时间的脚步是无声的,它在不经意间流逝,我们的工作又进入新的阶段,为了今后更好的工作发展,现在就让我们好好地规划一下吧。相信许多人会觉得计划很难写?这次为您整理了高二数学个人教学计划【优秀10篇】,希望能够帮助到大家。
一、学情分析
11电子(1),现共50人,均为男生,在去年的一年中的学习表现中,有些同学在课堂上也能积极思考,积极发言,课后也能主动地完成课外的知识积累,有两位同学参加县里数学竞赛都荣获二等奖。但还有好多的同学学习目标仍不明确,在学校生活就是混日子,上课不认真听课,作业不独立完成,课后再也没时间放在学习上,因此,这一些同学的成绩就可想而知了。
二、教材分析
本学期根据教学大纲的编排,主要内容包括第八章直线和圆的方程,第九章立体几何和第十章概率与统计初步。具体内容:第八章有坐标系中的基本公式,直线的方程,圆的方程,直线与圆的位置关系,本章内容主要就是用代数的知识阐述几何图形的问题。第九章的内容分空间中平面的基本性质,空间中的平行关系,空间中的垂直和角,多面体和旋转体。教材首先让学生从直观上认识空间几何体和轨迹,然后给出了平面的三条基本性质,从而把平面上的平行关系推广到空间。学习立体几何除了培养学生的空间想象能力外,还培养学生逻辑思维能力。第十章有计数的两个原理,概率初步,统计初步及随机抽样的三种基本方法。本章教学中要激发并培养学生的学习兴趣地,增强学生的社会实践能力,培养学生解决实际问题的能力。
三、教学目标
解析几何:掌握平面直角坐标系内两点之间的距离公式和中点公式;理解直线的方程和圆的方程的含义,方程求两曲线的交点;理解直线的倾斜角和斜率,会根据已知条件,求直线的斜率和倾斜角;掌握直线的点斜式方程和斜截式方程;理解直线在y轴上的截距理解直线与二元一次方程的关系,掌握直线的一般式言行中,了角直线的方向向量和法向量;理解两直线平等行与垂直的条件,会求点到直线的距离;掌握圆的标准方程和一般方程,理解直线与圆的位置关系;能利用直线和圆的方程解决简单的问题。
立体几何:能正确地画出有关被单图形的示意图,能由空间图形的示意图想象出空间图形会用斜二侧画法画水平放置的正三角形、正方形、正六边形等平面图形的直观图和正方体、长方体等立体图形的直观图;理解空间点、直线、平面之间的各种位置关系;掌握平面的基本性质,空间直线与直线、直线与平面、平面与平面的平行与垂直的性质与判定;理解空间中的角;掌握简单多面体的有关概念、结构特征与性质;掌握直棱柱、正棱锥、圆柱和圆锥的侧面积及表面积计算公式。
概率与统计初步:掌握分类计数和分步计数原理,会用这两个原理解决一些简单问题;了解随机现象、随机试验的概念;理解古典概率的性质,会用古典概率解决一些简单的实际问题。理解概率的统计定义;结合具体的实际问题情景,了解随机抽样的必要性和重要性。学会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法;会计算样本方差和标准差;能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征;会用样本的频率分布估计总体分布。
四、教学措施
从学生的实际情况入手,从其周边的生活入手,分解新知识,降低接受知识的难度,增强学生学习数学的信心,组建学习小组,以传帮带的形式实行共同进步
五、教学进度
周次
时间
单元
教学内容
课时数
数轴上的距离公式与中点公式
平面直角坐标系中的距离和中点公式
直线与方程
直线的倾斜角和斜率
直线方程的几种形式
练习课
直线与直线的位置关系
直线与直线的位置关系
点到直线的距离
单元复习及测试
圆的标准方程
圆的一般方程
直线与圆的位置关系
直线与圆的方程的应用
国庆例假
单元复习
立体图形及其表示方法
平面的基本性质
空间中的平行直线
异面直线
直线与平面平行
平面与平面的平行关系
单元复习
直线与平面垂直
直线与平面所成的角
平面与平面所成的角
平面与平面垂直
单元复习
棱柱
棱锥
直棱柱和正棱锥的侧面积
圆柱、圆锥
球
多面体瑟旋转体的体积
复习
期中考试
期中试卷分析
计数原理
概率初步
概率初步
总体、样本和抽样方法
频率分布直方图
用样本估计总体
一元线性回归
小结与复习
单元测试
复习
复习
复习
复习
复习
期末考试
一、科研计划细则
1、做好备课组教研工作计划,包括:课题研究,培养青年教师方案,发挥骨干教师作用,召开教师外出学习汇报交流研讨会,撰写论文,开发小本课程,有效教学方面的内容。
2、教研活动做好记录,记在《教研会议记录》本上。
3、正规作业每学期20次,认真批改,注明日期及等级。
4、外出培训学习的教师要在备课组里进行汇报和学习心得交流,并请级部主任和科研处主任参加。回校两周内把学习心得体会文字材料交到科研处存档。
5、抓好听评课
互相听课,取长补短,认真评课。做到“一课三摩”,多听、多看、多说、多练、多提建议、多加改进,努力提高自己的授课水平。青年教师一学期听评课70节,普通教师一学期听评课50节,要写好评课记录与心得,评课记录要有对具体内容和具体问题的看法、观点,不能泛泛而谈。
6、业务笔记
每学期5000字,本学期主要学习《课堂观察》和《有效教学试讲》两本书,写好学习笔记和学习心得。
7、鼓励教师多写有效教学方面的论文、案例、教学设计,每周二前发到科研处邮箱,由学校统一往威海教育网上发送。发送的论文、案例、教学设计等要求以WORD格式存盘,发送主题,统一写“有效教学 作者名”,严谨抄袭。
二、 教学计划细则
1、 加强集体备课
本学期集体备课安排在周三1.2节,每单元固定主讲人,采用说课的方式,具体讲解教材的处理、习题的处理,经过讨论最后确定大家共同认可的方案。习题的配备分工到小组,专人出题,专人审核。
除此之外,还要利用在同一个办公室之便,做到每节、每天相互交流,集体磋商,共同探讨。所教内容的重点、难点、采用的教学方式,电教手段、能力的培养,作业题、例题、习题的选择以及测试题等方面的统一布置。
2、导学案的斟酌
根据上学期的经验和数学学科的特点,不是每节课都适合用导学案,如“瞬时速度与导数”,“曲边梯形面积定积分“等大量用到高等数学符号的内容比较晦涩难懂的内容,就应该采用传统的教授式的教学模式。另外,不同可行的导学案方式也应该有所区别,具体的安排全组讨论决定。
3、作业设置
根据实际情况分层布置,适量、适度、有针对性。作业要求全批全改,批改要规范,有鼓励性的评价,总结学生易出现的错误,探究错误根源。讲解作业做到有的放矢。每周一次周末测试,题型按高考模式出现(共22题),内容以本周所学内容为主,附含前面的部分内容,防止学生遗忘。
4、抓好落实
抓落实包括学生对新知识的理解与接受,练习题、作业题、小测试、错题本等的检查与批改,每节新授课后,进行课堂反馈,每章测试一次,每周批改一次错题本。
总之,备课组教师应团结一心,相互协作,多干实事,在“落实”二字上下足功夫,向“落实”要质量,向“落实”要成绩,为使提高高二学生的数学成绩而努力奋斗。
5、会考复习
从5月1日开始,着手准备会考的复习。5.1-5.30日,每周末做一份会考模拟题,6月1日开始,用2周时间细化复习,争取提高会考通过率。
三、 有效课堂计划
有效教学不注重形式,不以是否用导学案或是否分组教学来判断课堂教学是否有效,而是只要能让学生在最短的时间汲取最多的知识,让学生真正动脑、动笔,就是有效的课堂。
1、以问题引导,让学生真正进入课堂。
通过对问题的研究、探讨,引发学生对数学的兴趣,感知数学的魅力,培养学生分析、解决问题的能力。问题的具体设置可在集体备课中进行探讨,但要体现教师的个人特色。
2、改造例题
针对高中生喜欢新鲜的特点,有目的、有创造性地改造课本上的例题。重新设计教学内容,教学环境,压缩新授课时间,把重心放在学生独立解决不了的问题上,把时间放在巩固性训练上,注意各版本教材的比较研究。
3、每日一题
本栏目是在保证教学目标能够完成的前提下设置的,全部由学生操作。由学生轮流自主选题,每天一道,课前5分钟负责给全班同学讲解,教师最后点评。这样可以帮助学生巩固前面的知识,训练学生语言表达能力,鼓励学生敢于发表自己的观点,为有效课堂的实行打好基础。
四、课时安排
本学期共19周,需要学习选修2-2和选修2-3两本书,另外还要准备会考的复习工作。
具体安排:
第1---3周 (3.1-3.21) 选修2-2第一章 导数及其应用
第4---5周 (3.22-4.4) 选修2-2第二章 推理与证明
第6周 (4.5-4.11) 选修2-2第三章 数系的扩充与复数
第7周 (4.12-4.18) 复习选修2-2
第8---9周 (4.19-4.30) 选修2-3第一章 计数原理
第10---12周(5.4-5.23) 选修2-3第二章 概率
第13周 (5.24-5.30) 选修2-3第三章 统计案例
第14周以后 复习
一、指导思想
本学期高一备课组以学校教务处、教研组、年级组工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,认真贯彻学校提出的“先学后教”的课堂教学改革方案,抓好基础知识教学,着重学生能力的培养,打好基础,全面提高,争取优异的成绩。
二、教学目标
使大多数学生能够掌握高中数学基本知识,解决问题的基本能力,提高学生的数学素养。使多数学生能够进入高一级学府继续学习,提高学业水平测试的合格率以及优秀率。
复习作为知识巩固的一个有效方法在学习中必不可少。而复习课中例题的精选很重要,是否能起到温故而知新的作用。对应的复习课之后的配套练习与作业的反馈的落实也是复习的一个重要环节。因此如何精选专题复习例题与落实作业反馈成了我们备课组的关注点。
三、教学措施
这学期的学习内容对学生来说,整体上偏难,特别是运算能力在这学期将得到深化和强化,所以对教师的要求也必将高。在教学内容方面,我们还是主要按照我们学生的特点,对症下药,讲清基本题,理顺中档题,适当补充难题;普通班不追求偏和难,特别对圆锥曲线部分的一些重点、难点的计算题,必须详细讲解给学生听,有些问题甚至需要多讲解几遍,让绝大部分学生真正落实到位。每位教师上完课之后需要思考三个问题:我这节课上得如何?有谁的课比我还优秀?怎样上这节课更好、最好并在备课笔记上做好记录,为以后的教育教学提供参考。在课课练上,以基本题为主,重点在中档题上,做错的问题要抓落实,不放弃任何一个学生,不放过任何一个问题。在课堂上,每位教师都要重视板书,因为学生的书写不规范部分来源于教师的板书,每节课最低有1~2题在书写上力求规范。
四、教学要求
整体把握新课程,理清贯穿教材的主要脉络,反映和揭示教学内容的内在联系,展示重要概念的来龙去脉。完成新课标要求,培养学生的数学兴趣,发展学生的数学应用意识。还要渗透高考要求,倡导自主学习方式,逐渐提高学生的思维能力,养成独立思考、积极探索的习惯,注重数学思想和方法的渗透,注重数学思维能力的培养。
五、具体工作
为了能够将集体备课落到实处,集体备课做到统一时间,统一地点,确定主要内容。
(1)按上周集体备课中预先确定备课章节,各位教师论轮流发言,指出备课中的思路,重点和难点。
(2)然后就上述内容请备课组全体成员共同讨论教学任务中的有关教学大纲,疏通教材,指出重难点,列举一些典型例题,精选练习题等,并请有教学经验的老师做必要的解释、说明和补充,备课组长认真做好记录,对于一些认识分歧比较大的地方,认真讨论,达成共识。
(3)讨论下周教案的编撰的具体事宜,确定四至五课时内容的个体教学目标、重难点、例题选编及作业的布置。
(4)最后就当前的教学及工作情况,请备课组各成员相互交流,提出建议,说出不足,并由备课组长记录整理,为以后的教学计划或集体备课的适当调整提供第一手宝贵资料。
一、 指导思想:
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
二、教学目标:
(一)情意目标 :
(1)通过分析问题的方法的教学,培养学生的学习兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究中体验获得数学规律的艰辛和乐趣,在分组研究合作的学习中学会交流、相互评价,提高学生的合作意识 。
(二)能力要求 :
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(2)通过揭示所学内容中的有关概念、公式和图形的对应关系,培养记忆能力。
(3)通过教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、教学内容
本学期教学内容有立体几何、解析几何、逻辑知识和圆锥曲线、二元一次不等式(组)与简单的线性规划。
立体几何是研究的是物体的形状、大小与位置关系。通过直观感知、操作确认、思辨论证、等方法认识和探索几何图形及其性质。通过学习,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。
直线和圆是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
一、指导思想:
全面贯彻教育方针,深入实施素质教育,使学生在高一学习的基础上,进一步体会数学对发展自己思维能力的作用,体会数学对推动社会进步和科学发展的意义以及数学的文化价值,提高数学素养,以满足个人发展与社会进步的需要。
二、教学具体目标
1、期中考前完成必修3、选修2-3第一章
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
三、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,强调了问题提出,抽象概括,分析理解,思考交流等研究性学习过程。具体特点如下:
1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2、“问题性”:专门安排了“课题学习”和“探究活动”,培养问题意识,孕育创新精神。
3、“科学性”与“思想性”:通过不同数学内容的`联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4、“时代性”与“应用性”:教材中有“信息技术建议”和“信息技术应用”,以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
5、“人文应用价值性”:编写了一些阅读材料,开拓学生视野,从数学史的发展足迹中获取营养和动力,全面感受数学的科学价值、应用价值和文化价值。
四、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法
6、重视数学应用意识及应用能力的培养。
六、教学进度安排(略)
主动而不是被动的进行高中新课程标准改革,认真解读新课程标准的理念;研究高中新课程标准的实验与高考衔接的问题;把学生的接受性、被动学习转变成主动性、研究性学习;使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考
和作出判断。
4.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
5.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
备课组长在教研组长的领导下,负责年级备课和教学研究工作,努力提高本年级学科的教学质量。
1.全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们高一数学组成为一个充满活力的优秀集体。
2.不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。
3.在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。
4.抓好本年级活动课和研究性学习课的教学,有针对性培养学有余力,学有特长的学生,并做好后进生的转化工作,真正做到大面积提高教育质量。
1.以老师的精心备课与充满激情的教学,换取学生学习高效率。
2.将学校和教研组安排的有关工作落到实处。
3.落实培辅工作,为高三铺路!教育要从娃娃抓起,那么对难于上青天的教学我们应当从今天抓起。
1.按时完成学校(教导处,教研组)相关工作。
2.共同研究,共同探讨,备课组为新教材每章节配套单元测试卷两套。
3.每周集体备课一次,每次有中心发言人,组织进行教学研讨以便分章节搞好集体备课。
4.互相听课,以人之长,补己之短,完善自我。
5.认真组织好培优辅差工作。
6.做好学科段考、模块的复习、出题、考试、评卷、成绩统计和质量分析评价工作。
7.积极组织全组成员探索教材特点、积极思考教法分析、认真分析学情以便根据不同的。情况实施有效的教学策略。
1.导数及其应用(约24课时)
(1)导数概念及其几何意义
①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。
②通过函数图像直观地理解导数的几何意义。
(2)导数的运算
①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x的导数。
②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax b))的导数。
③会使用导数公式表。
(3)导数在研究函数中的应用
①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修
案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。
②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
(4)生活中的优化问题举例。
例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)
(5)定积分与微积分基本定理
①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。
②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)
(6)数学文化
收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。(参见第91页)
2.推理与证明(约8课时)
(1)合情推理与演绎推理
①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中
的作用(参见选修2-2中的例2、例3)。
②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
③通过具体实例,了解合情推理和演绎推理之间的联系和差异。
(2)直接证明与间接证明
①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。
(3)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
(4)数学文化
①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。
②介绍计算机在自动推理领域和数学证明中的作用。
1。有助于学生数形结合思想的培养。
解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。
2。是培养学生运算能力的重要载体。
运算思想是数学中最重要的思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。
1、获得必要的基本知识和技能,反复复习前面所学知识,加深印象。通过不同形式的自主学习,探究活动,培养学生对数学的兴趣。
2、发展数学应用意识,学会将数学知识运用于生活。
3、树立学生能学好数学的信心。
本学期学的内容是拓展模块的数学知识,主要包括三角函数、二次曲线、概率与统计的相关知识点,与基础模块、职业模块相比,知识变的有一定的难度,并且更系统化,教学中估计困难不少,数学基础的差异程度加大,为教学的因材施教增加了难度。
我校的生源对象一般都是中考落榜生。学习上的挫折使他们失去了学习的信心和进取心。为了求职的需要,有部分学生自愿选择进入中职学校学习,但有相当一部分学生是迫于外界某种压力,如父母的强烈要求等,而不得不进入职业学校学习的';还有一些学生初中都没有念完,是家长为避免其子女在社会上出乱子,把孩子送到学校,学习知识则放在次要的位置。由于学生入学时,初中阶段的文化基础差,年龄小,对专业知识生疏,因此,接受能力、分析能力、思维能力偏低,综合素质普遍不高,学习能力差异较大等,给学校的教育管理和组织教学带来了很大的困难。
学生自身数学基础薄弱,基本概念模糊不清,基本方法掌握不扎实,知识积累量不够多,遗忘速度快,对问题的分析能力差,在上课时要尽可能的放慢讲课速度,反复及时督促学生复习已学知识和预习新知识,多练习,以加深印象。
理解所学知识的概念,能够通过数学语言描述,掌握新知识的灵活应用,熟练新知识的性质特征的实际应用。
着眼于数学教学的实际,通过“低起点、巧衔接”,力求实现学生乐于学,遵循学生认知发展的规律,降低知识的起点,由已知到未知,由浅入深,由具体到抽象。
1、选取贴近学生生活的数学实例引导新知识,使学生产生生活中处处存在数学,以达到培养数学兴趣的目的。
2、通过实堂演练,引发学生的思考和探索,培养自主学习,形成逻辑思维习惯
余弦
周活动安排
周次
时间
活动安排
备注
1
2.28-3.6
两角和与差的正弦公式
2
3.7-3.13
两角和与差的余弦公式
3
3.14-3.20
正弦型函数
4
3.21-3.27
正弦定理,
5
3.28-4.3
余弦定理
6
4.4-4.10
三角公式及应用复习
7
4.11-4.17
椭圆
8
4.18-4.24
双曲线
9
4.25-5.1
期中考试
10
5.2-5.8
抛物线
11
5.9-5.15
二次曲线及应用复习
12
5.16-5.22
概率与统计
13
5.23-5.29
排列与组合
14
5.30-6.5
二项式定理
15
6.6-6.12
离散型随机变量及其分布
16
6.13-6.19
二项分布,正态分布
17
6.20-6.26
本章复习
18
6.27-7.3
期末考试
19
7.4-7.10
总结
一、指导思想
在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”、“五严”。利用有限的时间,使学生在获得所必须的基本数学知识和技能的同时,在数学能力方面能有所提高,为20xx年的高考做准备,为学生今后的发展打下坚实的数学基础。
二、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:
基础练习→典型例题→作业→课后检查
(1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。
(2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到1—2种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析问题解决问题的能力。
(3)作业:本节课的基础问题,典型问题及下一节课的预习题。
(4)课后检查;重点检查改错本及复习资料上的作业。
3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。
4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。
5、注重对所选例题和练习题的把握:
(1)注重对“四基五能力”的考察把握,贴近课本;
(2)注重学科内容的联系与综合;
(3)注重数学思想方法、通性、通法,淡化特殊技巧;
(4)注重能力立意,以考察学生逻辑思维能力为核心,全面考察能力;
(5)注重考查学生的创新意识和实践能力,设计应用性、探索性的问题;
(6)试题体现层次性、基础性,梯度安排合理,坚持多角度,多层次的考察,有效地检测对数学知识中所蕴含的数学思想和方法掌握的程度。
(7)精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试说明的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。
6、周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力。
7、多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
三、对自己的要求——落实教学的各个环节
1、精心上好每一节课
备课时从实际出发,精心设计每一节课,备课组分工合作,利用集体智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。
2、严格控制测验,精心制作每一份复习资料和练习
教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、限时训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、限时训练卷),并经组长严格把关方可使用。注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。
3、做好作业批改和加强辅导工作
我们的工作对象是活生生的对象——学生,这里需要关心、帮助及鼓励。我们要对学生的学习情况做大量的细致工作,批改作业、辅导疑难、及时鼓励等,特别是对已经出现数学学习困难的学生,教我们的辅导更为重要。在教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,不仅要给他们解疑难,还要给他们鼓信心、调动自身的学习积极性,帮助他们树立良好的学习态度,积极主动地去投入学习,变“要我学”为“我要学”。
一.学情分析
高二5班共有学生73人, 8班共有学生70人。两个班级都是高二理科班的三类班,大部分学生基础不扎实,学习兴趣不高,甚至很多学生存在怕数学科的心理。但他们还是存在一颗想学好数学的心,也想融入变化多端的数学世界,更想在每次考试中独领风骚,鉴于此,对他们正确引导,教学中适当调整难度,起点放低点,步子迈小点,还是会有好成绩的。
二.教学计划
1、加强自身学习。
①加强课本的研读。教科书是一切教学的出发点,同时也是考试的归属地,任何一个数学知识点都会从教科书中找到类型题或者相似题或者其影子。对教科书能否吃透,专研到位,直接决定着教学知识的全面性和系统性。也就决定着研读教材的必要性。
②他山之石,可以攻玉。一个人由于生活的环境,面对的对象,自身知识局限等多方面原因,视野和出发点都有局限,思考问题和解决问题的广度和深度都有局限,因此,多阅读教学参考类的书,吸取他人的经验,借鉴他人所长弥补自己所短,对于增强教学的针对性和精彩性大有裨益。
③强化课改意识。新课改已经全面铺开,新课改的精神和思想都独具时代性,前瞻性,科学性,因此,加强新课改知识的学习,领悟新课改思想,增强新课改意识,是时代的需要,是发展的需要。因此,积极参与新课改培训,领会新课改精髓,并应用于实践中是当前必须要做的,只有这样,才能使自己的知识新陈代谢。
④认真参与组内备课。珍惜每周一次的集体备课,充分利用好这次集体备课机会,从同行们那里学习到自己缺乏或者不擅长的东西,并积极实施好组内的各项安排,落实好课时要求。
⑤增强听课的意识。按照学校的要求,积极参加新课改年级的课堂听课活动,听取授课教师的点评,发现亮点,记录亮点,积累亮点,点亮亮点。
2、抓好课堂教学的主战场,激发师生学习数学热情。
①加强新课情景创设,激发学生学习热情。每一节新课的开展,都有其现实意义,有其价值所在,有其趣味性,充分挖掘好这方面知识,可起到一个良好的开端作用。
②精选精讲例题。对于学生自己学得会的,不讲,对于学生讨论后可以解决的,给以适当点拨,对于学生在老师引导下完成的,要慢慢讲,细细的讲,争取每个学生都听得进,听得懂,学得会。对于超越学生承受能力的,一概不讲。
③精心布置课后作业。课后作业是课堂教学的反馈,作业质量的高低,一定层面可以反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。
3、做好课后辅导工作。
①利用晚自习是时间,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。
②利用自习课的时间,寻找需要帮助的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。
4、做好作业、考试反馈工作。
学生认真完成作业和考卷,老师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。
5、规范作答,养成良好习惯。
现在学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。
6、培养学生的数学兴趣,普及数学价值规律的应用。
兴趣是学生最好的老师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识,让学生体会到数学的价值所在,通过多媒体,降低数学思维难度等等都是提高学生兴趣的好方法。
以上是这个学期的教学工作计划,在实施过程中,将及时作出调整,以期达到教与学的最佳效果。