作为一名人民教师,总归要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。我们该怎么去写教案呢?
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第2~3页。
【教学目标】
1.能在具体的情境中,探索确定位置的方法,说出某一物体的位置。会在方格纸上用数对确定位置。
2.通过形式多样的游戏与练习,让学生熟练掌握用数对确定位置的方法,发展其空间观念,初步体会到数行结合的思想,提高学生运用所学知识解决实际问题的能力。
3. 体会生活中处处有数学,体会数学的价值,培养对数学的亲切感。
【教学重点】
使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。
【教学难点】
在方格纸上用数对确定位置。
【教学过程】
一、从实际情景入手,引入新知,使学生学会在具体情景中用数对确定位置
1.谈话引入。
今天有这么多老师和我们一起上课,同学们欢迎吗?
老师们都很想认识你们。咱们先来给他们介绍一下我们班的班长,可以吗?
2.合作交流,在已有经验的基础上探究新知。
(1)出示要求:以小组为单位,想一想,可以用什么方法表示出班长的位置,把你的方法写或画在纸上。
汇报:班长的位置在第4组的第三个,他在从右边数第二组的第三排
哪个小组也用语言描述出了班长的位置?
请班长起立,他们的描述准确吗?
刚才同学们的描述有什么相同和不同?(都表示的是班长的位置,有的同学说第几组,第几行,第几排)
看来在日常生活中,我们可以用组、排、行、等多种方式,还可以从不同的方位来描述物体的位置。为了我们在确定位置的时候语言达成一致,一般规定:竖排叫列,横排叫行。
板书:列行
老师左手起第一组就是第一列,横排就是第一行
班长的位置在第4列、第3行。
还有其他的表示方法吗?
画图的方法:
如果大家是站在老师这个位置看全班的座位,这张图应该怎么放?(课件)
把座位图转过来,班长的位置变了吗?为什么?
(没变,还是第四列第三行,因为老师和我们看到的方向正好相反,但位置没变)
(2)探究新知。
在这张座位图中,你能找到自己的位置吗?
师指图:这是谁的位置?(我的,我的位置在第五列,第4个)
指名描述自己的位置?
同桌说说自己的位置。
今天老师还要教你们一种更为简洁的方法来确定位置,想知道吗?
板书:(2,5)
你们知道,这是谁的位置吗?
2,5分别表示什么意思?像这样用两个数来表示位置,我们称它们为数对。(板书)
下面我们就来研究用数对的方法来确定位置。(板书)
(3)巩固新知。
A、谁能用数对表示出自己的位置?指名两个,说出数对的含义,板书出来。
老师板书:(5,2),请这个同学起立,回答问题:(2,5)(5,2)这两个数对都由数字2、5组成,他们表示的位置一样吗?为什么
(两个数字组成顺序不一样,表示的意思就不一样)
B、老师出示图中的点,相应的学生说数对,其他同学判断对错。
(1,5)(4,2)(3,3)
当出示(3,3)时,问:两个3的意思一样吗?
在我们班的位置中,这样的数对还有吗?
如果有个班级最后一个同学的位置是(7,7),你知道这个班有多少人吗?为什么?
(49个,因为表示有7列,7行,所以77=49人)
C、小游戏:接龙。
老师先说出一组数对,相应的同学起立,说出下一个同学的位置,以此类推。
先让学生在心中想好你想叫得同学的位置。
D、寻找新位置。
同学们都会用数对表示自己的位置了吗?下面这个环节要检验你们每一个同学是否真的会了。
收拾好你的东西,根据你手中的数对,快速找到你的新位置。
(学生的数对里有两个特殊设计:(3,
)和(,3)
二、通过多种练习,使学生会在方格纸上用数对确定位置
1.出示动物园示意图。
你能看懂这张图吗?图上的`数字表示什么意思?
请你用数对说出飞禽馆和南门的位置。
请你写出狮虎山,猴山,大象馆的位置。
观察这三个地点在图中的位置和他们的数对,你有什么发现?
周六,小红和妈妈去动物园玩,她们的游玩路线如下
请你说出她们的参观路线。
请你设计一条路线:
(1)从南门进,从北门出。(2)经过所有的景点。(3)不走重复路线。
用数对写出路线方案。
2.老师的礼物。
老师相送给每位同学一份礼物,但是只有掌握了今天所学的知识的同学才能看到这份礼物。
学生按照数对涂色。
介绍经验:这么多数对,你是怎么做到不丢不重,又准确的找到位置的。
看来这些同学取得成功时有方法的,老师真心祝贺你们,没有成功的同学也别气馁,老师把信心送给你们,只要吸取好的经验,下次一定会成功。
思考:在这幅图中,数对确定位置的方法和之前有什么相同和不同?
(方法一样,一组数对表示一个方格,而不是一个点)
3.第5页第4题第(2)小题:描出下列各点并按字母顺序依次连成封闭图形,看看是什么图形。
这道题的构图方式和刚才的心行构图有什么不同?
三、生活中的数学
用数对确定位置,在生活中应用广泛,你能举出例子吗?
教师出示:地图、围棋图
四、小结
五、小小设计师
以小组为单位,任选构图方式,用数对确定位置,设计一个图案。把设计方案和效果图都记录在图表纸上。
教学目标:
1、通过小组合作、自主探究建构,使学生能结合方格纸用数对来确定位置,能依据给定的数对在方格纸上确定位置。
2、通过课堂的学习活动,增强学生运用所学知识解决实际问题的`能力,提高应用意识。
3、让每一个学生在通过合作学习、汇报展示、课堂互动交流中,都体验到学习带来的喜悦,培养学生的学科兴趣和学习能力。
教学重点:
在方格纸用数对确定位置。
教学难点:
利用方格纸正确表示列与行。
教学用具:
动物园示意图的方格纸图。
教学过程
一、复习导入,提出学习目标。
1、复习:先用数对表示班级某一位同学的位置,再说说数对的第1个数字表示什么?第2个数字表示什么?
2、揭题,提出学习目标。
让学生先说说,再出示学习目标:
(1)方格纸上什么线表示列,什么线表示行。
(2)利用方格纸确定物体位置的方法。
二、展示学习成果
1、认识方格纸的列与行。竖线是列,横线是行。
2、自主学习,小组内展示。
(1)独立学习课本3页例2,并完成问题1和问题2。小组之间互相交流、探讨。(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨。)
教学目标:
1.使学生能结合方格纸用两个数据来确定位置,能依据给定的数据在方格纸上确定位置。
2.通过学习活动,增强学生运用所学知识解决实际问题的能力,提高应用意识。
教学重点:
在方格纸上用数对确定点的位置
教学难点:
利用方格纸正确表示列与行。
教学准备:
教师准备:投影机。
学生准备:方格纸
教学过程
一、复习巩固
标出下列班上同学的位置(图略)
{借助教师操作台上的学生座位图,迅速将实际的具体情境数学化}
二、新知探究
(一)教学例2
2.依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)
(在教学的过程中,教师要特别强调0列、0行,并指导学生正确找出。)
3.同桌讨论说出其他场馆所在的位置,并指名回答。
4.学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)
{充分利用学生已有的生活经验和知识,鼓励学生自主探索、合作交流。在教学时应充分利用这些经验和知识为学生提供探究的空间,让学生通过观察、分析、独立思考、合作交流等方式,将用生活经验描述位置上升为用数学方法确定位置,发展数学思考,培养空间观念。}(二)、课堂提高
练习一第6题
(1) 独立写出图上各顶点的位置。
(2) 顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?
(3)照点A的方法平移点B和点C,得出平移后完整的三角形。
(4)观察平移前后的图形,说说你发现了什么?小组内相互说说。
(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)
{。让学生看到在平面上用数对表示点的位置的方法,架起了数与形之间的桥梁,加强了知识间的相互联系。}
三、当堂测评
练习一第4题
学生独立完成,然后同学之间互相检验交流,最后,教师再展示学生的作品,学生评价。
练习一第5题
(1)学生自己在方格纸上画一个简单的多边形。各顶点用两个数据表示。
(2)同桌互相合作,一人描述,一人画图。
{继续渗透数形结合的思想。}
四、课堂自我评价
这节课你觉得自己表现得怎样?哪些方面还需要继续努力?
五、设计意图:
本节知识,我充分利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,让学生在口述“第几组几个”的练习过程中,潜移默化地建立起“第几列第几行”的概念,让学生从习惯上培养起先说“列”后说“行”的习惯。然后再过度到用网格图来表示位置,让学生懂得从网格坐标上找到相应的位置。这样由直观到抽象、由易到难,符合孩子的学习特点。
课后小记
学习内容:
“水桶和油桶”的问题
学习目标:
1.让学生增加对数学的兴趣,认识数学的`多种形式。
2.另外教授一些数学计算的巧妙方法。
3.引导学生通过思考操作发现并验证“水桶和油桶”问题的特征,培养学生大胆猜测、勇于探究的求索精神。
4.利用简便方法,提高学生计算效率,更加高效的学习数学。
学习形式:
学生自主探索、合作交流
学习过程
一、引入
师:提出问题:你能解决这样的问题吗?展台出示题目。
二、探究新知
1.请同学们取出1号靶,认真观察(引导学生观察)
2.小组交流,探究解决。
3.请同学们取出2号靶,尝试解决。(引导学生动手实践)如果有的学生做出来,让孩子展示,教师给予赞赏;如果学生做不出来,充分调动组内力量,探究解决。
4.请同学们按照组内交流出的方法各自解决。(小组合作,互相帮助)
三、课堂拓展
同学们通过今天这节课的学习,是不是觉得数学充满了奥秘呢?课后,有兴趣的同学可以在网络上找很多有关“水桶和油桶”的知识,然后和老师、同学们一起去研究研究,好吗?
今后老师会继续为你们介绍一些更有趣的数学现象,这些数学方法更贴近你们平时的数学学习,有助于你们更好地学习数学。
【教学目标】
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
【教学重点】
负数的意义和负数的读法与写法。
【教学难点】
理解0既不是正数,也不是负数。
【教学过程】
一、激发兴趣,导入新课
游戏:《我变,我变,我变变变》
老师说一句话,请同学们说出一句和它意思相反的话。
二、创设情境、学习新知
1.教学例1。
(1)课件出示:中央电视台天气预报的一个场面:哈尔滨零下6摄氏度至3摄氏度。
你能用自己的方法来表示这两个温度吗?
学生思考后反馈,教师适时点拨、评价和引导。
教师小结:
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第123页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。今天,老师带来了一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图,课本第124页上图的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看新疆的吐鲁番盆地的海拔图。(课件演示吐鲁番盆地的海拔情况,课本第124页上图的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平面低155米。
(2)巩固练习:课本第124页试一试。
教师巡视,集体订正。
3.小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
学生交流、讨论。
指出:因为+8844.43米也可以写成8844.43米,所以有正号和没正号都可以归于一类。
提出疑问:0到底归于哪一类?引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、 3、+8844.43等这样的数叫做正数;像-6、-155等这样的数叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写,负号可以不写吗? 为什么?
三、巩固练习,深化认识
1.课堂活动:1、2题。
①读一读,议一议。
学生齐读,巩固负数的读法。
②根据题中的信息,说一说三个班的答题情况。
学生讨论交流,并说出理由。
2.练习二十五:1、3题。
独立练习,反馈交流。
四、联系生活,拓展运用
说一说:生活中哪些地方还会用到负数。
教学目标
1、使学生掌握分数、小数四则混合运算的运算顺序及计算方法,并能正确地进行计算。
2、训练学生认真审题,能够选择合理简便的解题方法。
3、培养学生良好的学习习惯及正确、合理、灵活、迅速的运算能力。
教学重点和难点
教学重点:掌握分数、小数四则混合运算的运算顺序,并且能根据不同的情况选用不同的方法进行计算。
教学难点:灵活、合理地运用不同的方法进行计算。
教学过程设计
(一)复习
1、第74页第1题。
(1)把下面的小数化成分数:
0.125 0.3 0.5 0.6 0.25 0.75
(2)把下面的分数化成小数:
以上各题用投影片出示,指名口答。
2、我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。
下面各题用什么方法进行计算比较简单?
提问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?
提问:分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?(第三种方法最简便,但这种做法只有小数能够被分数的分母除尽时才最方便,一般情况下分数、小数乘除混合运算把小数化成分数来做比较简便。)
(二)学习新课
以上这些计算方法是我们进行分数、小数四则混合运算的基本方法。
(板书课题:分数、小数四则混合运算)
(1)小组讨论:这道题怎样计算比较简便?(把小数化成分数计算比较简便。)
(2)全体同学在练习本上试做,通过试做,体会一下为什么用这种方法进行计算简便?
(3)订正,并且说说这种做法有什么好处?(因为计算分数乘、除法时,有时可以先约分再计算比较简便,所以,分数、小数乘除混合运算一般先把小数化成分数后再计算。)
(1)审题:例5与例4有什么不同之处?
(例4是分数、小数乘、除混合运算,例5是分数,小数四则混合运算。)
(2)想一想,做这道题的时候,我们应该注意些什么?(a.运算顺序;b.选择合理恰当的方法。)
(3)小组讨论:这道题是把小数化成分数算简便,还是把分数化成小数算简便?(把小数化成分数计算比较简便。)
(4)全体同学在练习本上试做。
(5)订正。
(6)小结:我们把题目中的小数都化成了分数,这样在乘除过程中,有时可以先约分,使得做起来比较简便,同时得到的是一个准确的结果。
(7)如果计算的结果允许取近似值,也可以先把分数化成小数,取它们的近似值进行计算。在本册教材中,一般要求只取两位小数,这种算法在现在电子计算机越来越被广泛使用的社会里是很有价值的,因为,大多数电子计算机都是用小数来计算的。请你用这种方法试做这道题:
≈5.2÷3.2-1.67×0.7(注意:这一步用“≈”)
=1.625-1.169
=0.456
订正此题,并且教师要强调:如果计算的结果允许取近似值,才可以把分数化成小数来计算。
3、小结。
两位同组的同学互相说一说:
(1)分数、小数乘、除混合运算,怎样计算比较简便?
(2)分数、小数四则混合运算,又怎样计算简便?
看书质疑。
(三)巩固反馈
采用分小组巩固练习的形式。
1、用题板做练习,大面积反馈。
举题板订正,再把两种不同的计算方法进行比较:
不难看出,第二种方法更简便一些。所以解题方法不是一成不变的,还要根据题目的具体情况,如数的特征、运算符号等决定怎样做简便就怎样做,故在掌握了一般方法的基础上,还要灵活运用。
2、互相帮助:1,3,5组同学做题(1);2,4,6组同学做题(2)。之后,同桌同学交换检查,指出错误,加以改正,使学生掌握检查的方法,并养成检查的习惯。
教师出示正确答案,哪组的同学都做对了就给予表扬。
3、全体同学齐做。
把题中的分数化成小数后再计算。(保留两位小数。)
≈13×0.56-16.24÷3.5
=7.28-4.64
=2.64
(四)课堂总结
教学目标
1、 使学生在具体的情境中认识列、行的含义,知道确定列、行的规则。能初步理解数对的含义,会用数对表示具体情境中物体的位置。
2、 结合具体情境,使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高思维能力,发展空间观念。
3、 使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
教学过程
一、 情境引入,激发需要
提问: 能说出我们班中队长坐在哪里吗?
出示例1主题图,让学生按自己的想法描述小军的位置。(学生可能认为小军坐在第4组第3个,也可能认为小军坐在第3排第4个)
质疑:同样都是表示小军的位置,怎么会有两种不同的表达方式呢?(第一种意见是把一竖排看作一个小组,小军就在第4组第3个;第二种意见是把一横排看作一排,小军就在第3排第4个)
提问:怎样才能用一致的方式,更简明地说出小军的位置呢?(学生可能想到:先说清楚是什么排或什么是组,再说明小军在第几组第几个或第几排第几个;统一规定,横着的是排,大家都按照这样的规定去说)
提问:� (板书课题)
[说明:让学生说出中队长的位置,有效地唤起了学生已有的用“第几组第几个”或“第几排第几个”的知识确定位置的经验,帮助学生找准了新旧知识的连接点。让学生运用已有经验描述小军的座位,使学生体会到用已有的经验描述小军的位置,由于标准不同,结果也不同,从而引起学习和探索新方法的内在需要,有效地激发了学生学习的积极性。]
二、 认识列、行,理解数对
1、 对照座位示意图认识列与行。
讲解:(出示教材第15页的座位示意图)习惯上,我们把竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。用这样的方法来描述,小军就坐在第4列第3行的位置上。(板书:第4列第3行)
提问:(在示意图的第2列第4行的位置上,点出小明)小明坐在这个位置,他的位置是在第几列第几行?(板书:第2列第4行)
提问:小丽坐在第5列第2行,你能在图中找出小丽的位置吗?(学生指出小丽的位置,并板书:第5列第2行)
自己在图中找一个点,并用第几列第几行的方式描述这个点的位置,和小组内的同学交流。
反馈:会用第几列第几行这样的方式来确定物体的位置了吗?(要求学生举例说明)
2、 用数对表示物体的位置。
谈话:我们已经认识了列和行,并且能用第几列第几行来确定物体所在的位置。既然大家约定用第几列第几行的方式来表达物体的位置,就不会引起误解。那能不能用一种更简洁的方法来表达呢?(学生可能会想用字母分别表示列和行)
讲解:大家想出的办法很好。其实,我们可以进一步规定:用一个数表示第几列,再用另一个数表示第几行,那么,小军的位置就用两个数来表示就够了。你能知道是哪两个数吗?(4和3)习惯上,我们用一个数对来表示:(4,3)。
提问:数对前面的一个数4表示什么?3呢?
提问:你能用数对分别表示小明和小丽的位置吗?(学生用数对表示,并说明每一个数对的含义)
要求学生同桌合作,一人指出位置,另一人说说这个位置是第几列第几行,并且用数对表示出来。
3、 完成教材第15页的“练一练”。
(1) 在图中找出第2列第4行的位置,找到后,在图中用笔涂出来,并用数对表示,填在书上的括号里。
(2) (6,5)这个数对在图中表示的是第几列第几行的位置?
[说明:先通过具体的情境,让学生认识列、行的含义与确定列、行的规则,再通过确定小明、小丽的位置帮助学生熟悉这一规则,为数对的引入奠定了厚实的基础。从列和行的规定,到用数对来表示,既有利于学生理解数对的含义,又渗透了符号化的思想,有利于学生感受数学符号的简洁性,体会数学的应用价值。之后,让学生尝试运用数对描述其他事物的位置,加深了对数对含义的理解。整个环节的设计,层次鲜明,重点突出,符合学生的认知规律,提高了学生的学习效率。]
三、 巩固练习,发展智慧
1、 完成练习三第1题。
出示教室座位图,并标出每一个学生的名字。
(1) 说一说: 要求学生用数对表示自己或同学的位置,并组织交流。
(2) 比一比:同桌合作,在图上指出某个同学的位置,让同桌尽快用数对表示出这个同学的位置。比比谁的反应快。
(3) 猜一猜:用数对表示出自己好朋友所在的位置,其他同学猜出这个同学是谁。
2、 完成练习三第2题。
出示题目。
(1) 生活中也经常用数对确定位置。请看,小明家厨房的一面墙上贴着瓷砖,请用数对表示四块装饰瓷砖的位置。
学生完成后,全班交流。
(2) 讨论:你发现表示这四块瓷砖位置的数对有什么特点吗?(前一个数相同,说明两块瓷砖在同一列;后一个数相同,说明两块瓷砖在同一行)
3、 课件出示练习三第3题。
出示题目。
(1) 说位置:这是学校会议室的地面图,同座位的同学相互说说每块花色地砖的位置。(用第几列第几行表示)
(2) 写数对:能用数对表示出这几块花色地砖的位置吗?(学生完成后,组织交流)
(3) 找规律:观察这几块花色地砖的位置,你发现了什么?
先让学生在小组中说说自己的发现,再组织全班交流。
4、 拓展应用。
出示右图。
谈话:如图,“光”字的位置可以用(C,2)来表示。说出下面类似于数对的每组字母和数各表示什么汉字,并连起来读一读:(B,3)、(A,5)、(C,4)、(E,2)、(D,1)。
学生在小组中交流,然后全班交流,并齐读: “我们爱数学”。
提问:你爱数学吗?为什么?
[说明:通过多种形式的练习,既激发了学生学习的兴趣,又提高了学生的能力。首先结合学生在教室中的位置,通过说一说、比一比、猜一猜等活动,使学生进一步巩固了对列、行和数对含义的认识。然后让学生结合生活实际用数对来确定墙面瓷砖和地面花色地砖的位置,这里注意通过比较瓷砖和地砖的位置特征,在观察、比较的基础上让学生充分交流,使学生发现数对中的一些规律,如同一列中,数对中的前一个数相同;同一行中,数对中的后一个数相同等,提升了学生的认识。最后通过类似于数对的一组字母和数找相应的汉字——“我们爱数学”,进一步加深学生对数对的理解,提高运用所学的知识解决实际问题的能力,更能激发学生学习数学的热情。]
四、 自主总结,生成问题
提问:这节课我们学习了什么?你有什么收获?还有什么问题值得我们课后去探究?
出示“神舟六号”飞船返回地球的画面。
谈话:“神舟六号”之所以能顺利地返回,也要用到我们今天学习到的知识。地球这么大,怎样在地球上确定位置呢?请同学们课后去查阅有关资料,并和其他同学交流。
[说明:一节课的结束,不应该是学生探索活动的终止。让学生带着问号离开教室这个小课堂,走进探索的大课堂。教学中,通过对“神舟六号”返回地球画面的回放,引发学生思考:地球这么大,怎样在地球上确定位置呢?这样做既为下节课进一步用数对确定位置打下伏笔,又有效地激发了学生的问题意识和自主探究的意识。]
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
圆柱体积的计算公式的推导。
教学过程:
一、复习
1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?
二、新课
1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)
反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?
长方体和圆柱体的底面积和体积有怎样的关系?
学生说演示过程,总结推倒公式。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)
2、教学补充例题(删掉)
(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
(2)指名学生分别回答下面的问题
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)出示下面几种解答方案,让学生判断哪个是正确的
①V=Sh
50×2.1=105(立方厘米)
答:它的体积是105立方厘米。
②2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
③50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的`体积是1.05立方米。
④50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.(删掉)
(4)做第20页的“做一做”。
学生独立做在练习本上,做完后集体订正.
出示一组习题
一个圆柱的半径4厘米,高3厘米,体积是多少立方厘米?
一个圆柱的直径12厘米,高3厘米,体积是多少立方厘米?
一个圆柱的周长12.56厘米,高3厘米,体积是多少立方厘米?
3、引导思考:如果已知圆柱底面半径,直径,和底面周长和高,圆柱体积的计算公式是怎样的?
4、教学例6
(1)出示例,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)(删掉)
(2)学生尝试完成例6。
①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
(3)学生见解例题,师补充
三、巩固练习
1、一个圆柱形水桶底面直径是56厘米,高87厘米,水桶装多少水?
2、一个圆柱的体积是80立方厘米,底面积是16平方厘米,它的高是多少厘米?
3、一个圆柱形粮囤,从里面量得底面半径是1.5米,高是2米。如果每立方米约中750千克,这个粮囤能装多少吨玉米?
4、钢管的长80厘米,外直径10厘米,内直径8厘米,求它的体积。
板书设计:
圆柱的体积=底面积×高V=Sh或V=πr2h
例6:
①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
教学反思:
以旧引新,培养学生的自主学习能力。加强直观操作,培养学生的动手操作能力。利用“转化思想”的方法把圆柱转化成近似的长方体,通过小组合作实验推导出圆柱体积的计算方法,使学生在操作中感知,在观察中理解,在比较中归纳,发展了学生的空间观念,培养了学生的动手能力和合作能力。
教学目标:
使学生认识圆柱的特征,认识圆柱侧面的展开图。
教学准备:
教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。
教学重点:
使学生认识圆柱的特征。
教学难点:
理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。
教学过程:
一、复习
我们已经认识了长方体和正方体。
谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的。两个长方形完全相同,长方体的高有无数条。)正方体呢?
谁能说一说我们学习了长方体和正方体的哪些知识?
二、 新授
教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。
1、 初步印象
教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?
(圆柱是由2个圆,1个曲面围成的。)
2、 小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?
3、 交流和汇报
(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。
(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。
4、 举例说明进一步明确特征