后,改变间距,让学生通过画图的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。
四、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题� 我设计了6道练习题,引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。
这节课虽然不乏成功之处,但也有许多遗憾。
一是操作的实效性。在学生画图探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。
二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,
所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。
在一条线段上植树的问题包括:只栽一端、只栽中间、两端都栽的几种情形。例1主要研究两端都要栽的植树问题,也是这一系列内容的起始课。本节课通过一些生活中的事例,让学生根据不同的情况总结出规律,并利用这一规律解决类似的实际问题。现实生活中与“植树问题”类似的有很多:如安装路灯、花盆的摆放、站队中的方阵、锯木头、走楼梯等等。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的`关系,因此,抽取比较有代表性的“植树问题”,作为数学模型研究,总结这一类问题的解决方法和策略。植树问题的教学主旨是向学生渗透有关植树问题的一些思想方法和策略,提高学生的综合分析、推理能力。
学生在学这节内容之前,已经初步积累了一些探索规律的经验,由于这种规律在日常生活中常见,学生容易在生活中找到相关的原型,因而也比较容易体会到探索规律的乐趣和成功感。
教师是学习的引导者,学生是学习的主人,教师在学生的学习过程中起到点拨、渗透、引导的作用。在本节课中,我力图体现学生的主体地位,发挥学生的主观能动性。因此,我采用自主探究式学习模式,学生通过画图,尝试动手“种树”。发现规律,应用规律。通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法内涵。
本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现一些规律,抽取其中的数学模型,然后再用发现的规律來解决生活中的简单实际问题。植树问题通常是指沿着一定的路线植树,这条线段的总长度被树平均分为若干段(间隔),由于路线的不同、植树的要求不同、路线被分成的段数(间隔数)和植树的棵树之间的关系也就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、锯木头、架设电线杆等。这些问题中都隐藏着总数与间隔数之间的关系。
在植树问题中,植树的路线可以是一条线段,也可以是一条首尾相接的封闭曲线如圆形。即使是关于最基本的一条线段上的植树问题,也可能有不同的情形。如两端都要载,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题可以转化为一条线段上的。植树问题中的一端栽另一端不栽的情况。
成功之处:
分类教学,抓住教学重难点,避免出现知识的空档。在教学中,我通过教学例1的两端都栽的情况。这类问题,学生对于求棵树比较容易理解。但是对于在公路的两旁栽树,学生往往容易出错,因此在教学的过程中,多出一些在两旁栽树的情况,让学生能够注意。另外,在这个教学中还注意让学生逆向思考,如:在学校门前小路的两边,每隔5米放一盆菊花(两端都放),从起点到终点一共放了20盆。这条小路长多少米?提醒学生逆向思考问题,也就是要先求一旁小路放多少盆,即20÷2=10(盆),然后再求间隔数,即10-1=9(个),最后求小路的全长,即9×5=45(米)。通过这样的训练,可以使学生不仅知其然,更知其所以然,还能培养学生逆向推理的能力。学生以后再见到难题,可以借助方程顺向思考问题,也可以逆向推理思考。经过这样的训练,学生就不至于感觉数学的困难了。这个单元容易出现的题目就是敲钟问题、锯木头问题、每个角都摆花的问题,这些问题可以一类一类地教学,把每个问题夯实,再进行综合训练,效果会更好。在这些问题中,尤其类似这样的问题要注意教学,如要在三角形花坛的边上种牡丹花,每边种10棵,可以怎样种?最少需要种多少棵牡丹花?这种类型题学生就要有多种考虑,一种是三个角都不种,每边种10棵,需要种10×3=30(棵);第二种是只种1个角,其他两个角不种,就需要种10×3-1=29(棵),第三种是种兩个角的情况,需要10×3-2=28(棵),第四种是种三个角的情况,需要10×3-3=27(棵),通过这样的教学可以避免直接教学课本习题中的棋子问题,学生就可以弄清楚为什么要用每边的数量乘边数候后还要减4。
在教学例1两端都栽的情况,也可以顺势教学其它情况特别是两端都不栽,除了画线段图理解之外,也可以让学生解释为什么要用间隔数减1,实际上中两都栽的情况中间隔数加1再减2,所以得到棵数等于间隔数减1。这样再教学只栽一端时,学生又可以在两端都不栽都情况下间隔数减1加1,就可以得到棵树等于间隔数,由此类推,学生更容易理解这三种情况之间的联系,不至于学一种记忆一种。
不足之处:
学生在学习例题时学得很好,一到接触到不同类型的植树问题就不知所措,还是存在搞不清哪种植树问题的情况。
再教设计:
在教学中,还是继续采取分类教学,既注重对分类教学的讲解,还要注意逆向思维的训练。
4月15日,我参加了丰都县三坝乡录像课决赛课活动。我参赛的内容是《植树问题》。《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的内容。数学广角作为人教版新增的内容之一,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。我发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法。从教学目标的设定,教学设计和知识结构分析来看,通过实践,基本上我感觉还算是比较成功的一堂课,有很多收获,感悟如下:
这个知识点的原型是一条直线路上用不同的间隔来栽树,得到不同的棵树,通过数字间的归纳,得出规律性结论并应用。教材将植树问题分为几个层次:两端都种,两端不种,只种一端。在教学中,侧重于向学生渗透化归的数学思想。在我看来,我们不仅仅是让学生会熟练地解决与植树问题相关的实际问题,而应该是将此类题作为渗透学生化归思想和原型提炼方法、甚至是培养学生双向可逆思维的一个学习支点,我要做的就是借助内容的教学发展学生的思维并提升思维的能力,通过课堂结果来看,还是取得了一定成效。
一、教学设计有深度、有厚度
教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题---猜想验证---建立模型”不断数学化的过程,较好的实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归生活,也让学生再一次体验数学与生活的紧密联系。另一条线以渗透数学思想方法为线索。对于植树问题的探究,不仅让学生通过画线段图的方式,自主探究、小组合作、寻找、掌握等模式,而且结合线段图让学生理解了为什么两端都要种时,棵树要比段数多1,多的1指的是哪棵树。让学生不仅要知其然,还要知其所以然。
二、敢于放手让学生去探究,体现学生的主体地位
整堂课,我都是让学生通过自主探究,小组合作,汇报交流而得出结论。是他们自己总结出来的规律,而不是老师给他们灌的。因为我知道学生才是学习的主体,学习的主人。在这里为了便于研究,我把例题稍作了改动,原来是20米,每隔5米植一棵,我改为12米,每隔3米植一棵。(因为上这节课之前我试上过几次,学生画20米就画的20厘米,本子不够长。所以我就作了调整。)我把这一个单元的内容拿到这一节课来教学(三种植法),让他们小组讨论帮组设计植树方案。这个时候在组内就产生了争议,我不怕他们争论。有的事情就是要越辩才越明。我觉得学生在争论是好事。还有教师点拨时指出了段数就是间隔数(因为在试上时我说间隔数有部分学生不理解,我说段数学生都知道,所以这次教学时我把间隔数改成了段数)。
三、 关注拓展和应用
植树问题在现实中的应用有很多,我们不但要讲清楚,辨析出由于路线不同,植树要求不同,路线被分成的段数和植树棵数之间的关系就不同,比如安装路灯,比如切割,比如上楼梯,比如敲钟,比如锯木头等等,掌握了以后都可以用植树问题的模型来解决它,所以在教学设计的时候,充分考虑不同的题目,并不断提出变式的要求。
四、教学中,我认为以下几点要改进:
1、 由于这节课充分展示多媒体对教学的辅助作用,所以容量比较大,有个别学生吃不透,对教材的梳理上还要学会取舍,照顾好中差生。
2、 除非题目中出现很明显的两端都种,否则学生不大会主动判断属于哪一类植树问题。
3、 解决问题时,审题不够谨慎,容易忽略两边或者两端这样的词语。
4、教师对课堂的生成问题处理还不够灵活。
5、对学生的评价这块还显得能力不足。
6、普通话也有待提高。
总之,一节课下来,发现自己真的还有那么多的不足之处,而且这些不足还不是一时半会能解决的。反思自己,今后还应加强学习,学习理论知识,学习优秀课例,特别是应针对自己的不足之处,运用与实际教学中。希望能通过自己的一点一滴积累和改进,提高自己的业务水平和调控、处理课堂生成的能力。希望不久的将来,能看到令自己满意的自己。
存在问题:
一、练习设计缺乏趣味性
题型设置太过单一(应用题),可挑选些填空题、选择题,让孩子们进行智力闯关,从而体验作业也是一种快乐。
二、细节的处理不够到位
要善于鼓励。轻松愉悦的课堂离不开学生的积极投入,更离不开老师由衷的'鼓励。课堂中,我惦记着教学任务,也放不开自己,没能经常鼓励、赞美学生,好孩子可是夸出来的呀!
三、对学生估计过高
这节课还有不足的地方,那就是我把学生估计过高,我以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。
“植树问题”通常是指沿着一定的路线,这条路线的总长度被树平均分成若干段,由于路线不同、植树要求不同,路线被分成的段数和植树棵数之间的关系就不同。现实生活中类似的问题还有很多,如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。
教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。
数学《课标》强调数学与生活的联系,在教学要求中增加了“使学生感受数学与现实生活的联系”,而且要求“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会”使同学有更多的机会从生活中学习数学和理解数学,体会到数学就在身边,感受到数学的趣味和作用,体验到数学的魅力。
一、设计流畅简单易懂。
整节课设计基于本班学生实际情况,在创设情境使学生明确要学习的内容,引出例题探讨植树问题,不规定间距,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生在操作中感悟,学生通过摆一摆,数一数,得出结果。学生的思绪一下打开了,最后出现了三种方案:第一种,两头都种,有5棵数。这样可以让学校有更多的绿色。第二种有3棵,头尾都不种。因为节约成本。第三种有4棵。种头不种尾;或者相。学生能够找到简单植树问题的规律“间隔数+1=棵数”“间隔数—1=棵数”。
二、注重实践体验探究。
教学中向学生提供多次体验的机会,注重借助图形帮助学生理解建构知识。在教学过程中,时刻对数形结合意识的渗透。教学中我先激励学生自己做设计,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面自己设计的植树问题:间隔2米、4米、10米,而栽树的棵数比段数(间隔数)多1。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、联系生活拓展思维。
有意义的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有意义。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能达到继续建构学习的水平。所以,这节课我多次向学生提供体验的机会,学生通过摆一摆,数一数,得出结果。学生的思绪一下打开了,最后出现了三种方案:第一种,两头都种,有5棵数。这样可以让学校有更多的绿色。第二种有3棵,头尾都不种。因为节约成本。第三种有4棵。种头不种尾;或者相。学生能够找到简单植树问题的规律“间隔数+1=棵数”“间隔数—1=棵数”。
画一画线段图或者用手边的东西代替树摆一摆,学生证实自己的考虑是全面的。这样的设计会使学生的印象更加深刻。借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有凭借,才能使得数学学习的思想方法真正得以渗透。
一、教材及学情分析
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。本节课主要探讨关于在一条线段上植树的问题,一般有三种情形:只栽一端、只栽中间、两端都栽等。例1主要研究两端都要栽的植树问题,也是这一系列内容的起始课,教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,抽取出数学模型,再利用规律回归生活,解决生活实际问题。
设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。
二、教学目标:
1. 使学生通过生活中的事例,初步体会解决植树问题的方法。
2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。
3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。
三、教学难点重点:栽树的棵数与间隔数之间的关系,用解决植树问题的方法解决实际问题
四、教学过程设计:
(一)谜语导入 激发兴趣
(课前)两棵小树十个杈,不长叶子不开花,能写会算还会画,***活不说话。请你们猜一猜(手)引出间隔。
今天我们就一起来研究和间隔有关的植树问题。(板书:植树问题)
【设计意图】课始,教师创设找手上数学问题的活动情境,让学生在手指张开、并拢的活动中清晰地看出手指的根数与间隔数之间相差1的关�
(二)设置冲突、激发思索
1. 课件出示:在全长1000米的小路一边植树,每隔5米栽一棵(两端要种)。一共需要多少棵树苗?
(1)学生读题,理解题意;(2)同学之间互相交流,理解题目意思;(3)学生汇报发现的信息。(4)学生在练习纸上答题
教师巡视,挑选3种答案,让学生书写到黑板上。
生1: 1000÷5=200(棵) 生2: 1000÷5+1=201(棵)
生3: 1000÷5+2=202(棵)
师:棵数与间隔数究竟是怎样的关系呢?怎么研究?画图是个好方法,我们要画出200个间隔,你们感觉怎么样?(太多了,太麻烦了)我们用一个小一点的数字一起来研究两头都栽的情况下间隔数和棵树之间的关系。准备一条线段,代表小路,上面标着刻度,5米为一个间隔,请你选择一个小数据,在上面“种一种”。然后观察数据,看看棵树和间隔数到底有什么关系?
出示图和表格
单位:米
全长(米) 间隔长度(米) 间隔数(个) 棵树(棵)
5
5
我的发现:_____________________________________
【设计意图】新课程倡导学生动手操作,合作探究的学习方式。因此,我首先让学生小组合作动手操作,可以画线段图,可以摆石子,通过线段图和摆石子等活动模拟在路的一侧种树,找到间隔数和树的棵数之间的关系,即发现植树问题的规律,为后面的解决问题做好了铺垫。
2.教师参与,总结规律
在各小组汇报交流的基础上,教师引导学生理解并总结:总长÷间隔=间隔数 间隔数+1=植树棵树
3.运用规律,解决问题
课件出示例1,放手学生独立解决。
【设计意图】例1本来是为探究规律提供素材,在这里我灵活处理教材,在上一环节学生发现规律,总结规律的基础上,我把它作为练习题放手学生独立解决,较好地体现了学生的主体地位,同时也检测学生是否能学以致用。
(三)巩固应用
1.点击生活。
(1)工人叔叔要在路的一边安装路灯,一共安装了6座。从第一座到最后一座一共有( )个间隔。
(2)一排同学之间有7个间隔,这一排有( )个同学。
(3)小红住的楼房每上一层要走20个台阶,从二楼到四楼要走( )个台阶。
2.以闯关游戏完成习题。
第一关 我会选:5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个站?正确的
列式是( )。
①12÷1 ②12÷1+1 ③12÷1-1
第二关 我会填 :在一条80米长的公路一边植树(两端要栽),如果每隔10米种一棵,一共需要树苗( )棵。如果每隔8米种一棵,一共有( )个间隔。
第三关 解决问题我能行: 在一条长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?
小结:恭喜所有顺利过关的同学,你们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。
【设计意图】有关研究表明,小学生的有意注意一般只能持续到上课的前20分钟左右,因此在练习巩固环节,大多数学生都比较疲惫。针对学生的注意特点,我设计了闯关游戏,并且三关的习题设计形式多样,难易度上呈现梯次分布。这样,不仅有效地激发了学生的学习兴趣,并且使新知的应用检测落到实处。
四、全课总结
1.通过这节课的学习你有什么收获?
2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。
【设计意图】这环节我设计了先回顾这节课所学知识,再提出植树问题,为下节课的继续探究做好了进一步的铺垫。
植树问题是非常生活化问题。其中包含两端都栽;只栽一端和两端都不栽,以及封闭图形的栽树。然而由此衍生出的锯木头,敲钟,上楼梯,以及汽车站点,公交车发车班次等问题是非常有趣的。
在教学中,我尽可能引导学生,用图示法,看手法,以及站队法等直观方法帮助理解,以促使孩子们学会分析问题的方法。同时在引导学生读题的过程中,对问题进行逐字逐句的分析,让孩子们理解总长,间距,间隔数等名词。同时在直观操作中理解,总长除以间距等于间隔数。通过站队,让孩子们清楚的看到,站队的人数总比间隔数多一,这属于两端都栽。同时通过画图,看手指和指间隔进一步理清间隔,间距,棵树之间的关系。
对于封闭图形,我采用同学拉圆圈的形式,通过数人数和间隔数,发现规律。
同时对于多边形栽树,端点都栽的问题,我让孩子们六人一组合作,可以站队,也可以画图来学习。孩子们学习兴趣极高,通过归纳汇报,收到了不错的效果。
然而,还有一部分孩子,学习数学建模的方法有待进一步培养。一部分孩子不动脑,总是以旁观者的角色,等靠要,不主动学习,不自己分析,学习停留在背的模式,使得教学效果参差不齐。会学的学精,后进的只知皮毛。题目稍加变化,便无从下手。
针对以上问题,在今后的教学中,还应化大气力培养孩子们自觉学习,勤于思考的`习惯,让他们找到正确的学习方法,只有这样,学习才不会僵化。
植树问题是新人教版五年级上册第七单元的内容。本节课我教学了课本117页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:
一、在教学中,我不忘让学生感受到了数学来源于生活,也应用于生活的道理。比如:最开始以谜语激趣,让学生猜到“手”。以每个人都具备的“手”开始,让学生感知棵数与间隔之间的关系。再用任意一组座位上的人与他们之间间隔的关系,引出课题“植树问题”。这样既有趣味性又贴近学生的生活。接着,例题又是校园植树问题,以及后面让学生思考植树问题的应用领域等等,都是来源于生活的例子。
二、在教学过程中,我注重了对数形结合意识的渗透。给出了例题,学生猜想之后,引导学生画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想。其后,改变路长,让学生通过画图的方法再次验证,并完成表格,从而发现规律。
三、在教学过程中,我重视数学模型的建立。建立数学模型的'过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。所以,建立数学模型是十分关键的一步。因此,我在教学中设计了“理解信息—形成猜想—化繁为简—交流汇报—发现规律—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。
四、关注植树问题模型的拓展和应用。
植树问题的模型是现实世界中的事件,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解,我做了两方面的工作:一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题� 我设计了4道练习题,引导学生进一步体会,从而使学生感悟数学建模的重要意义。
这节课虽然不乏成功之处,但也有许多遗憾。
一、是操作的实际性。在学生画图探究不同路长情况下间隔数和棵数的规律时,还是有个别同学不知道如何画。可能是操作方法交待不够清楚,以致部分学生无从下手,影响操作效果。
二、是在黑板上板书的同学,虽然在屏幕上给出了标准答案,但缺乏在黑板上板书同学的评价。
三、没有对规律进行变式。比如:得出规律时,可以说说“间隔数=棵数-1,全长=间隔数×间隔长”等等。
今后教学改进措施:
一、课前一定要备学生,充分了解学情。
二、深钻教材,讲重点知识时,多预设几个答案。
三、寻求学生最能理解的教学方法去教学。
11月21日我跟随教研室梁老师还有一行十多人到来北京中关村二小参加了海淀区中年级段小学数学教研活动。本次活动的主题是:借助模型解决问题,有效拓展思维路径。北大附小邓旭老师讲了《分枣》一课,通过分枣这一情境的创设,让孩子借助点子图、格子图理解56除以4分的过程,通过对算理的理解进而进行竖式计算。中关村二小王娟老师讲的《除数是整十数的除法》让学生借助小棒这一实物,体会分的过程,用模型支撑算理,理解竖式。两节课都针对教研主题进行了有益的尝试。教师们在听课的基础上,课后分为6个大组针对模型教学的看法和困惑,展开了热烈的研讨、交流。各个小组的讨论如火如荼地进行着,各小组陆续将本组的结果或以文字,或以图画的形式记录在大彩纸上,并张贴在黑板上。现场的老师们都在思考并积极参与到讨论之中,教研氛围既紧张又融洽,时时迸发碰撞出思维的火花。最后海淀区教研室张红老师从不同的视角阐述了模型在教学中的应用与作用,我们如何进行把握,如何使模型与教学内容进行有效的对接,带动老师们进行深入的思考。在听课、研课的过程中,老师们有诸多收获和思考。用张红老师的话说:区教研其实是领着老师过日子,课要朴实无华,却又有研究的价值,帮助老师们体会在路上的思考。
听课之后梳理收获与思考。本节课重点讨论了:一节计算课教学如何让学生感兴趣?怎样借助模型有效体现算理突破算法?模型该怎样去选择?什么时候用?什么人用?一系列的问题被提出来,但头脑中却没有太清晰的答案,还要慢慢捋。
数学教学在备课时什么最重要,我觉得确定教学目标是关键。教学目标是教学活动的出发点。它决定着教学内容的确定与安排,教学方法的选择与运用。两节课同时将教学目标设定用模型理解算理,创设分的情境,让学生借助模型去丰富体验过程,算理与算法结合,竖式与小棒对接,强化了学生的认知。想想自己的教学可能更多的侧重于算法,这一次听课活动使自己对这一部分内容有了更深的认识。
新课改的数学强调数学与生活的联系,把枯燥的数学变得生动、有趣、贴近生活,就要创设一定的情境,激发学习兴趣。两位老师通过分枣、分巧克力,使问题回归生活。教学过程中两位老师都舍得把更多的时间留给孩子去表达、去体验。学生的摆一摆、圈一圈、画一画、说一说,体现了学生的独立思考,教师不断地引导交流、梳理、提升,在理解的基础上,达成知识的共识,使课堂充满了学生思维的火花。
今后的数学教学中,我将努力营造有利于学生学习的情境氛围,让学生主动参与知识的建构过程,自主交流,大胆质疑,让学生在做中学,学中悟,悟中得。
“植树问题”原是人教版新课程标准实验教材四年级下册“数学广角”的内容。但这次� 本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。
这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。同时能灵活构建知识系统,注重教学内容的整体处理。能活用教材,对教材进行了整合和重构,让资源启迪探究。激发学生探究的欲望。设计的例题是一个开放性的`题目,提供给学生的是现实的,是有意义的,挑战性的。开放性的设计,使课� 让学生比较系统地建立植树问题的三种情况,即两端都种;两端都不种;只种一端。
1、让学生主动学习。
学生是数学学习的主人,教师作为学生学习的组织者,引导者与合作者,应及时关注学生学习的起点。在教学中,我选取生活中的学生熟悉的事例,请学生设计一条路上植树的情况。根据学生反馈上来的情况进行分类,在教师的引导中让学生探究,设境激趣,建立知识表象,使学生得到启迪,悟到方法。把学生的主动权交给学生,让课堂真正成为学生学习的舞台。
2、从生活中找答案,找灵感。
“数学来源于生活,而又应该为生活服务。”在学生对植树问题的几种不同种法的基础上,我开放课堂时空,让学生从排队做操、插彩旗,让学生认识生活中的许多事例看上去跟植树问题毫不相似,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。使学生充分感受到数学知识来源于生活,又回归于生活。此外,我还进一步拓展了教学目标,在画图求解的过程中,让学生觉得这样画到100米麻烦,产生另辟蹊径的念头,引导学生得出可以先从短一点的研究起,发现规律后在来研究复杂的问题,使学生体验“复杂问题简单化”的解题过程。
一堂课上下来,觉得还是对学生扶的很牢,没有放开,对学生的学习起点没有充分掌握,以至课堂中还有很多不足,期待日后调整改进。
本节课的教学,我力图在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时建立数学模型,解决实际问题。反思整个教学过程,我认为这节课有两点做得比较好:
一、呈现开放的数学材料。
在处理教材时我把例题改为条件开放的植树问题,不规定间距,同时改大数据,将路的长度变成20xx米。如此修改的意图是,让学生在开放的情境中引起冲突:数据这么大,这要画到什么时候啊!从而引导学生想新的解题策略:可以先把数变的小一些,研究规律,再来解决数据大的问题。自然引出在20米长的小路一边每隔10米种一棵树,你觉得可能种几棵?在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度,提炼出植树问题的三种种植方案。
二、注重学生的自主探索。
教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到每隔5米种一棵,5棵树,4个间隔;每隔4米种一棵,6棵树,5个间隔;每隔2米种一棵,11棵树,10个间隔;……,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比间隔数多1。这样就让学生经历这个过程并从中学习一些解决问题的方法和策略。并且我还注重了对数形结合意识的渗透。
也有两点不足之处:
1、学生汇报时,我处理的`比较仓促,没有做很好的引导,如果能把学生的发现一一板书,可能更有说服力。如果我继续追问:如果不是20米长的小路,是任意长的小路一边两端种树,棵数还会等于间隔数+1吗?从而能更好的验证自己发现的规律的正确性。
2、整堂课师生之间的问答比较单一,在反馈练习时,可以让学生提提问,多一些师生之间的交流,使课堂气氛更活跃。
教学中,首先要让学生区分出植树问题的三种类型。即所谓的 “ 两端都种 ”“ 只种一端 ” (包括封闭图形)与 “ 两端都不种 ” 的三种情况。并将 “ 三种情况 ” 的区分以及相应的计算法则看成一种 “ 规律 ” ,要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。
其次,要教给学生解题的方法。不管什么植树问题,一般都是先求出有几个间隔。可以根据 “ 路的长度 ÷ 间隔长度=间隔数 ” 然后再根据植树问题的三种类型去求出棵树。也可以根数告诉的'棵树,用 “ 加一 ”“ 不加不减 ”“ 减一 ” 求出间隔数,再求出路的总长。
其三,要让学生学会联系生活。把生活中的问题转化成植树问题。可以让学生找一找生活中的 “ 植树问题 ” ,很多同学联想到:公路两旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的铁柱等都含有与 “ 植树问题 ” 相同的数量关系。亚奥让他们学会分析是植树问题中的哪种类型。然后可以利用 “ 植树问题 ” 的规律来解决它。课堂中可以结合教学内容,让学生利用所学找到规律进行解决,使他们的认知得到进一步的深化和提高,从而获得了学习数学的乐趣,达到了理想的课堂教学效果。
《植树问题》教学设计
《植树问题》教学设计本文来自:教师招考论坛作者:平潭一中九八届
植树问题
执教教师:福州市麦顶小学刘凌芳
指导教师:福州市麦顶小学郑祥东
张尊贵
设计理念
本节课通过解决一个实际问题,引出植树问题自主探究建立知识模型灵活应用,解决一些实际问题。本节课教学的最终目的是希望学生在学习这节课之后,能明白解决类似植树问题的题目时,较好的方法是先画图,然后根据图来发现规律,从而解决问题。即利用“数形结合”的思想解决问题。
教学内容
《义务教育课程标准实验教科书数学》(人教版)四年级上册第117--118页例题1及相关练习。
学情与教材分析
综合实践活动课是培养学生创新精神和实践能力的一门重要课程,而创新思维能力是其中的核心问题,它能使学生在各种探究学习活动中,有效地进行帮助学生形成主动探究问题的习惯和能力,为创新能力的发展打下基础。“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透“对应”和“复杂问题从简单入手”的思想。为此,本课制定了三个教学目标:
1.通过探究发现一条线段上两端都种、两端都不种和只种一端三种不同情况植树问题,初步知道和掌握在一条线段上植树问题的规律,会正确解决类似的数学问题。
2.学生经历和体验“复杂问题简单化”的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学目标
1.初步知道和掌握在一条线段上植树问题的规律,会正确解决类似的数学问题。引导学生用画线段图的方法分析理解题意,初步培养学生解决植树问题的有关能力。
2.经历用一一对应的数学思想解决实际问题的过程,体验“复杂问题简单化”的策略及分析解决问题的方法。初步培养学生的探究意识和能力。
3.体会植树问题在日常生活中的广泛应用,激发学生学习情感与求知欲望,渗透对应思想,并对学生进行热爱劳动,保护环境的教育。
教学重、难点
理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。
教、学具准备
实物投影仪,线段图等。
教学过程
一、创设情境,导入新课,渗透对应思想
师:同学们,认得这是什么吗?
(课件出示三明治图片)
师:你能按照一定的顺序说说它是由什么组成的吗?
师:你们知道这样的排列叫什么排列吗?
师:一片面包间隔一片肉,在数学上,我们把这种排列叫“间隔排列”。
(板书:间隔)
师:下面有个挑战性的问题。刘老师听说最近有一个面包店要做一块全世界最大的三明治,供几百人吃一餐。面包片,肉片按以上间隔排列,正好排完,不用数,你能判断面包片与肉片谁的数量多?
【设计意图:以有个挑战性的问题做一块全世界最大的三明治,引入本课的学习,增强了学生的好奇心与探究欲,使学生全身心地投入到学习活动中来。】
师:为什么你认为面包片多?
师:同学们说的真棒!因为前面都是一一对应,最后一个是面包,所以面包片多。今天我们就用“一一对应”的思想来研究植树问题。
(板书:对应、植树问题)
二、自主学习,合作探究,建立数学模型
㈠探究植树问题的三种情况
师:几个月前,我们福州新修建了一条步行街,即台江步行街。
(课件展示台江步行街)
师:这么美的步行街在建设初期只是一条光秃秃的道路,怎样美化它呢?可以在街旁种树!瞧!
(课件出示题目:给1000米长的台江步行街一边植树,每隔5米栽一棵,需要准备多少棵树?)
师:从图上中你得到什么信息?要解决什么问题?
请你先猜一猜。
【设计意图:猜测是一种培养学生推理能力的好方法。这时学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生先进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。】
生反馈:
方法一:1000÷5=200(棵)
方法二:1000÷5=200(棵)200+1=201(棵)
…
师:到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?我们用这条线段表示1000米,先在这儿种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去…
师:大家看,已经种了多少米?(40米)这么长时间才种了40米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
【设计意图:通过创设植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了几种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)】
师:刘老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?
师:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。(板书:从简单入手)大家想不想用这种方法试一试?
师:“从简单入手”也是解决问题的一种策略。“1000米”数据比较大,比较复杂,你想从简单的想起,那么你想把它先看成多少?
师:大家想的都不错,那么我们就从15米想起吧!现在我们把这条15米长的路用一条线段表示,每隔5米栽一棵树,有几种植树方案呢?请你用自己喜欢的图案表示树,在线段图中设计出各种不同的植树方案,并说明设计理由?然后在小组内交流。
【设计意图:创设问题情境,放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了学生自主探索、小组合作的意识,充分调动学生学习的积极性,把学习的主动权交给了学生。教学形式上,重视学生的独立探索和合作交流的有机结合,课堂中让学生根据自己的体验,用自己的思维方式去探究,去发现,去再创造,使每个学生都有一块属于自己思维的开拓区域。从学生已有的生活经验出发,让学生自由设计,然后引导学生自主探索、合作交流,得出“两端要栽:棵数=间隔数+1”,体现了教学方法的开放性。】
(生活动,教师搜集方案,在展示台上展现)
1.师:现在我们一起来研究同学们设计的方案。
(出示四种方案的线段图)
师:四种方案都符合设计的要求,谁能说说它们不同的地方在哪里?
师:请你具体地说一说?
师:这样就把树与路,怎么样?
师:很好,用一一对应的思想研究植树方案,第二种呢?
2.师:同学们真聪明,找到了这几种方案的不同之处。师:同学们真聪明,找到了这几种方案的不同之处,那它们之间有没什么相同的'地方呢?
师:每两棵树之间的距离5米就叫做“间距”。(板书:间距)
师:谁来指一指,数一数,第一种方案有几个“间距”?
师:有3个间距,我们就说它的“间隔数”是3。(板书:间隔数)
3.师:观察这三种方案,你发现棵数和间隔数之间有什么关系?
⑴师:两端都种的情况,你们是怎么发现棵数比间隔数多1的呢?
师:有没有其他办法?
生:一棵树对应一个间隔,一棵树对应一个间隔,最后会多1棵树。
师:刚才同学们用的是“一一对应”的数学思想来解决问题。
⑵师:只种一端的这种方案,怎么用一一对应的思想解决棵数和间隔数的关系?
⑶师:两端都不种时为什么棵数比间隔数少1呢?
㈡探究两端都种的情况
师:今天由于时间关系,我们先研究两端都种的情况。那么这种情况,间隔数和棵树有什么关系呢?
(师板书:棵数=间隔数+1)
师:刚才我们从简单的想起,知道路长15米,间距是5米,你们能不能用计算的方法,求出棵数呢?独立思考,试着算一算。
师:15米要准备4棵,那么1000米的路,两端都种要准备多少棵树?你会解决吗?试试看。(课件加上“两端都种”)
三、课堂小结
师:今天这节课你感受最深的是什么?
师:刘老师也找了些生活中的“植树问题”。如:上楼梯,锯木头,钟声等。(课件展示)你还能想出生活中的哪些地方用到“植树问题”吗?
师:“植树问题”在生活中应用比较广泛,下节课我们继续学习。
【设计意图:使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。】
设计思路
在本节课里,根据课程标准的精神,学习的主要任务定位在“能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意”。本节课的教学,有以下思考:
一、挖掘教材内容,发展学生的应用意识
现在的数学教材内容具有一定的抽象性,呈现内容的方式是单一的、静态的。因此教师要认真钻研和熟悉教材,把蕴涵在教材中的那些可以让学生开展探究学习的资源挖掘出来,精心设计探究活动。为学生提供合适的、开放的探究学习材料,让学生进入一个自由选择、自主发现的学习活动平台。
二、重视数学思想与方法的渗透
学生在经历“问题情境-探究新知-建立模型-灵活运用”这样的知识建构过程中,力求参与面“广”,充分利用小组合作学习形式,
《植树问题》是新人教版小学五年级数学上册数学广角的内容。本节课是第一课时,是植树问题中比较简单的情况。教学目标和教学重点都是引导学生发现两端都栽时,棵数比间隔数多1,渗透化繁为简、一一对应的数学思想。教学难点是理解这一规律 。
为了突出重点,探究新知环节,我分了五个层次进行:第一个层次,同桌合作,模拟在20米的小路一旁植树的过程,思考棵数与什么有关;第二个层次,独立操作,模拟在25米的小路一旁植树的过程,感知棵数与间隔数的关系;第三个层次,根据前两次的经验,不操作,画线段图,探究在30米的小路一旁植树的情况,验证棵数与间隔数的关系;第四个层次,想象在35米的小路一旁植树,计算出要栽多少棵;第五个层次,观察比较,找出四个题目中的相同点。通过五个层次的教学,学生不难发现“间隔数+1=棵数”这一规律,同时渗透“化繁为简”这一重要数学方法。突破“理解这个规律”这一难点时,我提示:“植树问题能不能也看成是两种物体的一一间隔排列呢?”。
在老师的引导下,学生思考后,自己说出用分组的方法,把每组中两种量一一对应起来。接着,老师因势利导,学生发现如果一组一组的分,正好分完,则数量相等;如果有剩余,则数量就是相差1,帮助学生理解间隔数+1=棵数。从学生学习状态、课堂交流来看,达到了本节课的目标,实现本节课的预期目的。
本节课的还有很多足之处:
1、学生回答问题不准确,甚至出错,我觉得是老师组织语言不严密,问题的指向性模糊,备学生不太充分等多方面的原因造成的。学生有时一脸茫然,有时不知所措。
2、课堂条理还需改进,有遗漏的环节,有强调不足的情况,也有不必要重复的话语。
3、因担心时间超时,在教学过程中,不予理睬学生的'答非所问,而急于得到只符合老师想要的答案。
有遗憾的课才是真实的课,才是更有价值的课。我会以每节课为起点,在需要努力的方面下功夫,需要改进的地方多揣摩,从一点一滴做起,使自己的课堂日趋完美,上得精彩,少留遗憾。
“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法――化归思想,同时使学生感悟到应用数学模型解题所带来的便利。
一、教学目标:
1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。
2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。
3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。
二、教学重点:理解植树问题棵树与间隔数之间的关系。
教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。
三、教具准备:多媒体课件和未完成的表格。
四、教学过程:
课前准备:(多媒体放映牛顿和苹果的故事)
师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)
谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?
(一)、提出问题、引发思考、探究规律。
1、手引发的思考。
师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?
师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。
2、整体感知、确定研究方向。
课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?
展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)
理解:“间隔”、“间隔数”、“棵数”。
(二)、小组合作,探究规律
1、提出问题。
课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?
学生的猜测可能有不同的结果:1000;1001;1002)
2、自主探究。
棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。
课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。
引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?
让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。
3、发现规律。
学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。
师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?
课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?
师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。
4、总结归纳。
归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。
5、总结规律。
师:你们能用一个式子把规律表示出来吗?
【板书】间隔数+1=棵数 棵数-1=间隔数
6、联系生活
在我们生活中存在着很多类似植树问题的现象,你发现了吗?
让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。
(三)、点击生活
①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )
②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?
③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?
④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?
(四)、拓展延伸。
(课件出示世界著名数学问题)
师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?
早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)
十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)
进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)
(结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!
植树问题是新人教版新课程标准实验教材五年级上册第七单元的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。
植树问题教学侧重点:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本单元的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。通过教学,不仅是向学生渗透某种数学思想方法,而且借助内容的教学发展学生的思维,提高学生一定的思维能力。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的。学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关�
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就
是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多
1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、利用学生资源,加强生生合作
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。这单元教学充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。
本单元教学不足的是:
一是没有举一反三的让学生进一步理解。
二是怎样让学生理解的更透彻,解题思路更清晰。功夫下的不深。 今后教学改进措施:
1、深钻教材,上课注重中差生,做到举一反三。
2、寻求学生最能理解的教学方法去教学。
3、课前一定要备学生。充分了解学情。