六年级数学《倒数的认识》教案
作为一位不辞辛劳的人民教师,就有可能用到教案,借助教案可以有效提升自己的教学能力。那么什么样的教案才是好的呢?以下是为大家整理的六年级数学《倒数的认识》教案,希望可以帮助到有需要的朋友。
整体感知
倒数的认识的教学,主要是通过观察,分析,对比,概括的方法让学生讨论,举例,交流,真正理解什么是倒数,怎样求倒数.待新知识弄清之后,根据本课内容的特点适当插入一些内容,也就是在教学过程中让同桌同学互相多提问,师生之间多提问,互相解疑,列举出一定范围各种各样的数,一方面看有没有倒数;另一方面看一看有倒数怎样求,这样可以激发学生探索新知识的兴趣,使课堂气氛活跃,在愉快之中达到理解,掌握之目的.
教学内容:教材23页的内容以及练习六1至6题.
素质教育目标
(一)知识教学点
1.通过学生观察,分析,比较,理解倒数的意义.
2.用列举的方法,发现规律,使学生掌握求倒数的方法.
(二)能力训练点
培养学生阅读能力,以及抽象概括能力,能准确地写出一定范围的各个数的倒数.
(三)德育渗透点
通过倒数的学习,同时渗透辩证唯物主义观点,倒数间的各个数都是相互依存,不能孤立存在.
教学重点:理解倒数的意义和怎样求倒数.
教学难点:求倒数方法的叙述.
教学步骤
一,铺垫孕伏
1.口算:
2.填空:
二,探究新知
(一)教学倒数的意义:
1.揭示课题:今天这节课我们学习一个知识倒数.究竟什么是倒数,怎样求倒数呢 我们一起探讨.教师板书:倒数的认识.
2.观察算式:
(2)计算结果,发现共同点:每个算式中两个数相乘的积是1.
(3)互相讨论:通过几组算式及结果你有什么新发现 引导学生说出:每组中每个分数分子,分母调换了位置,相乘的结果都是1.
3.教师概括并板书:乘积是1的两个数叫做互为倒数.
(1)互相议论:两个数指什么数 互为倒数是什么意思
引导说出:两个数指两个分数或一个整数和一个分数,互为倒数是说一个数是另一个数的倒数,不能说某一个数是倒数.
(3)学生举例:
①每人举出3组倒数的例子,并说明谁是谁的倒数
②同桌互相举例(每人2组),并用倒数的定义来检验.
4,教师小结:通过分析你明白了什么 倒数是指两个数而说,互为倒数是指一个数不能称倒数,必须是一个数是另一个数的倒数.
5.反馈练习:
(1)判断:
①倒数是一个数( )
(二)教学求倒数的方法:
1.学生举例:谁能举出一组互为倒数的两个分数.
2.观察发现:互为倒数的一组数分子,分母有什么特点
引导学生找出互为倒数的两个数的分子,分母位置是互换的.
3.谈想法:设想一下怎样可以找到一个数的倒数呢
4.讲解例题:
(2)根据倒数的意义,自己找出求倒数的方法.使学生知道:只要把
(3)师生共同发现:求倒数的方法只要把这个数的分子,分母调换位置即可.
(4)表达方式并板书:
5.自然数怎样求倒数
(1)自己任意举出一个自然数,看有没有倒数 并追问:你是怎么想的 引导学生说出:自然数可以看成分母是1的分数,也可以把分子,分母调换位置.
(2)归纳求自然数倒数的方法,引导学生说出,一个自然数的倒数就是以这个自然数作分母,以1作分子的分数.
6.总结方法
(1)学生试述,互相讨论,看谁能够准确表达求倒数的方法.
(2)准确归纳并板书,求一个数( )的倒数,只要把这个数的分子,分母调换位置.
(3)讨论:是不是所有数都有倒数 为什么
引导学生说出:0没有倒数,因为0可以作分子,但调换位置后变为分母,分母不能是0,所以0没有倒数.
(4)教师板书:(0除外)
7.阅读课本中倒数意义和求倒数的方法.
三,巩固发展
1.判断下列说法是否正确 错的改正.
(1)任何数都有倒数.
(2) c和d互为倒数,所以cd=1.
四,全课小结
通过这节课的学习,你知道了什么 学会了什么 引导学生说出乘积是1的两个数叫做互为倒数,必须是互为倒数,以及求倒数的方法.五,布置作业 练习4,5,6题做在作业本上.六,板书设计
倒数的认识
乘积是1的两个数叫做互为倒数
求一个数(0除外)的倒数,只要把这个数的分子,分母调换位置.
教学内容:
新课标六年级上册课本P28页的例1做一做,第29页的练习。
教学目标:
1、知识与技能:通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
2、过程与方法:学生根据自己的理解,发现求倒数的方法。
3、情感态度与价值观:在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
教学重点:理解倒数的意义,学会求倒数的方法。
教学难点:熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
教学过程:
一、创境导课、激发兴趣。
1、 复习:
口算:《倒数的认识》教学设计《倒数的认识》教学设计 《倒数的认识》教学设计 《倒数的认识》教学设计
2、创境导课、激发兴趣
师:同学们,我们在学习新课之前,来做个文字颠倒游戏,比如老师说:“牙刷”,大家可以说“刷牙”,你们想玩吗?
生:(大声喊道)想!
师:子女
生:女子
3、游戏:倒写
吞———吴 上---下 土-----干
这是语文方面的倒数现象,数学方面把一个数倒一下会有什么现象,你们想知道吗?4/7---7/4 3/2---2/3 1/2----2/1
师:你们能按照上面的规律再说出几组数吗?(学生举例教师给予肯定。)
3.师:像这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这些上下颠倒的数起个名字吗?(生:倒数)好!今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)
4.师:看到这个课题,大家想知道什么?
根据学生回答,选择板书。如:(1)倒数?(2)怎么样求?(3)……
(设计意图)在谈话、游戏情境中引导,培养学生发现问题、提出问题能力。
二、合作探究、解决问题
1.探究倒数的意义。(课件出示算式以及思考要求)
师:(课件出示)同学们请看大屏幕,谁能准确的说出结果。
请同学们拿出练习本,以小组为单位:算一算,找一找,这组算式有什么特点?
小组汇报交流。
学生预设:1.通过计算,我们发现它们的乘积都是1。
2.通过观察,我们发现相乘的两个分数的分子和分母位置是颠倒的。
(3)师:究竟什么是倒数?开动你的脑筋,给它一个完整的答案吧?
(学生独立思考后,组内交流。)
(全班汇报,教师根据学生的汇报点拨引导。)
师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)
2.探究求倒数的方法。
师:那么如何求一个分数的倒数呢?
(1)课件出示分数:3/5、2/7、4/7
A:学生试说。
B:教师板书:例:3/5的倒数是5/3,等等。也可用—(破折号)表示。(规范学生的书写,养成良好的学习习惯)
师:你是怎么想的?
生:只要将分数的分子分母颠倒位置就行了。
(2)师:同学们已经会求一个分数的倒数了。那么整数有没有倒数?
生:预设:有!或者没有。
师:怎么想的?
生:因为任何一个整数都可以看作是分母为一的分数,根据分数的倒数求法,整数是几,它的倒数就是几分之一。
师:非常好!很有条理性,还有什么看法?
生:我认为不是所有的整数都有倒数,因为0和任数相乘都不等于1。
师:嗯!很有道理。你们怎么看?一起商量一下吧?
(小组交流,全班汇报)
(3):师:谁想说说?
生1:我们小组认为整数有倒数,但是需要把特殊的0排除。
生2:我们想补充一下,在整数里,除了0这个数还有1也很特殊。也应该排除。
生3:整数有倒数,但是得排除0和1。
师生总结:大家说的很有道理,整数实际它的倒数就是几分之一,那么1和0有倒数吗?为什么?学生讨论释疑。
预设:
因为1×( )=1,所以1的倒数是1。
而0×( )=1呢?没有。所以0没有倒数。
师:看来同学们掌握的很多,老师要来考考大家,接受挑战吗?
(课件出示练习题)填空,判断题型。(设计意图:随堂练习,及时巩固新知)
(4)、师:我们还学过哪些数?生:小数、带分数。
师:如何求它们的倒数?请同学们小组探究交流。
学生选择一种研究,教师巡视指导。学生交流汇报。
预设:小数倒数求法,先将小数化成分数,再求倒数。带分数的倒数求法,是将带分数化成假分数,再求倒数。(分别请学生举例说明。让学生脑子里有这个思维模式。)
师:综合上边我们学习的内容,我们能不能用一句完整的话来概括求倒数的方法。?
方法:求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)充分调动学生的学习积极性,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固练习
师:那老师来考考你,同学们请看下面的题(课件出示)。
老师找学生回答。
1、说出下列各数的倒数。
⑴4/11 的倒数是( ) (2)35 的倒数是( )
⑶4/15的倒数是( ) (4)16/9的倒数是( )
(5)1的倒数是 ( ) (6)0.25的倒数是( )
2、填空:
(1)乘积是( )的两个数互为倒数。
(2)( )的倒数是它本身,( )没有倒数。
(3)A和B互为倒数,则A·B=( )。
3、判断:
(1) 求 2/5 的倒数: 2/5=5/2 。 ( )
(2) 9的倒数是 9/1 。 ( )
(3) 任何真分数的倒数都是假分数。 ( )
(4) 任何假分数的倒数都是真分数。 ( )
(5)A的倒数是1/A。 ( )
4、拓展题。
7/8×( )=1/2×( )=0.25×( )=5/6×6/5=1
4、游戏:五四三二一。(打一数学名词)
(设计意图)多种形式的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思、评价体验。
1、这节课你们有什么收获?还有什么疑问?
2、师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!谢谢大家,下课!
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
五、布置作业。
29页练习六1、2、3题。
六、板书设计
倒数的认识
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置
教学目标
1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的.倒数。
3.培养学生的观察能力和概括能力。
教学重点和难点
1.正确理解倒数的意义及互为的含义。
2.正确地求出一个数的倒数。
教学过程设计
(一)激发兴趣,引出概念
1.投影。哪个同学和老师比赛?谁说得快?
师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)
2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。
板书:乘积是1 两个数
3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?
生:两个数分子、分母颠倒位置就可以了。
师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)
4.举例说明,什么叫互为倒数?
师:3是倒数这句话对吗?为什么?
你们说得对,谁能说出几组倒数?
同桌互相说,每人说两组。(指名说)
问:怎样判断他们说得是否正确?
生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。
5.思考:1的倒数是几?为什么?0有倒数吗?为什么?
板书:1的倒数是1。0没有倒数。
(二)求一个数的倒数
同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?
1.出示前面的投影,找特点。
观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。
问:谁来说说你发现了什么?
生:互为倒数的两个数,是分子、分母交换了位置。
师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。
学生说老师板书:
3.同学们想一想,怎样求一个数的倒数?前后、左右的同学互相说一说。
谁来给同学们汇报一下?(2~3名)
板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。
问:老师为什么要空出一些地方?
生:0除外。
问:为什么要加上0除外?(板书:0除外。)
问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。
4.课堂练习。
写出下面各数的倒数:
35的倒数是怎么想的?
问:2的倒数是几? 10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?
5.写出1.5的倒数,怎样做?
(三)课堂总结
我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?
下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。
(四)巩固练习
1.投影。
问:怎么填得这么快,你是根据什么填的?
问:①谁能回答?
②你根据什么填的?
③为什么根据倒数的意义填?
看下一组题:
问:怎么填?根据什么?与(2)有什么不同?
师:所以做题时要认真审题,看清符号,千万不能出审题错误。
2.下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)
3.判断下面各题。对的举,错的举,并说明理由。
投影出示:
(1)乘积是1的两个数互为倒数。 ()
(2)2.5和0.4互为倒数。 ()
师:你们是怎么想的?
生:2.5和0.4乘积是1,所以是对的。
(3)因为1的倒数是1,所以0的倒数是0。 ()
问:错在哪里?
问:错在何处?
问:这道题错在哪了?
生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。
4.游戏。
每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。
评比表扬优胜,找出谁给前面的同学改了错。
(五)作业
课本24页第3,5,6题。
课堂教学设计说明
1.这节课的设计思想首先从如何激发学生的学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。
2.这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。
一、 教学内容:九年义务教育六年制第九册第二单元《倒数的认识》
二、 教材分析:
倒数的认识是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。倒数的认识是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、 教学目标:1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
四、 教学重点:理解倒数的意义,掌握求倒数的方法。
五、 教学难点:熟练写出一个数的倒数。
六、 教学过程:
(一)、 谈话
1.交流
师: 我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
(二)、学习新知
对数游戏
1.学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。
师:4是3的4/3,
生:3是4的 3/4
师:7是15的7/15; 生:15是7的15/7。
提问;看我们做游戏的结果,你们有没有发现什么?
教学目标:
引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;通过互助活动,培养学生与人合作、与人交流的习惯;通过自行设计方案,培养学生自主探索和创新的意识。
教学重、难点:理解倒数的含义,掌握求倒数的方法。
教学过程:
(一)导入
1.找找下面文字的构成规律
呆---杏土---干吞---吴
2.按照上面的规律填数
--()--()--()
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
(二)教学实施
关于倒数同学们想知道些什么呢?学习倒数的含义
1.观察教材24页的例1,归纳,总结倒数的含义,
2.举例验证:4和,7和,3和
4乘的积是,所以4和互为倒数;7可以看成分母是1的分数,把分子、分母调换位置后就是,所以7和互为倒数。
归纳:乘积是1的两个数互为倒数。
3.特殊数:0和1(引导学生辩论0有没有倒数,1有没有倒数,是多少?)
教师归纳板书:0没有倒数,1的倒数就是它本身。
4.学习例2--求倒数的方法
让学生根据已学知识独立解决怎样求一个数的倒数,集体订正,教师归纳,板书:求倒数的方法
5.反馈练习
完成教材24页的做一做,完成练习六的第3、4题
(三)课堂练习
找一找下列数中哪两个数互为倒数
210
填空
的倒数是(),()的倒数是。
10的倒数是(),()没有倒数。
(四)课堂小结
学完本节课,我们知道了乘积是1的来年各个数互为倒数。1的倒数是它本身,0没有倒数。
课后反思:
教学内容:
苏教版义务教育教科书《数学》六年级上册第36页例7、练一练,第39页练习六第16~21题。
教学目的要求:
认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。
教学重点难点:
掌握求倒数的方法,能熟练得求一个数的倒数。
教学过程:
一、导入新课
问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?
二、新授
教学例题
(1)出示例7
下面的几个分数中,哪两个数的乘积是1?
(2)学生回答。
(3)引出概念。
乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。
(4)学生举例来说。进行及时的评议。
(5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?
归纳方法
小组讨论:
观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?
全班交流。
求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
问:5的倒数是几?1的倒数是几?
学生回答,并说原因。
追问:0有倒数吗?为什么?
指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。
除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
教学“练一练”
学生回答。
提醒学生正确地书写格式。
三、巩固练习。
1、做练习六第17题
学生填书上后,集体订正,并说说是怎样想的。
2、做练习六第18题
指名口头回答,选择两题让学生说说思考的过程。
3、做练习六第19题
重点引导学生讨论每一组数的规律。
4、做练习六第21题
5、做思考题
联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?
四、全课总结
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
五、作业
练习六第20题
板书设计:
(略)
教学内容 教科书第28~29页例1、“做一做”及相关内容。
教学目标
1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。
2.使学生体验找一个数的倒数的方法,会求一个数的倒数。
3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。
教学重点 理解倒数的意义;求一个数的倒数。
教学难点 理解“互为倒数”的含义。
教学准备 教学课件、写算式的卡片。
教学过程 具体内容 修订
基本训练,强化巩固。
(3分钟) 1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。
2.学生独立完成上面几组题,小组内检查并订正。
创设情境,激趣导入。
(2分钟) 请个别学生说说分数乘法的计算方法,突出分子与分母的约分。
提示目标,明确重点。
(1分钟) 通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。
学生自学,教师巡视。
(6分钟) 1. 观察这些算式,如果将它们分成两类,怎样分?
2.通过观察发现算式的特点。
展示成果,体验成功。
(4分钟) 让学生说说乘积为1的算式有什么特点。
学生讨论,教师点拨。
(8分钟) 1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。
2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。
3.引导学生思考:互为倒数的两个数有什么特点?
4.探讨求倒数方法。
(1)出示例题,让学生说说哪两个数互为倒数。
(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书
教学目标
1.理解和掌握倒数的意义.
2.能正确的求出一个数的倒数.
3.培养学生的观察能力和概括能力.
教学重点
认识倒数并掌握求倒数的方法
教学难点
小数与整数求倒数的方法
教学过程
一、基本训练
(一)口算
=
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数.
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系.
(板书:倒数)
三、新课教学
(一)乘积是1的两个数存在着怎样的倒数关系呢?
请看: ,那么我们就说 是 的倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数.
和 存在怎样的倒数关系呢?2和 呢?
(二)深化理解
教师提问
1.什么是互为倒数?
2.怎样理解这句话?(举例说明)
( 的倒数是 , 的倒数是 ,不能说 是倒数,要说它是谁的倒数.)
3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1).
(三)求一个数的倒数
1.例:写出 、 的倒数
学生试做讨论后,教师将过程板书如下:
所以 的倒数是 , 的倒数是 .
(能不能写成 ,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.
副标题#e#
2.深化
你会求小数的倒数吗?(学生试做)
三、训练、深化
(一)下面哪两个数互为倒数
(演示课件:1)
(二)求出下面各数的倒数
(演示课件:2)
(三)判断
1.真分数的倒数都是假分数.
2.假分数的倒数都小于1.
3.0没有倒数.
(四)提高
如果末尾加上=1怎么填?
如果末尾加上=0怎么填?
如果末尾加上=2怎么填?
四、课堂小结
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?
五、课后作业
(一)下面哪两个数互为倒数?
8
(二)写出下面各数的倒数.
3 1
六、板书设计
教学设计点评
这个教学设计符合知识本身的内在联系以及学生的认知规律,教学目的明确,要求具体,重点突出,结构严谨,层次清晰。
教学中教师紧紧围绕倒数的意义,使学生在观察比较中理解知识、掌握知识,体现了学生学习新知形成能力的过程。
练习中,通过教、扶、放使讲练有机结合,既加强了双基,又开发了智力。
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
四、训练、深化
1.下面哪两个数互为倒数
(出示课件一下载)
2.求出下面各数的倒数
(出示课件二下载)
3.判断
①真分数的倒数都是假分数。()
②假分数的倒数都小于1。()
③0没有倒数。()
4.提高
会填了吗?
如果末尾加上=1怎么填?
如果末尾加上=0怎么填?
如果末尾加上=2怎么填?
五、课堂小结
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?
六、课后作业
练习六2、3
七、板书设计
略
教学内容:p27倒数的认识,练习六全部习题。
教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
教学过程:
一、用汉字作比喻引入
1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)
师生共同确定本节课的目标研究倒数的意义、方法和用处。
二、新知探索:
1、研究倒数的意义
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
2、学生自主举例,推敲方法:
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)
(b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)
(c、以带分数为例;带分数的倒数是真分数。)
(d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)
(e、以整数为例;整数相当于分母是1的假分数)
学生举例的过程同时将如何寻找倒数的方法也融入其中。
3、讨论0、1的情况:
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)
4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)
三、反馈巩固:
1、完成练一练。
学生独立完成后,集体订正。重点问:8的倒数是几?
2、练习六5(判断)
3、补充判断:
a、a是自然数,a的倒数是1/a。
教学目标:
1.使学生理解倒数的意义。
2.使学生掌握求一个数的倒数的方法。
3.渗透辩证唯物主义关于事物都是普遍联系观点的启蒙教育。
教学重点:理解倒数的概念
教学难点:会灵活求真、假分数、小数、整数、带分数的倒数。
教学策略:
1、因为学生已经有了前面分数乘法计算的基础,所以本节课教师可以完全放手让学生通过自学和足够的练习掌握倒数的概念以及求一个数的倒数的方法。
2、教师应让学生明确倒数的两个条件:①两个数。②这两个数的乘积是1。乘积是1的两个数叫做互为倒数。并让学生讨论:
①怎样的两个数互为倒数?
②一个数能叫做倒数吗?
③5是倒数这样的说法对吗?为什么?
3、在学生讨论的基础上说明:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。这个数可以是小数,分数和整数。
然后让学生自己创作几组倒数,并对学生的回答让学生自己发表意见,用倒数的意义来检验所举的例子对不对。
4、教学求一个数的倒数的方法时要引导学生观察:互为倒数的两个数的分子、分母是互相调换位置的。并思考:
①所有的自然数都有倒数吗?1的倒数是几?
②0有没有倒数?为什么?
③怎样求一个数的倒数?
引导学生得出:
1的倒数是1,0没有倒数。求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
5、使学生明确:
(1)自然数的倒数要先把它化成分母是1的假分数,再按调换分子、分母的方法来求倒数。
(2)求带分数的倒数要先把它化成假分数,再按调换分子、分母的方法来求倒数。
(3)求小数可以先把它化为分数再调换分子、分母的方法来求倒数。