完全平方公式教案优秀10篇

作为一位兢兢业业的人民教师,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。我们应该怎么写教案呢?下面是的小编为您带来的完全平方公式教案优秀10篇,希望大家可以喜欢并分享出去。

完全平方公式教学设计 篇1

一、教材分析:

(一)教材的地位与作用

本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:

(1)整式是初中代数研究范围内的一块重要内容,整式的运算又是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。

(2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。

(3)公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好模式。

(二)教学目标的确定

在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标如下:

1、知识目标:

理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

2、能力目标:

渗透建模、化归、换元、数形结合等思想方法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

3、情感目标:

培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

(三)教学重点与难点

完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:

本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。

二、教学方法与手段

(一)教学方法:

针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

采用小组讨论,大组竞赛等多种形式激发学习兴趣。

(二)教学手段:

利用投影仪辅助教学,突破教学难点,公式的推导变成生动、形象、直观,提高教学效率。

(三)学法指导:

在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

三、教材处理

根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的方法进行,再通过分层次练习,加以巩固。

四、教学程序

一、创设情境,引出课题

如图,有一个边长为a米的正方形广场,则这个广场的面积是多少?

a

若在这个广场的相邻两边铺一条宽为10米的道路,则面积是多少?

a 10

引导学生利用图形分割求面积。

另一方面:正方形

10 10a 102面积为(a+10)2,所以:

(a+10)2=a2+20a+102

a a2 10a

a 10

b ab b2把10替换为b,

(a+b)2=a2+2ab+b2

a a2 ab提出课题

a b

通过较为简单的几何图形面积计算和较熟悉的整式乖法计算。引入本节学习内容(a+b)·(a+b)

(根据初一学生年龄特点,采用图形变化来激发学生学习兴趣)

问题是知识、能力的生长点,通过富有实际意义的问题能激活学生原有认知,促使学生主动地进行探索和思考。

对公式(a+b)2=a2+2ab+b2的形式进行初步认识,接触。

二、交流对话,探求新知

1、推导两数和的完全平方公式

计算(a+b)2

解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

2、理解公式特征

①算式:两数和的平方

②积:两个数的。平方和加上这两个数积的2倍

3、语言叙述

(a+b)2=a2+2ab+b2用语言如何叙述

4、公式(a—b)2=a2—2ab+b2教学

①利用多项式乘法(a—b)2=(a—b)(a—b)

②利用换元思想(a—b)2=[a+(—b)]2

③利用图形

b

a

(a—b)b

a

5、学生总结、归纳:

(a+b)2=a2+2ab+b2

(a—b)2=a2—2ab+b2

这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减去)这两数积的2倍。

6、公式中的字母含义的理解。(学生回答)

(x+2y)2是哪两个数的和的平方?

(x+2y)2=()2+2()()+()2

(2x—5y)2是哪两个数的差的平方?

(2x+5y)2=()2+2()()+()2

变式(2x—5y)2可以看成是哪两个数的和的平方?

利用多项式乘法推导公式,使学生了解公式的来源以及理解乘法公式的本质。

组织学生小组讨论,使学生明确公式特征,加深对公式表象的理解。

由学生对公式

(a+b)2=a2+2ab+b2进行口头语言叙述。

(1)说明:教师提供三种模式,由学生选择一种去解决。培养学生学习的主动性,开阔学生的思路。

(2)同时对渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层次;

(3)体会辩证统一的唯物主义观点;

(4)正确引导学生学习时知识的正迁移。

使学生学会对公式的正确表述,有利于学生正确用于计算之中,此时也可以让学生对两个公式特点进行讨论归纳,适当总结一定的口诀:“头平方,尾平方,两倍的乘积中间放。”加深学生对公式中的字母含义的理解,明确字母意义的广泛性。

三、整理新知形成结构

1、完全平方公式并分析公式左右的特征。

2、换元的基本想法

四、应用新知,体验成功

1、例1教学:用完全平方公式计算

(1)(a+3)2

(2)(y—)2

(3)(—2x+t)2

(4)(—3x—4y)2

学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(—3x—4y)2可以看成是—3x与4y差的平方,也可以看成—3x与—4y和的平方。

提出以下问题:

(1)可否看成两数和的平方,运用两数和的平方公式来计算?

(2)可否看成两数差的平方,运用两数差的平方公式来计算?

(3)能不能进行符号转化?如(—3x—4y)2=(3x+4y)2

2、公式巩固

(1)同桌同学互相编一道用完全平方公式计算题目,然后解答。

(2)下列各式的计算,错在哪里?应怎样改正?

①(a+b)2=a2+b2 ②(a—b)2=a2—b2

③(a—2b)2=a2+2ab+2b2

3、练习:运用完全平方公式计算:(学生板演)

①(a+5)2

②(3+x)2

③(y—2)2

④(7—y)2

⑤(2x+3y)2

⑥(—2x—3y)2

⑦(3—)2

⑧(— —)2

4、例2,运用完全平方公式计算:

(1)1012

(2)982

5、练习:运用完全平方公式计算

(1)912

(2)7982

(3)(10)2

6、讨论:

(1—2x)(—1—2x),(x—2y)(—2y+1)如何计算

五、公式拓展,鼓励探究

1、a2+b2=(a+b)2—______ a2+b2+ _______=(a+b)2

a2+b2+ ________ =(a—b)2

2、(a+b)2—(a—b)2=______

3、(a+b+c)2=________

4、提出思考题:(a+b)3=?(a+b)4=?

5、已知求的值。

6、已知,求x和y的值。

(1)遵循及时巩固原则。

(2)针对初一学生注意力不能持久的特点。

(3)形成知识网络,有利于学生进一步学习公式的运用:

(1)直接运用公式进行计算。

(2)进一步帮助学生掌握换元法。

(3)进行符号转化的变换,加深学生对公式理解的深度,也为进一步学习其它知识打好基础。

讲练结合:

(1)合作学习,四人小组讨论(教师逐步引导到运用完全平方公式计算)学生讲自己解题的想法和步骤,培养语言表达能力。

(2)体会公式实际运用作用,增加学习兴趣,进一步辨析完全平方公式与平方差公式的区别。

提出一个问题,引导学生用学习研究完全平方公式的方法去研究公式的拓展变形问题。如:三项式的平方,两项式的立方、四次方等,培养学生的严谨的治学态度和钻研精神。

六、小结提高,知识升华

1、两个公式(a+b)2=a2+2ab+b2

(a—b)2=a2—2ab+b2

2、两种推导方法:多项式乘法导出;图形面积导出

3、换元法与转化

七、作业布置,分层落实

1、阅读教材6.17内容

2、见省编作业本6.17

3、对(a+b)2,(a+b)3 ……的展开式从项数、系数方面进行研究

由学生自己小结本节所学知识、方法等。教师根据学生回答情况作出补充。

(1)作业1主要以培养学习良好的学习习惯为目的。

(2)结合学生实际情况,贯彻面向全体学生,因材施教原则。

作业2要求全体学都能完成。作业3为选做题,部分学有余力的学生可选做。在减轻学生的课业负担同时,注重人本思想,以学生的能力发展为重。也能满足不同层次学生的不同要求。

《完全平方公式》教案 篇2

一、教学内容:

本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时――完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。

本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的'推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。

重点:掌握完全平方公式,会运用公式进行简单的计算。

难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。

三、教学目标

(1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。

(2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。

(3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。

(4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。

四、学情分析与教法学法

学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。

学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流

总结反思中获得数学知识与技能。

教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。

五、教学过程(略)

六、教学评价

在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。

在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。

完全平方公式教学设计 篇3

教学目标

在具体情景中进一步理解完全平方公式,能正确运用完全平方公式和平方差公式进行计算。

重点、难点

根据公式的特征及问题的特征选择适当的公式计算。

教学过程

一、议一议

1.边长为(a+b)的正方形面积是多少?

2.边长分别为a、b拍的两个正方形面积和是多少?

3.你能比较(1)(2)的结果吗?说明你的理由。师生共同讨论:学生回答

(1)(a+b)

(2)a +b

(3)因为(a+b) = a +2ab+b ,所以(a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面积比(2)中的正方形面积大。

二、做一做

例1.利用完全平方式计算1. 102,2. 197

师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便。

学生活动:在练习本上演示此题。让学生叙述,

教师板书。解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2,=200 -2 2O0 3十3,=10000+400+4 =40000-1200+9 =10404 =38809

例2.计算:1.(x-3) -x 2.(2a+b- )(2a-b+ )

师生共同分析:1中(x-3)可利用完全平方公式。

学生动笔解答第1题。教师根据学生解答情况,板书如下:解:1. (x-3) -x = x +6x+9-x =6x+9

师问:此题还有其他方法解吗?引导学生逆用平方差公式,从而培养学生创新精神。

学生活动:分小组讨论第(2)题的解法。此题学生解答,难度较大。

教师要引导学生使用加法结合律,为使用公式创造条件。学生小组交流派代表进行全班交流。

最后教师板书解题过程。解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-

三、试一试计算:

1.(a+b+c)

2. (a+b)

师生共同分析:

对于1要把多项式完全平方转化为二项式的'完全平方,要使用加法结合律,为使用完全平方公式创造条件。如(a+b+c) =[a+(b+c)]

对于(2)可化为(a+b) =(a+b)(a+b) .

学生动笔:在练习本上解答,并与同伴交流你的做法。学生叙述,

教师板书。解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc

四、随堂练习

P38 1

五、小结

本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点。

1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(a±b) = a ±b的错误,或(a±b) = a ±ab+b (漏掉2倍)等错误。

2.要能根据公式的特征及题目的特征灵活选择适当的公式计算。

3.用加法结合律,可为使用公式创造了条件。利用了这种方法,可以把多项式的完全平方转化为二项式的完全平方。

六、作业

课本习题1.14 P38 1、2、3.

七、教后反思

《完全平方公式》教案 篇4

一、教材分析

完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,对以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算都有举足轻重的作用。

本节课是继乘法公式的内容的一种升华,起着承上启下的作用。在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。

二、学情分析

多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。所以教学中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。

三、教学目标

知识与技能

利用添括号法则灵活应用乘法公式。

过程与方法

利用去括号法则得到添括号法则,培养学生的逆向思维能力。

情感态度与价值观

鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。

四、教学重点难点

教学重点

理解添括号法则,进一步熟悉乘法公式的合理利用。

教学难点

在多项式与多项式的乘法中适当添括号达到应用公式的目的。

五、教学方法

思考分析、归纳总结、练习、应用拓展等环节。

六、教学过程设计

师生活动

设计意图

一.提出问题,创设情境

请同学们完成下列运算并回忆去括号法则.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括号法则:

去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.

也就是说,遇“加”不变,遇“减”都变.

二、探究新知

把上述四个等式的左右两边反过来,又会得到什么结果呢?

(1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)

(3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)

左边没括号,右边有括号,也就是添了括号,同学们可不可以总结出添括号法则来呢?

(学生分组讨论,最后总结)

添括号法则是:

添括号时,如果括号前面是正号,括到括号里的。各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.

也是:遇“加”不变,遇“减”都变.

请同学们利用添括号法则完成下列练习:

1.在等号右边的括号内填上适当的项:

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

判断下列运算是否正确.

(1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确.

三、新知运用

有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组讨论,完成下列计算.

例:运用乘法公式计算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

四.随堂练习:

1.课本P111练习

2.《学案》101页——巩固训练

五、课堂小结:

通过本节课的学习,你有何收获和体会?

我们学会了去括号法则和添括号法则,利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算.

我体会到了转化思想的重要作用,学数学其实是不断地利用转化得到新知识,比如由繁到简的转化,由难到易的转化,由已知解决未知的转化等等.

六、检测作业

习题14.2: 必做题: 3 、4 、5题

选做题:7题

知识梳理,教学导入,激发学生的学习热情

交流合作,探究新知,以问题驱动,层层深入。

归纳总结,提升课堂效果。

作业检测,检测目标的达成情况。

《完全平方公式》教案 篇5

运用完全平方公式计算:

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(l0)

学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

5.变式训练,培养能力

《完全平方公式》教案 篇6

教学目标

1、使学生理解完全平方公式的意义,弄清完全平方公式的形式和特点;使学生知道把完全平方公式反过来就可以得到相应的因式分解。

2、掌握运用完全平方公式分解因式的'方法,能正确运用完全平方公式把多项式分解因式(直接用公式不超过两次)

教学方法:对比发现法课型新授课教具投影仪

教师活动:学生活动

复习巩固:上节课我们学习了运用平方差公式分解因式,请同学们先阅读课本87—88页,看看你能有什么发现?

新课讲解:

(投影)我们把形如a2+2ab+b2与a2-2ab+b2叫做完全平方式,和平方差公式一样,我们也可以利用它把一些多项式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2

a2-8a+16=a2-2×4a+42=(a-4)2

(要强调注意符号)

首先我们来试一试:(投影:牛刀小试)

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1

(3)(m+n)2-4(m+n)+4

(教师强调步骤的重要性,注意发现学生易错点,及时纠正)

2.把81x4-72x2y2+16y4分解因式

(本题用了两次乘法公式,难度稍大,教师要鼓励学生大胆尝试,敢于创新)

将乘法公式反过来就得到多项式因式分解的公式。运用这些公式把一个多项式分解因式的方法叫做运用公式法。

练习:第88页练一练第1、2题

完全平方公式教学设计 篇7

教学目标

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的'前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例

公式

一、教学目标

(一)知识教学点

1.使学生能利用公式解决简单的实际问题.

2.使学生理解公式与代数式的关系.

(二)能力训练点

1.利用数学公式解决实际问题的能力.

2.利用已知的公式推导新公式的能力.

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践.

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

二、学法引导

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2.学生学法:观察→分析→推导→计算

三、重点、难点、疑点及解决办法

1.重点:利用旧公式推导出新的图形的计算公式.

2.难点:同重点.

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

《完全平方公式与平方差公式》教学设计 篇8

授课教师:

授课时间:

课型:新授

课题:3.4探究实际问题与一元一次方程组

教学目标基础知识:掌握一元一次方程得解法,了解销售中的数量关系。

基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。

基本思想

方法:通过将实际问题转化成数学问题,培养学生的建模思想;

基本活动经验体会解决实际问题的一般步骤及盈亏中的关系

重点探索并掌握列一元一次方程解决实际问题的方法,

教学

难点找出已知量与未知量之间的关系及相等关系。

教具资料准备教师准备:课件

学生准备:书、本

教 学 过 程自备

补充集备

补 充

一、创设情景 引入新课

观察图片引课(见大屏幕)

二、探究

探究销售中的盈亏问题:

1、商品原价200元,九折出售,卖价是 元。

2、商品进价是30元,售价是50元,则利润

是 元。

2、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是 元。

3、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为 元。

4、某商品按定价的八折出售,售价是14.8元,则原定售价是 。

(学生总结公式)

熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系

三、探究一

某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25?,另一件亏损25?,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

分析:售价=进价+利润

售价=(1+利润率)×进价

练习(1)随州某琴行同时卖出两台钢琴,每台售价为960元。其中一台盈20%,另一台亏损20%。这次琴行是盈利还是亏损,或是不盈不亏?

(2)某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%。这次交易中的盈亏情况?

(3)某商场把进价为1980元的商品按标价的八折出售,仍获利10%, 则该商品的标价为 元。

注:标价×n/10=进(1+率)

(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨价30%后,2007降价70%至a元,

则这种药品在2005年涨价前价格为 元。

四、小结

通过本节课的学习你有哪些收获?你还有哪些疑惑?

亏损还是盈利对比售价与进价的关系才能加以判断

小组研究解决提出质疑

优生展示讲解质疑

五、作业布置:

板书设计 一元一次方程的应用-----盈亏问题

相关的关系式: 例题

课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。

数学《完全平方公式》教案 篇9

一、教学目标

(1) 知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。

(2) 过程与方法目标;学生探究完全平方公式,体会数形结合。

二、教学重点

公式结构及运用。

三、教学难点;

公式中字母AB的含义理解与公式正确运用。

四、教具;

自制长方形、正方形卡片

五、教学过程;

教师活动

学生活动

1、 创设情景,提出问题,引入课题

(1) 想一想

1、一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就会每个孩子几块糖。

(1) 第一天,a个男孩去看老人,老人共给他们几块糖?

(2) 第二天,个女孩子去看望老人,老人共给他们多少块糖?

(3) 第三天,( )个孩子一起去看望老人,老人共给他们多少块糖?

(4) 第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)

2、 学生四人一组讨论。

填空:

(1)第一天给孩子 块糖。

(2)第二天给孩子 块糖。

(3)第三天给孩子 块糖。

男孩子第三天多得 块糖

女孩第三天多得 块糖。

(2) 做一做、请同学拼图

a教师巡视指导学生拼图

1、 教师提问:

(1)、大正方形边长?

(2)每一块卡片的面积是多少?

(3)用不同形式表示正方形总面积,比较发现什么?

2、 想一想

(1)(a +b )用多项式乘法法则说明

(2)( a -b )

3、请同学们自己叙述上面的等式

4、说一说,a b能表示什么?

(□+○) □+2□○+○

5、算一算(★)

(1)(2X-3)(2)(4X+5Y)

请同学们分清a b

6、练一练

(1)(2X-3Y) (2)(2XY-3X)

7、试一试(a+b+c)

作业:

P135 1、2

学生2人一组拼图交流

2、学生观察思考

(1) 大正方形边长?

(2) 四块卡片的面积分别是

(3) 大正方形的总面积是多少?

3、

(1)学生运用多项式乘法法则推导

(a+b)=a+2ab+b说出每一步运算理由

(2)学生自己探究交流

4、学生用语言叙述公式

5、师生共同a、b对应项 教师书写

6、学生独立完成练一练展示结果

7、学生四人一组讨论交流

《完全平方公式》教案 篇10

教学目标:

1.经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;

2.会推导完全平方公式,并能运用公式进行简单的计算;

3.了解完全平方公式的几何背景。 教学重点:

1.弄清完全平方公式的来源及其结构特点,能用自己的。语言说明公式及其特点;

2.会用完全平方公式进行运算。 教学难点:会用完全平方公式进行运算 教学过程:

一、探索练习:

一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种。(图略)

用不同的形式表示实验田的总面积,并进行比较你发现了什么?

观察得到的式子,想一想:

(1)(a+b)2等于什么?你能不能用多项式乘法法则说明理由呢?

(2)(a-b)2等于什么?小颖写出了如下的算式:

(a-b)2=[a+(b)]2.

她是怎么想的?你能继续做下去吗?

由此归纳出完全平方公式:

(a+b)2=a2+2ab+b2

(a-b)2=a22ab+b2

教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来。

例:(利用完全平方公式计算)

(1)(2x-3)2

解:(2x-3)2

=(2x)2-2(2x)3+32

=4x12x+9

二、巩固练习:

1.下列各式中哪些可以运用完全平方公式计算_______________

(1) ;(2) ;

(3) ;(4) .

2.计算下列各式:

(1) ;(2) ;(3) ;

(4) ;(5) ;

(6) .

4.填空:

(1) _____________;(2) ;

(3) ; 三、提高练习:

1.求 的值,其中

2.若

小结:熟记完全平方公式,会用完全平方公式进行运算。 作业:课本P36习题1.13:1、2. 教学后记:学生基本上能套用平方差公式进行运算,但是也有出现以下错误: (1)(a+b)2=a2+b2 (2)(+a)(2-a)=6-a2

对公式的真正理解有待加强。

一键复制全文保存为WORD