在教学工作者开展教学活动前,通常需要准备好一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写才好呢?下面是整理的六年级数学下册教案最新9篇,希望能够给予您一些参考与帮助。
教学内容
教科书第40~41页例2,练习九第3~7题。
1.使学生进一步理解并掌握圆锥体积的计算公式,能较熟练地运用圆锥的体积公式解决问题。
2.在解决问题的过程中,学会思考,增强思维的灵活性,培养学生有序思考的习惯。
3.在探究问题中,发展学生的空间观念。
运用圆锥体积的计算方法解决生活中的问题。
灵活运用圆锥的体积计算公式解决问题。
小黑板
一、复习引入课题
教师:怎样计算圆锥的体积?
学生回答,教师板书体积公式:V=13SH
教师:谁能说说圆锥的体积计算公式是怎么推导出来的?
抽学生简要叙述圆锥的推导过程。
教师:要求圆锥的体积,应该知道哪些条件?
让学生弄清要求圆锥的体积应该知道圆锥的底面积和高。
教师:这节课我们就利用圆锥体积的计算方法解决生活和学习中常见的数学问题。
板书课题:圆锥的体积二
二、探究新知
1.教学例2
教师用投影仪出示例2。
一煤堆的'底面周长18.84M,高1.8M,这个煤堆近似一个圆锥体。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1M3煤重1.4吨)
教师要求学生带着问题理解题意。用投影仪出示问题。
(1)这道题讲的是什么事情?知道哪些条件?要求什么问题?
(2)要求这堆煤的质量,必须先求什么?
(3)要求煤的体积应该怎么办?
(4)这题应先求什么?再求什么?最后求什么?
教师鼓励学生独立思考,教师适时点拨。
反馈:要求学生用完整的语言叙述题意。
教师抽学生叙述思考过程,要求语言简洁,思路清晰。
在反馈过程中,尽量多抽几个学生叙述。
通过讨论,使学生明白,这题的关键是求出圆锥形煤堆的体积,也就求出了煤堆的质量。
教师抽学生上台板算。
板书:
煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的体积:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(辆)答:……
教师:最后的结果为什么要取整数部分再加1?
让学生明白装了4辆车后,剩下的虽然不够装一车,仍然要用一辆车装,因此要取整数。
教师:在实际生活和学习中,经常会遇到不知道底面积的情况,这时怎样求圆锥的体积?
2.小结
要求圆锥的体积必须知道底面积和高,如果只知道底面半径、底面直径或底面周长和高,要先算出圆锥的底面积,再利用圆锥的体积公式求出圆锥的体积。学会具体问题具体分析。
三、巩固练习
1.教师用投影仪出示教科书第42页第3题
观察图形,独立解答。抽二生上台板算。
让学生理解此题应先算出圆锥的底面积,才能求出容器的体积。
2.解答教科书第42页第4题
学生独立解答,抽生反馈说出思考过程。
通过这一题的练习,体会圆锥与圆柱之间的关系。
3.解答练习九第6题
学生独立完成,小组交流,展示思考过程,先算什么,再算什么。解答此题的关键是抓住体积不变进行解答。
4.发展练习
有一个底面周长是31.4DM,高9DM的圆锥形容器里装满了黄豆,现在要把这些黄豆放入另一个高9DM的圆柱形容器里,刚好装满。这个圆柱形容器的底面直径有多大?
教师引导学生读题,理解题意。
弄清已知条件和问题,根据条件寻找中间问题。明白先算什么,再算什么。
学生小组内交流,探讨解决方案。
反馈:学生用完整清晰的语言叙述解题思路。
弄清解决这题的关键是抓住黄豆的体积不变,即圆柱和圆锥的体积相等。这是解答此题的突破口。教科书练习九第5题,第7题。教师:今天这节课我们学了什么知识?通过这节课的学习,对圆锥的体积计算更熟悉了。知道圆锥和圆柱的知识与我们的生活息息相关,在解决实际问题时,应有序思考,灵活运用知识。
例2……
煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的体积:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(辆)答:
教学内容:
课本第98页例8,“试一试”和“练一练”,练习十六第4-6题。
教学目标:
1、了解储蓄的含义。
2、理解本金、利率、利息的含义。
3、掌握利息的计算方法,会正确地计算存款利息。
教学重点:
本金、利息和利率的含义。
教学难点:
利用计算公式进行利息计算。
课前准备:
存款单、有关利率表格
教学过程:
一、创设情境,引入课题
1、从师生谈话中引出“压岁钱”的话题。
师:老师与你们一样大的时候,过年最开心的也是能拿压岁钱,那么你们现在过年一般能拿到多少压岁钱?
师:我相信每个同学都有压岁钱拿,但是不管多少,都是长辈对我们的关心。你们拿了那么多的压岁钱,是不是都买鞭炮放了?那么你们是如何处理压岁钱的呢?(引导学生存入银行)
2、联系生活,理解有关利息的知识。
师:压岁钱有那么多,除了一部分消费外,多余的存银行。那么你能不能向大家介绍一下有关储蓄的知识?(生1:定期利率比活期利率高。生2:活期可以自由地拿,定期不到时间要用身份证才能拿。……)
师:储蓄有定期和活期之分,定期储蓄的利率较高,就是拿到的什么比较多?(生齐答:利息。师板书)
师:那么谁来举例说明一下哪一部分是利息呢?
(师:那么存人的一千元又叫什么呢?(生:本金。师板书)
师:看来定期储蓄的利率比较高,定期储蓄中又分了一些类型,其中最主要的就是整存整取。我们来看下这张表,你知道了些什么?(出示例1的储蓄年利率表)
二、探究新知
1、出示例8。
学生读题后说说题目的意思
教师提问:应该选择哪种年利率来计算?为什么?
学生独立尝试后交流。
让学生把计算利息的公式补充完整。补充问题:两年后他从银行拿回的钱一共是多少?
2、完成试一试。
学生独立完成。完成后交流核对。
3、完成练一练。
三、巩固练习
完成练习十六第4题。
四、课堂总结
什么是利息?什么是本金?利息的多少一般由什么决定?你还知道什么?如何计算利息?
五、布置作业
练习十六第5、6题。
教学目标
1.1 知识与技能:
1、 能根据具体情境,灵活运用圆面积和长方形面积理解圆柱体的表面积。
2、 通过想象、动手操作等活动,理解圆柱侧面展开图是一个长方形,加深对圆柱特征的认识,发展空间观念。
3、 探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。
1.2过程与方法:
讲解圆柱体表面积的过程中,培养学生初步的观察能力以及想象、概括能力。
1.3情感态度与价值观:
引导学生进一步体会立体图形的平面化,感受数学探索活动本身的乐趣,增强学好数学的信心。
教学重难点
2.1教学重点:
让同学们理解圆柱的表面积计算方法。
2.2 教学难点:
能够分清侧面积和表面积的区别,合理应用到日常生活中。
教学工具
课件、多媒体设备等
教学过程
一、情境导入
师:同学们,在如常生活中我们经常会遇到一些圆柱体,比如我手里面拿的水杯,你们知道他有哪些东西组成的吗?
生:同学们举手进行回答。
师:这个水杯有哪些面组成呢?
生:上底面、下底面、侧面
师:多媒体出示动画
师:我们可以看出它有三部分组成。
师:现在想一下这三部分都是什么图形?
生:上下底面(圆形),侧面(长方形)
师:把这三个面积加起来,就是我们今天要学习的圆柱的表面积。
生:举手口述连线答案。
师:课件出示答案
圆柱的侧面积 = 底面周长 × 高
师:现在,我们来看一些数量关系:
①柱体上下底面面积相等;
②圆柱体侧面长=底面圆周长
③圆柱体侧面宽=圆柱体高
二、探究新知
(一)、侧面积
师:我们现在来看看圆柱体的侧面积是怎样计算的。
学生:举手发言
在回答问题的过程中教师要用鼓励性的语言激发学生探求知识的能力。
师:多媒体出示答案
圆柱侧面积=长×宽=底面圆周长x高
师:现在我们看看在实际应用中是如何计算的。(多媒体出示问题)
1、已知圆柱体的底面圆半径为50px,高为125px,求一下这个圆柱体的侧面及时多少?
生:举手回答
师:多媒体出示答案
解:周长=2πr=2×2π=4π
侧面积=周长×高=4π×5=20πcm?
师:同学们要认真观察书写步骤。
(二)、表面积
师:现在我们来看看圆柱体的表面积是怎么计算的。
生:举手回答问题
师:多媒体出示答案
圆柱表面积=侧面积+底面积=侧面积+上底面积+下底面积
师:下面我们再来做一个练习吧!
2、现在要制作一个底面半径为2dm,高为10dm的圆柱形铁桶,需要多少铁皮?
师:同学们可以先算出侧面积和底面积,然后再算表面积。
生:通过同学们互相竞争,增强了同学们学习数学的兴趣。
解析:
解:周长=2πr =2×2π =4π
侧面积=周长×高=4π×10=40π
底面圆面积=πr?=4π
圆柱表面积=侧面积+2底面积 =40π+2x4π=40π+8π =48π
答:需要48πdm?铁皮
三、巩固练习
师:现在请大家看屏幕上面的这道题,能不能分小组解决问题。(课件出示题目)
1、 天气冷了,农村学生就要生火了,烟囱使用铁皮做的,一节烟囱长为20xxpx,烟囱的半径为100px,求制作这样的烟囱一节需要多少铁皮。
师:要找出题目的关键,理清思路,细心解题。
生:学生互相探讨交流,完成整个题目,培养学生独立思考的能力。
解析:
解:周长=2πr=2×4π=8π
表面积=侧面积=8π×10=80π
答:制作这样的烟囱一节需要80πcm?铁皮
师:接下来,再看一个题目,这次也要分组进行,看看哪个组做得又快又好。(课件出示题目)
2、 现在要砌一个圆柱形的水窖,预计水窖深3米,水窖底的底面直径为1.5米,现在求一下整个水窖需要抹去多少平方米的混凝土。
生:各小组在竞争中享受获取知识的乐趣。
解析:周长=πd=1.5π
表面积=侧面积+下底面积=1.5π×3+2.25π=6.75π
答:整个水窖需要抹去6.75π平方米的混凝土
师:现在大家独立完成下面的题目(出示题目)。
3、已知一个圆柱体的表面积是15700px?,其中圆柱体的底面半径50px,求圆柱体的高。
解:设圆柱体的高为h
根据:表面积=侧面积+2底面积
628=2×2πh+2×π2?
628=4πh+8π
628=4×3.14h+8×3.14
20=4h+8
h=4
答:圆柱体的高4米
7 作业布置
师:在作业本上面完成下面的2个题目。
1、一个圆柱体,如果底面半径为5,圆柱体高为10,那么,求一下圆柱体的侧面积和表面积 ?
解:周长=2πr=2×5π=10π
侧面积=周长×高=10π×10=100π
底面积=πr?=25π
表面积=侧面积+2底面积=100π+2×25π=150π
2、现在要给一个圆柱形的纸质品涂上颜色,现在知道该艺术品的底面圆半径为50px,圆柱体高为125px,请同学们求出圆柱体的表面积。
解:周长=2πr=2×2π=4π
侧面积=周长×高=4π×5=20π
底面积=πr?=4π
表面积=侧面积+2底面积=20π+4π=24π
课后小结
这堂课大家通过学习圆柱体的表面积,使同学们能用学过的知识去解决一些实际的图形面积问题。主要为了让同学们能够建立丰富的想象,把立体图形转化为平面图形的能力,在教学中涉及了学生互动,分组学习等教学模式,真正体现了学生的主体地位。让学生在课堂上动起来,寻找知识、体会知识,并通过练习提高学生的想象能力和抽象思维能力。
板书
第2节 圆柱(圆柱的表面积)
教学内容:
课本第29——30页例2和“练一练”,练习五第6-9题。
教学目标:
1、使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。
2、通过操作,观察,培养学生的推理能力,发展学生的思维。
教学重难点:
一个数乘分数的意义以及计算方法。
课前准备:
多媒体课件
教学过程:
一、创设情境
同学们,上节课我们学习了分数乘整数的计算方法,你想不想继续往下学?在学新课之前我们先来复习一下上节课的内容。
复习:计算下面各题,并说出计算方法。
3/7 ×2 5/8 ×1 1/10 ×5
上面各题都是分数乘以整数,说一说分数乘以整数的意义以及计算方法
二、探究新知
今天,我们来学习一个数乘以分数的意义和计算方法。
1、教学例2
出示例2的图,然后出示条件:
小芳做了10朵绸花,其中1/2是红花,2/5是绿花。
引导学生理解:“其中12 “是什么意思?
使学生明白是10朵中的1/2,然后出示问题
红花有多少朵?
引导学生看图理解:求红花有多少朵,就是求10朵的1/2
让学生应用已有的知识经验解决。
学生可能列式:10÷2=5(朵)
在此基础上指出:求10朵中的1/2是多少,还可以用乘法计算。
教师说明要求,学生列式解答。
在此基础上教学第(2)题,怎样解决
(2)绿花有多少朵?
可以先让学生在图中圈一圈,借助圈的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。
10÷5×2=4(朵)
在此基础上告诉学生:求10朵的2/5是多少也可以用10×2/5来计算。
学生独立计算,订正时指出:
计算10×2/5可以先约分
2、引导学生进行比较
通过对上述两个问题的计算,你明白了什么?
小组讨论:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少。
计算10×2/5时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2求出2份是多少。
引导小结:求一个数的几分之几是多少,可以用乘法计算。
三、巩固练习
1、做练一练的第1题。
先让学生根据题意涂色,然后列式解答。
2、做练一练的第2题。
通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。
3、练习五第6、7题。
四、课堂总结
本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?
五、布置作业
练习五第8、9题。
教学反思:
教学目标:
1、系统地理解加、减、乘、除四则运算的意义和计算方法。
2、通过复习培养概括能力与计算能力。
3、能综合运用所学的知识和技能解决问题,发展应用意识。
教学重点:
掌握四则运算的意义和计算方法。
教学难点:
利用所学的知识和技能解决有关数学问题。
学习过程:
一、四则运算的意义。
1、阅读以下信息: A、我们折了36颗红星,还折了28颗蓝星。
B、我们买了40瓶矿泉水,每瓶0.9元。
C、我们有24m彩带,用 做蝴蝶结,用做中国结。
(1)你能提出哪些用计算解决的问题?
______________________________________________________________________
______________________________________________________________________
(2)结合算式说明每一种运算的含义。
2、口答
①什么叫做加法?小数加法、分数加法的意义相同吗?
②什么叫做减法?小数减法,分数减法意义相同吗?
③整数乘法的意义是什么?小数、分数乘法的意义同整数乘法的意义相同吗?
④什么叫做除法?小数除法、分数除法的意义相同吗?
☆友情小提示:整数、小数、分数的加法意义、减法意义与除法意义都分别相同。只有小数、分数乘法(第二个因数小于1时)是求一个数的'几分之几是多少。
二、四则运算的方法
1、整数、小数加减法的计算方法各是什么?
2、分数的加减法计算方法是什么?
3、有什么相同点?
☆友情小提示:
①整数加减时,数位对齐;
②小数加减时,小数点对齐;计数单位相同才能相加减。
③分数加减时,分数单位相同。(也就是通分。)
4、分数、小数乘法的计算方法是什么?有什么相同之处,有什么不同之处?
☆友情小提示:小数乘法,先按照整数乘法的计算方法算出积,再看乘数中有几位小数,然后在积中点上小数点。
教学目标:
知识与能力:结合教材提供的素材,会确定物体的位置,并能利用方格纸依据两个数据确定物体的位置。
过程与方法:能把自己的思维过程与结果用语言表达出来,并与同伴进行很好的交流、合作。
情感态度与价值观:能较熟练地在方格纸上确定物体的位置,初步体会坐标的思想。
教学重点:了解根据方向和距离确定物体位置的方法。
教学难点:能根据描述,在平面图上标出物体的具体位置。
课时安排:1课时
教学过程:
课()前导学(导学)
课前两分钟
一、旧知铺垫、导入复习课
1、说一说自己的家在学校的什么位置?
出示学习目标
知识与能力:结合教材提供的素材,会确定物体的位置,并能利用方格纸依据两个数据确定物体的位置。
过程与方法:能把自己的思维过程与结果用语言表达出来,并与同伴进行很好的交流、合作。
情感态度与价值观:能较熟练地在方格纸上确定物体的位置,初步体会坐标的思想。
前置学习(自学)
(1)教师肯定以上学生描述的方式。
(2)明确说明本节课我们要进一步复习确定位置的有关知识。
让学生畅所欲言,谈谈自己在学习过程中遇到的问题,还有什么不足,一起讨论。
小组合作
学习
(互学)
1、教学例1实物投影出示主题图:
(1)说一说主图中所说的含义:
台风中位于A市东偏南30度方向,距离A市600千米的洋面上,正以20千米每小时的速度沿着直线向A市移动,
(2)学生观察座位图,想说谁的位置就跟同伴说一说。
(3)理解题意,确定观测点,建立方向图。
(4)台风在A市的东偏南30度距离600千米的地方。
(5)图例要弄懂。
(6)探索用数据表示位置的方法。
台风中心在A市的什么地方?并在学生讨论的基础上教师引导学生认识用数据表示物体物体的位置的方法。
全班交流
展示学习
(展示)
2、完成教材第20页做一做,
3、复习教学例2
投影出示课本中主题图
(1)观察示意图,说一说那看到了什么。
(2)说一说本题的含义。
(3)互相讨论方法。
4、完成21页中的做一做。
1)你是怎样做的?
2)集体订正。
5、学生自学教材第22页例题3.
(1)、用自己的语言描述台风的经过路线图。
(2)、同坐互相说一说台风的经过路线图。
完成教材22页的“做一做”。P23第2,4,6,7题
集体订正。
挑一道典型的求平均数的题目进行练习,如求平均速度;复习一下画角的过程,会描述小林家在小强家什么位置,小强家在小林家什么位置?
拓展检测
学习
(测评)
通过这节课的学习,你有什么收获?
刚才,我们是怎样探究出表示物体物体的位置的方法?
画平面图的方法:先确定方向,再确定距离,确定距离的时候可以用一条标有数量的线段表示地面上的距离。
教学目标
1.1 知识与技能:
1、在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
1.2过程与方法 :
经历负数的认识过程,体验比较、归纳总结的方法。
1.3 情感态度与价值观 :
感受数学与实际生活的联系,激发学习兴趣,培养学思结合的良好学习习惯,体会数学知识之间内在联系的逻辑之美。
教学重难点
2.1 教学重点
能用正、负数表示生活中两种相反意义的量。
2.2 教学难点
用负数解决生活中的实际问题。
教学工具
多媒体课件
教学过程
一、游戏引入
同学们,今天我们来玩个游戏轻松一下,游戏叫“我正你反”。游戏规则:老师说一句话,请你说出与它意思相反的话。
1、向上看(向下看)
2、向前走200米(向后走200米)
3、电梯上升15层(电梯下降15层)
4、零上10摄氏度(零下10摄氏度)
很好,接下来,老师换一个游戏规则。老师给大家看一幅图片(课件出示第2页例1的几幅图)。
二、初步感知
师:同学们以前有没有见过类似于第2页例1的几幅图的情景呢?
生:有,看天气预报的时候。
师:我国面积非常大,在同一个时间,不同的地区气温相差非常大。仔细观察这幅图,你看,这六个城市,你能读出这六个城市的天气怎样的吗?
出示例1情境图。
学生读一读。
三、认识负数
1、认识温度计,理解用正负数来表示零上和零下的温度。
师:(课件出示温度计)同学们,认识它吗?
生:温度计。
师:你知道它们表示什么?(课件出示℃、℉)
生:℃表示摄氏温度,读作“摄氏度”。
生:℉表示……
师:℉表示华氏温度,读作“华氏度”。 那我国用什么来计量温度呢?
生:我国用摄氏度来计量温度。
师:一大格表示多少摄氏度?一小格表示多少摄氏度?
通过课件展示让学生对温度计做进一步的认识,让学生知道一大格表示10摄氏度,一小格表示2摄氏度。
师:0摄氏度怎样规定的?你知道吗?
生:水结冰的温度定为0℃。
师:是的,科学家把水结冰的温度定为0℃。读作:0摄氏度。比0℃ 低的温度叫零下温度,通常在数字前加“—”(负号)
师:零上温度用正数表示 ,零下温度用负数表示。
师:那零上10摄氏度记作?:+10℃ 零下10摄氏度记作?:-10℃
生:零上10摄氏度记作:+10℃;零下10摄氏度记作:-10℃ 。
2、读出水银柱所表示的温度。(课件出示)
教师课件出示水银柱所表示的温度,引导学生读一读。
3、从上面的天气预报图中你了解到哪些信息?
例如:北京最高温度是5℃,最低温度是零下5 ℃。
师:北京-5℃和5℃一样吗?都表示什么意义呢?
生:-5℃和5℃不一样, -5℃表示比零度还要低5摄氏度, 5℃表示比零度高5摄氏度。
生:-5℃和5℃不一样, -5℃比零摄度冷, 5℃表示比零摄氏度热。
教师小结:5℃和- 5℃表示具有相反意义的量。
4、正确读出例1中的各个城市的天气温度。
师生一起小结:当气温高于0℃的时候,我们在数字前面加一个“+”号或者直接用数字来表示,读作零上×摄氏度。当气温低于0℃的时候,我们在数字前面加一个“-”号来表示,读作零下×摄氏度。因此,+5℃表示零上5摄氏度,读作正三摄氏度;-5℃表示零下5摄氏度,读作负三摄氏度。(板书:+5℃ 正三摄氏度;-5℃ 负三摄氏度)
学生自主完成例1的信息表,然后和同桌说说各数表示的意思。
指名学生回答,教师点评并总结。
5、教学教材第3页例2。
师:接下来我们再来看一下第3页例2的图片,每个数字表示什么意思?
生:“2000”表示存入2000元。
生:“-500” 表示支出了500元。
生:“-132” 表示支出了132元。
生:“500”表示存入500元。
师:你能找到意思相反的词语或者数学符号吗?(提示2000.00与+2000.00代表相同的意思。)
师:那在这里500.00和-500.00分别表示什么意思呢?
生:500.00表示存入500元, -500.00表示支出500元
学生说出各个数字的含义。
教师小结:500和-500表示具有相反意义的量。
师:很好,同学们再试着说说图中其他数各表示什么。
学生交流。
6、思考总结
教师引导学生比较例1和例2,找出他们的共同点。
师:同学们比较一下例1和例2,他们有什么共同点吗?
学生小组讨论汇报。提示:在例1和例2中,都有两种数来表示两种相反意义的量—零上温度和零下温度,支出与收入。
7、0是什么数?
师:我们把海平面的高度看做多少呢?
生:看作0。
师:(课件展示)比海平面高的用(+几或几)表示,例如+5000米比海平面低的用(-几)表示,例如-2000米
把海平面0当成正数和负数的分界线。
师:(课件展示)珠穆朗玛峰比海平面高8844.43米,怎么表示?
生:记作+ 8844.43米。
师:吐鲁番盆地比海平面低155米,如何表示?
生:记作-155米。
课件展示小知识:海平面,顾名思意,就是大海的水面。它用在测量地面高度上,又称海拔。我国所有的大地测量和标志,都是以黄海海面的基点开始的,任何海拔标高,都是相对于黄海海面的基准点。
(通过对海平面的认识,温度计上的0,得出0像一条分界线,把正负数分开,所以0既不是正数也不是负数。)
小结:为了表示两种相反意义的量,这里出现了一种新的数:-16,-500。像-16,-500,-3,-0.4……这样的数叫做负数。- 读作负八分之三。
而以前所学的16,2000, ,6.3……这样的数叫做正数。正数前面也可以加上“+”号,例如+16,+ ,+6.3等(也可以省去“+”号)。+6.3读作正六点三。
师:0像一条分界线,把正负数分开。0既不是正数,也不是负数。
8、做一做
课件出示题目:
(1)、用正负数表示。
①、零上12.5摄氏度表示为:________,(+12.5 ℃)
零下3.5摄氏度表示为:________。(-3.5 ℃)
②、广西某地有一天坑,
坑口高于海平面125m,表示为:________, (+125)
坑底低于海平面 m,表示为:________.(—100)
(2)、先读一读,再议一议:观察这些数,可以怎样分类?
学生同桌讨论,教师指名汇报。
9、教师引导学生总结:数可以分成正数、0、负数。正数包括正整数、正分数、正小数 ,负数包括负整数、负分数、负小数 ,0既不是正数,也不是负数。它是正、负数的分界点。
正数前面可以写“+”,但通常不写,而负数前面的“-”必须写。正数前面可以读“正”,但通常不读(如果有“+”号必须读),而负数前面的“负”必须读。
四、走进生活
师:负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。课件出示题目进行检测:
1、你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 __________。月球表面的最低温度是 __________。(100℃,0℃, -88.3 ℃, -183℃)
2、做一做
胜5场记作 _______, 读作_________;(+5场,正五场)
输3场记作 _______ , 读作 _________。(-3场,负三场)
收入100元记作_______,读作___________;(+100元,正一百元)
支出200元记作_______ ,读作___________。(-200元,负二百元 )
学生交流,指名说一说。
3、叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?
学生交流,指名说一说。
4、六年级三个班进行智力抢答赛,答对一题得10分,答错一题扣10分,不答得0分。根据三个班的得分,说一说他们的答题情况。
学生交流,指名说一说。
5、你会用正负数表示下面各地的海拔高度吗?
(1)、华山比海平面高2000m,记作(+ 2000m )
(2)、死海比海平面低392m,记作(- 392m )
学生交流,指名说一说。
6、我能判断对错
(1)任何一个负数都比正数小。(√)
(2)一个数不是正数就是负数。(×)
(3)因为“4”前面没有“+”号,所以“4”不是正数。(×)
(4)上车5人记作“+5人”,则下车4人记作“-4人”。( √)
(5)正数都比0大,负数都比0小。(√)
(6)5゜C和+5゜C所表示的气温一样高。(√)
7、小结交流
师:你还在什么地方见过负数吗?
生:家庭收支账本上。
生:冰箱的冷冻室温度。
生:地图上显示的海拔高度。
五、巩固练习
1、教材第4页“做一做”第1题。
学生独立读出-3℃和-18℃这两个温度,并根据题干思考北京和哈尔滨的温度哪个低些。
教师指名回答。
2、教材第4页“做一做”第2题。
学生小组依次回答,教师集体订正。
教师强调:0既不是正数,也不是负数。
课后小结
师:通过这一节课的学习,你有什么收获?
师:这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。
板书
认识负数
+5℃ 正三摄氏度 -5℃ 负三摄氏度
5 三 -5 负三
八分之三 -
负八分之三
0既不是正数,也不是负数。
教学目标:
1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重点:
理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。
教学难点:
运用比例尺的有关知识,学会解决生活中的一些实际问题。
教学准备:多媒体课件。
教学过程:
一、展示目标,引入本课。
二、探究新知,意义建构
1、看一看
下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)
2、说一说
(1)比例尺1:100表示什么意思呢?
生:图上1厘米长的线段表示实际距离100厘米。
(2)在比例尺1:20xx的地图上,图上距离1厘米,表示实际距离(20xx)厘米。
(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。
3、议一议
(1)什么是比例尺呢?
图上距离和实际距离的比,叫做比例尺。
(2)比例尺怎样表示呢?
比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)
(3)比例尺有什么特征呢?
①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的'前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。
【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。
三、拓展延伸,巩固新知
1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?
70:3.5=700:35=20:1
答:这幅设计图纸的比例尺是20:1。
2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)
3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?
32×6000000=192000000(厘米)192000000厘米=1920(千米)
答:广州到北京实际距离是1920千米。
五、总结新课,整理知识
通过今天的学习,你有什么收获呢?
板书设计:比例尺
比例尺=图上距离:实际距离
实际距离=图上距离×1厘米表示的实际距离
图上距离=实际距离÷1厘米表示的实际距离
教学目标:
1、知识目标:了解储蓄的意义,理解本金、利率、利息的含义。
2、能力目标:注重学生观察、对比、总结能力的培养,并让学生感受数学在生活中的作用,提高应用意识和实践的能力。
3、情感目标:懂得存款利国利民,并从教育储蓄中感悟国家对少年儿童的殷切希望,树立努力学习的志向。
重点难点:
理解本金、利率、利息的含义,会正确计算利息。理解税后利息的含义,会根据实际情况使用公式。
教学流程:
一、知识扩充
(师出示中国五大银行行标。生根据生活经验,理解银行的业务范围及银行的分类。)
师:(出示一组信息) 2001年12月,中国银行给工业发放贷款18 636亿元,给商业发放贷款8 563亿元,给建筑业发放贷款2 099亿元,给农业发放贷款5 711亿元。
(让生思考,从信息中想到了什么?)
设计意图:让学生了解储蓄的意义,感受存款不但利国而且利民。
效果预测:学生可以从信息中感悟到国家用集资上来的存款繁荣经济、建设国家、援助农业,加强储蓄的意识。
二、创设情境
师:老师积攒了1000元钱,把它放在什么地方最安全合理呢?
生:放在银行里,不但安全还可以使自己的用钱更有计划。
师:听从大家的意见,现在老师就想去银行存款,谁想和我一起去?
(生走入老师创设的情境,感受存款的乐趣。)
师:当我们来到银行的时候,不但会受到存款员的热情接待,而且会拿到一张存款单。存款单蕴含着怎样的奥秘呢?我们在填写的过程中一起总结好吗?
(生独立完成填存单的任务,遇到问题随时提出,师生共同解决。)
设计意图:给予学生一个想像的空间,让学生身临其境地感悟生活中的数学,把知识、能力、人格有机地融合,让学生的各种因素碰撞后的灵感在实践中得以体现。
效果预测:经过师生互动、生生互补,学生可以掌握存款单的填写方法,并在老师的点拨中,掌握存款的种类、本金等数学概念。
三、合作学习
师:(出示信息)小丽学会存款后,把100元存入银行,整存整取1年,年利率2.25%,到期时可取出人民币102.5元。
(生找出本金、存款种类后,再谈一谈自己有什么新发现。)
教师引导学生总结出“利息”、“利率”的概念,并设疑“利息的多少和什么有关系呢?有怎样的关系呢”?
出示表格
(生合作学习从表格中发现利息的多少与本金、利率、时间有关,并总结出公式:利息 = 本金 × 时间 × 利率。)
师:请同学们根据自己总结出来的公式,帮老师预算一下,老师存入银行的1000元,整存整取5年,年利率3.6%,到期时可获利息多少元?
生: 1000 × 3.6% ×5 = 180 元。
师:取款时的情况和我们预想的一样吗?和老师一起跳跃时间,来到2012年。(出示利息清单。)
利息清单
生总结:税后利息 = 本金 × 利率 × 时间 ×(1-20%)。
设计意图:为学生营造自我发现、自我总结的空间,让学生从实践中概括公式,在合作中分享自己与他人思考的成果,体会成功的快乐。
效果预测:学生在兴趣的驱使下,主动参与小组合作,在合作中积极思考,得出利息及税后利息的公式,并因为经历了概念的形成过程,为知识的应用做了良好的铺垫。
四、深化练习
1、奉献。
五年一班的张华同学在2001年1月1日把积攒的1200元钱存入银行,整存整取二年,年利率2.7%。她准备把到期后的税后利息捐给“希望工程”支援贫困地区的失学儿童,到期时她可捐钱多少元?
2、理财。
你有压岁钱吗?以小组为单位核算一下,如果把这些钱存起来,你们想怎样存?会得多少税后利息?你们准备怎么使用?
3、帮助。
李大爷认识到了存款的益处,所以决定把自己的1万元存入银行5年,面对“国债3.6%”、“定期3.6%”、“活期0.72%”三种选择,他该怎么办呢?你能按获得利润的多少为李大爷提个合理化建议吗?
4、介绍小知识。(教育储蓄)
设计意图:数学来源于生活,服务于生活,为学生设计的三组生活习题,其目的在于让学生感悟数学在生活中的价值,增强应用意识,同时培养了学生乐于助人、勤俭节约的优良品质。
效果预测:学生喜欢智慧的挑战,对学以致用有很强的能动性,所以他们一定会用智慧的眼光解决习题中的生活问题,同时在教育储蓄的感召下,进一步感悟党和人民的期望,树立终身学习的愿望。