《圆锥的体积》教学设计优秀7篇

一个好的教学设计是一节课成败的关键,要根据不同的课题进行灵活的教学设计。首先对每一个课题的教学内容要有一个整体的把握。下面是可爱的小编燕子帮助大家收集的《圆锥的体积》教学设计优秀7篇,欢迎参考。

圆锥的体积教学设计一等奖 篇1

1、面向学生:小学

2、学科:数学 人教 六年级 下学期

3、课时:1

本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。

学习本课需要达成以下的目标:

1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。

2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。

3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。

本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。

教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。

本课重点在于圆锥体积公式的推导。鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。

从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。

学生是九山小学,属农村的学生。

美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。”通过前几节课的学习,学生已经对圆柱、圆锥的基本特征和各部分的名称有了清楚的认识,知道了圆柱体积的计算方法,并能运用圆柱体积的计算公式解决具体问题,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。推导圆锥的体积时,学生分组操作,借助倒沙子的实验,亲身感受到等底等高的圆柱与圆锥之间的3倍关系。但是他们不易发现圆柱与圆锥体积之间不具备3倍关系的前提,可借助体积关系不是3倍的实验器材,引导学生经历由表及里,层层逼近的过程,进行深度的信息加工。

教学重点:掌握圆锥体积的计算公式。

教学难点:圆锥体积公式的推导过程。

教具、学具:准备若干同样的圆柱形容器,若干与圆柱等底等高和不等底不等高的圆锥形容器,沙子,课件。

启发式、自主、合作、探究式。

本课流程如下:

1、教师演示,激发学生的求知欲。

2、探究新问题。

3、通过实验,解决新问题,寻求真理。

4、归纳总结圆锥的体积公式。

5、运用公式解决问题,培养实践能力。

【学生课前准备】:

课前,让学生通过百度搜索圆锥的有关知识。

课前展示,汇报。

提问:上节课我们学习了圆柱的体积,怎样计算圆柱的体积呢?

2、揭示课题

这节课我们学习圆锥的体积。(板书:圆锥的体积)。猜测一下,圆锥的体积 与我们已学过的那个物体的体积有关系呢?圆锥的体积与圆柱的体积之间是怎样的关系呢?这节课我们我们就用圆柱与圆锥体积之间的关系,推导出圆锥的体积公式。

推导圆锥体积的计算公式(例2)

1、教师演示,激发学生的求知欲

(1)出示铅锤,向学生说明:这是一个铅锤,近似于圆锥的形状,铅锤所占空间的大小就是铅锤的体积。

幻灯片出示铅锤

提出问题:怎样求出铅锤的体积?

学生回答后说明:刚才我们所说的办法是前面我们所学的求不规则物体体积的方法。

(2)教师演示:用一大一小两个透明圆柱容器,大圆柱

是空的,小圆柱容器里装有适量的细沙,将小圆柱里细沙慢慢倒入大圆柱中,形成一个底面相等的沙堆,让学生思考:怎样求出这个圆锥的体积。学生回答后问:上述两种方法你有什么评价?

2、探究新问题

出示圆锥形的小麦堆,问:你能用上面两种方法求出它的体积吗?使学生明确上述方法不适用于解决此类问题,有局限性。要发现一种解决此类问题的普遍方法。

3、通过实验,解决问题

首先让学生明确实验目的:用过实验得到圆锥的体积公式。让学生拿出准备好的实验材料:圆柱、圆锥、细沙。

出示实验记录单,使学生明确记录单的内容,然后按记录单的要求开始实验,并填写记录单。

实验一:感知圆锥体与圆柱体的内在联系,推导圆锥的体积公式。

等底等高的圆柱圆锥各一个,若干细沙。把空圆锥里装满细沙,倒入空圆柱里,注意观察倒的次数。(倒三次正好倒满)

学生发现:只要圆柱与圆锥等底等高,结论是一样的,那就是倒三次正好把圆柱容器倒满。

实验二:进一步实践,加深印象,拓展知识

用“等底不等高”“等高不等底”“不等底不等高”的两个圆柱、圆锥进行实验,学生发现:不能得到上述结论。

3、学生实验后填写实验报告,归纳总结圆锥的体积公式。

为了加深学生理解,用视频展示用等底等高的圆柱和圆锥实验的过程。

统一结论:圆锥的体积等于和它等底等高的圆柱体积的三分之一

sh 用字母表示:v= 1 / 3sh

4、 26页例3

出示例3图片

让学生审题,明确要求沙堆体积,知道底面直径和高,不能直接套公式,要先求出底面积,再用公式计算。为了便于学生理解,课件出示例3及解题过程。

1、填空题。

(1)175.36立方米。

(2)一个圆锥的体积是141.3立方厘米,与它等底等高的圆柱的体积是()立方厘米。

学生独立思考后指名回答。

2、现在我们可以根据圆锥的体积公式计算出铅锤的体积了。需要知道什么条件呢?

出示:

(1)底面积:12.56平方厘米 高:3厘米

(2)底面半径:2厘米 高:3厘米

(3)底面直径:4厘米 高:3厘米

让学生从三个条件中任选一个进行计算。指一生板演,结合板演订正。订正时告诉学生:计算时结合数据的特点,可以用乘法交换律和结合律进行计算,使计算简便。

3、出示:在打谷场上,有一个近似于圆锥形的。测得它的底面直径:20米,高12米。已知每立方米小麦重735千克。这堆小麦的重量是多少?

启发学生想:要求麦堆的重量,必须先求什么?如何求出圆锥形麦堆的体积?求出麦堆的体积后,怎样求它的重量?

4、 判断下面的说法是不是正确。

(1)圆锥的体积等于圆柱体积的三分之一。

(2)圆柱的体积大于与它等底等高的圆锥的体积。

(3)圆锥的高是圆柱的高的3倍,它们的体积一定相等。

指名学生回答。第(3)题使学生明确:不知道圆柱与圆锥的关系时,不能判断它们的体积。

同学们,这节课我们学习了圆锥体积的计算,说一说你有什么收获。现在你能计算圆锥的体积吗?

圆锥的体积

圆锥的体积=

等底等高v =1/3sh

= 1/3 ×底面积×高

教学的成效如何,取决于教师对教学内容的把握和对学生学习情况的了解程度,求“圆锥的体积”是建立在已学“圆柱体积”的基础上进行教学的,本节课就是让学生利用等底等高的圆柱与圆锥体积之间的关系,根据已学的圆柱体积推导圆锥体积,通过这种方法沟通新旧知识之间的联系,来解决实际问题。

针对这样的学情,要推导出圆锥的体积,关键就在于教师能否采取有效的措施,沟通学生已有的知识结构。在具体实施教学的过程中,正是以这样的起点作支撑,以直观操作入手,让学生在动手操作中发现问题,解决问题,不仅便于学生接受和理解,还达到了较为理想的效果。

因此,只有认真分析教材,找准教学的起点,才能准确定位教学目标,合理安排教学时间,使教学活动紧凑严密,发挥出课堂教学的最大效益。

通过对教材的解读和对学生的关注,将知识进行重组和整合,根据已有的教学条件,选取更合适的内容对教材进行二度加工,从而充分有效地将教材的知识激活,提高课堂教学的实效性。在探究圆锥的体积公式时,让学生利用准备的学具进行试验操作,达到了教学目标。

精彩的课堂效果往往是在不断变化的教学方法中逐步呈现出来的。每个环节的设计并非一成不变,而是要在对已学知识进行巩固的基础上有所提升,有所转变。学生在解决问题时,也不是简单的应用已知的信息,而是对原有相关的数学信息进行加工,重新组织,找出对当前问题适用的对策。因此,在解决问题的过程中,采用猜测、实验验证等不同的策略开展教学,让学生感受到数学学习充满趣味性的同时也具备一定的挑战性,问题一旦解决了,学生的思维能力随之也发生了变化。

《圆锥的体积》优秀教学设计 篇2

教学内容:小学数学人教版第12册42页—43页

教学目标:

1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。

3、培养学生个人的自主学习能力和小组合作学习的能力。

教学重点和难点:掌握圆锥体体积公式的推导。

教具准备:

1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。

2、多媒体课件设计

教学过程设计

(一)复习准备

1.怎样计算圆柱的体积?(板书:圆柱体的体积=底面积×高)

2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

3.圆锥有什么特征?

学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。

(二)导入新课

今天我们就利用这些知识探讨新的问题-----怎样计算圆锥的体积(板书课题)

(三)进行新课

1、探讨圆锥的体积公式

教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

学生回答,教师板书:圆柱——(转化)——长方体圆柱体积公式——(推导)长方体体积公式

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)

(学生得出:底面积相等,高也相等。)底面积相等,高也相等,用数学语言说就叫“等底等高”。

(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)

教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3)学生分组做实验。

A.谁来汇报一下,你们组是怎样做实验的?

b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

(学生发言:圆柱体的体积是圆锥体体积的3倍)

同学们得出这个结论非常重要,其他组也是这样的吗?

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

(老师在体积公式与“等底等高”四个字上连线。)

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

今后我们求圆锥体体积就用这种方法来计算。

(三)巩固反馈

1.例一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

A学生完成后,进行小组交流。

B你是怎样想的和怎样解决问题。(提问学生多人)

C教师板书:

×19×12=76(立方厘米)

答:它的体积是76立方米

2.练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

3、出示例2:要求学生自己读题,理解题意思。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)

(1)提问:从题目中你知道什么?

(2)学生独立完成后教师提问。并回答同学的质疑:3.14×()×1.2×表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?…。

4、比较:例1和例2有什么地方不同?

(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积;

(2)例1是直接求体积,例2是求出体积后再求重量。

我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

四、巩固练习:

1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?

2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。

(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是()

⑴立方米②3a立方米③9立方米

(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是()立方米

(1)6立方米(2)3立方米(3)2立方米

2、学生操作:

看看我们的教室是什么体?(长方体)

要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)

指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大的圆锥体。

五:这节课你有什么收获?

六、作业:

书本44页第3、4、5。

《圆锥的体积》优秀教学设计 篇3

教学过程:

一、情境引入:

(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?

(2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)

(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。

(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)

(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)

设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。

二、新课探究

(一)、探究圆锥体积的计算公式。

1、大胆猜测:

(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆……)

(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)

(4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的。”

(5)学生用上面 www.jingyou.net 的方法验证自己做的圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)

2、试验探究圆锥和圆柱体积之间的关系

我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。

(1)课件出示试验记录单:

a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?

b、通过实验,你发现了什么?

(2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。

(3)汇报交流:

你们的试验结果都一样吗?这个试验说明了什么?

(4)老师用等底等高的圆柱圆锥装红色水演示。

先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?把圆柱装满水往圆锥里倒,几次才能倒完?

(教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半……)

(6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)

(这说明圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)

3、公式推导

(1)你能把上面的试验结果用式子表示吗?(学生尝试)

(2)老师结合学生的回答板书:

圆锥的体积公式及字母公式:

(3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

进一步强调等底等高的圆锥和圆柱才存在这种关系。

设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。

(二)圆锥的体积计算公式的应用

1、已知圆锥的底面积和高,求圆锥的体积。

(1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。

(2)提问:已知圆锥的底面积和高应该怎样计算?

(3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。

2、已知圆锥的底面半径和高,求圆锥的体积。

(1)出示例题:

底面半径是3平方厘米,高12厘米的圆锥的体积。

(2)学生尝试解答

(3)提问:已知圆锥的底面半径和高,可以直接利用公式v=1/3兀r2h来求圆锥的体积。

3、已知圆锥的底面直径和高,求圆锥的体积。

(1)出示例3:

工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

(5)提问

4、已知圆锥的底面直径和高,可以直接利用公式。v=1/3兀(d/2)2h来求圆锥的体积。

设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。

《圆锥的体积》优秀教学设计 篇4

一、教学内容:

六年制小学数学教材第十二册第25-26页

二、教学目标:

1、知识技能目标:

使学生探索并初步掌握圆锥体积的计算方法和推导过程;使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:

提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。

3、情感态度目标:

培养学生的合作意识和探究意识;使学生获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:

重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题。

难点:探索圆锥体积方法和推导过程。

教学过程:

一、质疑引入

1、圆锥有什么特征?指名学生回答。

2、说一说圆柱体积的计算公式。

(1)已知s、h求v

(2)已知r、h求v

(3)已知d、h求v

3、我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。

板书课题:圆锥的体积

二、新课

(一)教学圆锥体积的计算公式

1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?

指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体-长方体的体积公式——推导圆柱体公式)

2、教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?

先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

〈1〉学生独立操作

让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。先在圆锥里装满水,然后倒入圆柱。看几次正好把圆柱装满?

〈2〉教师教具演示巩固学生的操作效果,cai课件演示

a、屏幕上出示等底、等高

b、等底、不等高

c、等高、不等底

实验报告单

实验器材

实验结果

等底不等高的圆锥、圆柱

等高不等底的圆锥、圆柱

等底等高的圆锥、圆柱

〈3〉引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的1/3(板书)

用字母表示圆锥的体积公式.v锥=1/3sh

做一做:

填空:

等底等高的圆锥和圆柱,圆柱的体积是圆锥的体积的(),圆锥的体积是圆柱的体积的()已知圆锥的体积是9立方分米,圆柱的体积是();如果圆柱的体积是12立方分米,那么圆锥的体积是()。

(二)运用公式,尝试练习

1、要求圆锥的体积,必须知道哪两个条件?为什么要乘1/3?

试一试:

一个圆锥体,底面积是19平方米,高是12分米。这个圆锥的体积是多少?

2、思考:求圆锥的体积,还可能出现那些情况?

(如果已知圆锥的高和底面半径如果已知圆锥的高和底面半径(或直径、周长),怎样求圆锥的体积呢?)

练一练

3、求下面的体积。(只列式不计算)

(1)底面半径是2厘米,高3厘米。

3.14×22×3

(2)底面直径是6分米,高6分米。

3.14×(6÷2)2×6

(3)底面周长是12.56厘米,高是6厘米

3.14×(12.56÷6.28)2×6

2、求下面各圆锥的体积如图(单位厘米)

(1)底面直径是8分米,高9分米(2)底面半径3分米和高7分米

通过公式我们发现计算圆锥的。体积所必须的条件可以是底面积和高

a、底面积和高

b、底面半径和高

c、底面直径和高

d、底面周长和高

三、巩固练习

1、判断:

⑴、圆锥的体积等于圆住体积的1/3。()

⑵把一个圆柱切成一个圆锥,这个圆锥的体积是圆柱体积的1/3()

⑶圆柱的体积比和它等底等高圆锥的体积大2倍。()

⑶一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的

2、填空

⑴一个圆锥与一个圆柱等底等高,已知圆锥的体积是18立方米,圆柱的体积是()。

⑵一个圆锥与一个圆柱等底等体积,已知圆柱的高是12厘米,圆锥的高是()。

⑶一个圆锥与一个圆柱等高等体积,已知圆柱的底面积是314平方米,圆锥的底面积是()。

3、拓展练习

工地上有一些沙子,堆起来近似于一个圆锥,通过测量它的直径是4厘米高是1.2厘米,这堆沙子大约多少立方米?(得数保留两位小数)

(引导学生说出怎样测量沙堆的底面的周长、直径、和高。)

用两根竹竿平行地放在沙堆两侧,测得两根竹竿间的距离,就是直径。将一根竹竿过沙堆的顶部水平位置,另一根竹竿竖直与水平竹竿成直角即可量得高。

《圆锥的体积》教学设计 篇5

教学内容:

九年义务教育六年制小学数学第十二册P32页。

教学目标:

1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。

2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。

3、进一步培养学生将所学知识运用和服务于生活的能力。

教学重点:

灵活运用圆柱圆锥的有关知识解决实际问题。

教学难点:

同教学难点。

设计理念:

练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。

教学步骤、教师活动、学生活动

一、复习铺垫、内化知识。1. 圆锥体的体积公式是什么?我们是如何推导的?

2、圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。

(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。

(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。

(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3、求下列圆锥体的体积。

(1)底面半径4厘米,高6厘米。

(2)底面直径6分米,高8厘米。

(3)底面周长31.4厘米。高12厘米。

4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。

学生独立练习,互相批改,指出问题。

学生交流一下这几题在解题时要注意什么?

二、丰富拓展、延伸练习。1.拓展练习:

(1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的几分之几?削去的部分占圆柱体的几分之几?

(2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

2、完成31页第5题。讨论下列问题:

(1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?

(2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?

3、分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

学生分组讨论,教师参与其中,以有疑问的方式参与讨论。

三、充分提高,全面升华。

1、展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。

2、教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。

3、讨论练习八蒙古包所占空间的大小的方法。

(1)蒙古包是由哪几个部分组成的?

(2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?

(3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。

4、交流一下本节课的收获。

学生分组讨论后动手实践并计算。

学生先交流。

四、全课总结,内化知识。

1、提问:

(1)同学们掌握了圆锥体的哪些知识?

(2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

2、学有余力的同学思考38页思考题。

3、作业:练习八6、7、8

学生独立练习

圆锥的体积教学设计一等奖 篇6

《圆锥的体积》是九年义务教育六年制小学数学第十一册第三单元的内容。

1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。

2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。

3、培养学生的合作意识及主动探索知识的精神。

让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。

教学难点:能利用不同方法计算不同物体的体积。知识的活学活用。

1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。

2、教学软件。

一、创设情景,激趣引新。

1、首先教师手中拿一圆柱体问:“同学们,老师想知道这个圆柱体的体积你们能帮助我吗?”

(学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)

2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:“那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?”(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。

〈设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。〉

二、小组合作,探究学习。

1、动手操作,测量圆锥体的体积。

要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。

〈全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场面。〉

3、分组汇报不同的方法。

〈学生在汇报时可边讲解边示范〉

方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。

方法二:利用手中的一立方厘米的小木块进行估算。

方法三:受《曹冲称象》的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。

方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的圆柱体容器里。发现到了3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的圆柱体的三分之一。用字母表示为:v=1/3sh

〈设计意图:通过讨论研究和动手操作,发展学生的创新能力,和解决实际问题的能力。〉

(1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?

(2)学生再次在小组内操作探究。

(3)汇报结论。

(4)微机演示。

当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。

〈设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。〉

4、评价以上各种办法

同学们的结论是用公式计算比较方便。

三、解决实际问题

(问题一)

1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)

2、汇报结果。

先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶剂可看作体积)

(问题二)

1、现知道手中的圆锥体每立方厘米约装0.9克大米,计算这个圆锥体容器可装多少克大米?

2、汇报结果。

用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262≈236克

3、验证计算结果

用称称一称,比较一下结果。

4、讨论两次结果为什么不同。

由于测量时厚度不计,计算时是近似值。都存在误差。

〈设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。〉

(问题三)

利用圆锥体积公式计算。

(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?

(问题四)

计算不规则物体体积或容积。(直说出计算的方法即可)

1、用什么方法计算出葫芦能装多少水?

2、胡萝卜的体积怎样计算?

3、不规则的零件体积计算?

〈设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。〉

四、总结全课

说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。

《圆锥的体积》教学设计 篇7

教学内容:小学数学人教版第12册42页—43页

教学目标 :

1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。

3、培养学生个人的自主学习能力和小组合作学习的能力。

教学重点和难点:掌握圆锥体体积公式的推导。

教具准备:1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。

2、多媒体课件设计

教学过程 设计

(一)复习准备:

1. 怎样计算圆柱的体积?(板书:圆柱体的体积=底面积×高)

2. 一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

3. 圆锥有什么特征?

学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。

(二)导入  新课

今天我们就利用这些知识探讨新的问题-----怎样计算圆锥的体积(板书课题)

(三)进行新课

1、              探讨圆锥的体积公式

教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

学生回答,教师板书:

圆柱------(转化)------长方体

圆柱体积公式--------(推导)长方体体积公式

教师:借鉴这种方法, 为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)

(学生得出:底面积相等,高也相等。)

底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底 等高)

(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)

教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3)学生分组做实验。

A. 谁来汇报一下,你们组是怎样做实验的?

b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

(学生发言:圆柱体的体积是圆锥体体积的3倍)

同学们得出这个结论非常重要,其他组也是这样的吗?

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

呢?(在等底等高的情况下。)

(老师在体积公式与“等底等高”四个字上连线。)

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

今后我们求圆锥体体积就用这种方法来计算。

(三)巩固反馈

1.口答。填空:

v (立方米)

v (立方米)

60

52

126

4.5

2.出示例题学生读题,理解题意,自己解决问题。

例 一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

A    学生完成后,进行小组交流。

B    你是怎样想的和怎样解决问题。(提问学生多人)

C    教师板书:

×19×12=76(立方厘米)

答:它的体积是76立方米

3.练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

4、出示例2:要求学生自己读题,理解题意思。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)

(1)提问:从题目中你知道什么?

(2)学生独立完成后教师提问。并回答同学的质疑:3.14×( )×1.2× 表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….

5、比较:例1和例2有什么地方不同?

(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。

我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

四、巩固练习:

1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?

2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。。

(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )

⑴ 立方米       ②3a立方米   ③  9立方米

(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米

(1)6立方米 (2)3立方米   (3)2立方米

2、             学生操作:

看看我们的教室是什么体?(长方体)

要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)

指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大的圆锥体。

五:这节课你有什么收获?

六、作业 :书本44页第3、4、5。

板书:  圆柱体的体积=底面积×高

例1:    ×19×12=76(立方厘米)

答:它的体积是76立方米

例2:(1)麦堆的体积:

3.14×( ) =12.56(平方米)12.56× ×1.2=5.024(平方米)

(2)小麦的重量:5.024×735=3692.64(平方米)≈3693(平方米)

答:它的体积是76立方米

一键复制全文保存为WORD