作为一位优秀的人民教师,有必要进行细致的教学设计准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。如何把教学设计做到重点突出呢?以下是人见人爱的小编分享的圆的周长教案【优秀8篇】,如果对您有一些参考与帮助,请分享给最好的朋友。
第一单元圆的周长和面积
一.本单元的基础知识
本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。
二.本单元的教学内容
P2~22.本单元教材内容包括圆的'认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。
三.本单元的教学目标
1.认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。
2.理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的近似值。3.理解和掌握求圆的周长与面积。
四.本单元重难点和关键
1.教学重点:求圆的周长与面积。
2.教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。
3.教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。
五.本单元的教学课时
13课时
教学目标:
1、通过教学使学生学会根据圆的周长求圆的直径、半径。
2、培养学生逻辑推理能力。
3、初步掌握变换和转化的方法。
教学重点:
求圆的直径和半径。
教学难点:
灵活运用公式求圆的直径和半径。
教学时间:
一课时
教学过程:
一、复习。
1、口答。
4π2π5π10π8π
2、求出下面各圆的周长。
《圆的周长(2)》教学设计《圆的周长(2)》教学设计《圆的周长(2)》教学设计C=πdc=2πr
《圆的周长(2)》教学设计3.14×22×3.14×4
=6.28(厘米)=8×3.14
=25.12(厘米)
二、新课。
1、提出研究的问题。
(1)你知道表示什么吗?
(2)下面公式的每个字母各表示什么?这两个公式又表示什么?
C=πdC=2πr
(3)根据上两个公式,你能知道:
直径=周长÷圆周率半径=周长÷(圆周率×2)
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
已知:c=3.77求:d=?
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
三、巩固练习。
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?
《圆的周长(2)》教学设计2、求下面半圆的周长,选择正确的算式。
⑴3.14×8
⑵3.14×8×2
⑶3.14×8÷2+8
3、一只挂钟分针长20c,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的《圆的周长(2)》教学设计,也就是走了整个圆的《圆的周长(2)》教学设计。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的《圆的周长(2)》教学设计,也就是走了整个圆的《圆的周长(2)》教学设计。则:钟面一圈的周长是多少?20×2×3.14=125.6(厘米)
45分钟走了多少厘米?125.6×《圆的周长(2)》教学设计=94.2(厘米)
4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?
作业。
P65-66第3、6、7、9题
一、教学内容:
圆的周长计算方法与应用
二、教学目的:
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
三、教学重点:
1.理解圆周率的意义。
2.推导出圆的周长的计算公式并能够正确计算。
四、教学难点:
理解圆周率的意义。
五、教学过程:
(一)创设情境,引入新课
1、用多媒体出示:龟兔赛跑路线图。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?
b.什么是圆的周长?请你摸一摸你手中圆的周长。
3、师:今天我们就来研究圆的周长。并出示课题。
(二)引导探究,学习新知
1.推导圆的周长公式
(1)学生讨论
a.正方形的周长跟什么有关系?有什么关系?
b.你认为圆的周长和什么有关系?
(2)猜测
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2~4倍,那到底是多少倍呢?你有什么好办法吗?
(3)动手操作
a.以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。
师:看哪一组配合好,速度快,较精确。开始!
b.汇报小结。
师:用实物投影展示整理的表格。
师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大约是直径的三倍多一些?
2.认识圆周率、介绍祖冲之
(1)我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。π≈3.14
(2)介绍祖冲之
3.归纳圆的周长公式
(1)怎样求周长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
师板书:C=πd
(2)圆的周长还可以怎样求?由于d=2r则:C=2πr。师板书:C=2πr
师问:圆的周长分别是直径与半径的几倍?
(三)巩固应用,强化新知
1.求下面各圆的周长。
1)d=2米2)d=1.5厘米
2.求下面各圆的周长。
1)r=6分米2)r=1.5厘米
3.判断题
(1)π=3.14 ( )
(2)计算圆的周长必须知道圆的直径( )
(3)只要知道圆的半径或直径,就可以求圆的周长。 ( )
4.选择题
(1)较大的圆的圆周率( )较小的圆的圆周率。
a大于b小于c等于
(2)半圆的周长( )圆周长。
a大于b小于c等于
5.课堂反馈
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
6.实践操作
请同学们,画一个周长是12.56厘米的圆,先以小组为单位讨论:画多大?如何画?再操作。
(四)课堂总结,梳理知识
师:通过这堂课的学习,你有什么收获?你还有什么问题吗?
反思:
“圆的周长”是周长概念的一次扩展。为了使学生对周长的概念有一个较为完整的认识,让学生在获取知识的同时学会思考、学会合作。为此设计了两个以学生自主活动为主的'学习环节。
1.动手实践,探究圆周长的测量方法。
怎样测量圆的周长呢?首先让学生在教师提供的学习材料——圆片、细绳、直尺中开动脑筋自主地选择解决问题的材料,接着让学生亲自动手实践,探究解决问题的方法。
当学生通过“看——想——做——悟”等一系列活动,探究出解决问题的方法后,抑制不住兴奋的心情,在小组内自觉地展示交流。同时,教师需要引导学生在全班交流中形成共识。
学生在动手、动脑、动口,调动多种器官参与学习的过程中,不仅自己求出了问题的答案,体验了自主获取知识的快乐,而且在探究的过程中,加深了对圆的周长概念的理解,并为以后探究圆的周长公式打下基础。
2.探究圆周长与直径的关系,寻找圆周长的计算方法。
在这个活动中,让学生按合作学习的要求,以小组合作学习为主要形式来测量大小不等的圆的周长和直径的长度,并通过计算求出周长除以直径的数值,进行汇报、总结。
学生在经历了观察、思考、合作的学习过程,会发现无论大圆、小圆,其周长除以它的直径的商总是三倍多一些的特征后,教师及时引导学生实现知识的迁移。
在测量、计算、比较中,使学生理解了圆周率是周长除以直径的商,而且从知识的深度和广度上体验了周长与直径的关系。
教学内容:
教材62—63页。
教师准备:
课件
学生准备:
硬币、茶叶筒、易拉罐等实物
教学目标:
1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.
2.培养学生的观察、比较、分析、综合及动手操作能力.
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.
4.结合圆周率的学习,对学生进行爱国主义教育.
教学重点:
推导并总结出圆周长的计算公式。
教学难点:
深入理解圆周率的意义。
教学过程:
一、创设情景,生成问题
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的`比赛不公平。同学们,你认为这样的比赛公平吗?
二、探索交流,解决问题
(一)认识周长
1.小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
(二)圆周长的测量方法
1、讨论方法:请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2、反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3、小结各种测量方法
4、创设冲突,体会测量局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
(三)探索圆的周长与直径的关系。
1、猜想:正方形的周长与它的边长有关,你认为圆的周长与什么有关?
2、自学提示
3、初步认识圆周率
①看了几组同学的测算结果,你有什么发现?
②虽然倍数不大一样,但周长大多是直径的几倍?
③小结:圆的周长总是直径的三倍多一些。
(四)认识圆周率,总结公式。
1、圆的周长与直径的比值叫做圆周率,用希腊字母π表示.
2、介绍祖冲之。(课件)
3、理解误差:看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
4、总结公式:如果用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
板书:C=πd 提问:圆的周长还可以怎样求?
板书:C=2πr 5、圆的周长分别是直径与半径的几倍?
(五)学习例1
学生独立解答后交流汇报,共同订正。
三、巩固应用,内化提高
1.课本64页做一做1、2题
2.判断
(1)圆周率就是圆的周长除以直径所得的商。( )
(2)圆的直径越长,圆周率越大。( )
(3)π=3.14 ( )
3.李伯伯菜园里有一个半径为3.5米的圆形水池。绕这个水池走一周,要走多少米?
四、回顾整理,反思提升
通过学习,你有什么收获?还有什么问题吗?
教学目标:
1.生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。
2.生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。
3.学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。
教学重点:
探索已知圆的周长,求这个圆的直径或半径的方法。
教学难点:
能熟练运用圆的周长公式解决实际问题。
课前准备:
多媒体课件
教学设计:
一、教学例6。
⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的'周长,再算出花坛的直径。)
⑵ 课件出示测量的结果:花坛的周长是251.2米。
小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?
① 在小组中说说自己的想法。
② 展示自己是怎么解答的。
⑶ 全班展示、交流。
① 根据圆周长公式C=πd列方程解答。
解:设这个花坛的直径是x米。
3.14x=251.2
x=251.2÷3.14
x=80
② 直接用除法计算。
251.2÷3.14=80(米)
⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?
小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间
的关系计算。
2.习“试一试”。
二、巩固拓展
1.成“练一练”。
提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。
2.成练习十四第5题。
3.成练习十四第6题
4.成练习十四第7题。
5.生完成练习十四第8题。
6.成练习十四第9、10题。
三、总结延伸
本节课,你有哪些收获?还有什么疑问?
板书设计:
教学设想:
利用正方形的周长与边长的知识,引导学生进行猜想和讨论,使学生对后续的实际探究过程有明确的目的性。课件中两只小兔子进行赛跑比赛是生活问题,却是比较圆的周长和正方形周长的数学问题,创设教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好的展示了圆周长的概念,并通过结合实际动手操作和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,也充分体现了学生在课堂学习过程中的主体地位。
教学内容:
小学数学义务教育教材十一册第137~138页“圆的周长”
教学目标:
1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2. 培养学生的观察、比较、分析、综合及动手操作能力;
3.通过学习圆周率的历史发展,对学生进行爱国主义教育。
教学重点:
推导总结出圆周长的计算公式。
教学难点:
深入理解圆周率的意义。
教学准备:
电脑课件,圆形实物以及直尺、绸带,测量结果记录表。
教学过程:
一、创设情境,引起猜想
(一)教师播放课件 激发学生兴趣
黑兔和白兔比赛跑步,黑兔沿着正方形路线跑,白兔沿着圆形路线跑,结果白兔获胜。黑兔看到白兔得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周
1.回忆正方形周长:黑兔跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:那白兔所跑的路程呢?圆的周长又指的是什么意思?
师:围成圆的一周的曲线长度叫做圆的周长。(出示课题 圆的周长)
3.小组合作,测出自己准备的三个圆形纸片的周长,并记录。
4.反馈:你是用什么方法测出来的?
生1:“滚动”——把实物圆沿直尺滚动一周;
生2:“缠绕”——用绸带缠绕实物圆一周并打开;
5.小结各种测量方法:(板书)化曲为直
6.创设冲突,体会测量的局限性
教师甩小球:你能用刚才的方法测出这个圆吗?刚才大屏幕上白兔跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?(生:不行)看来,刚才的方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方
(三)合理猜想,强化主体
1.请一生用绳子拴粉笔在黑板上画出两个大小不同的圆,四人小组讨论,猜猜圆的周长跟什么有关?
生:我猜圆的周长跟直径有关。
2.师课件演示:直径越大,周长越长;直径越小,周长越小。
3.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?
(生1:我猜3倍。 生2:我猜3.5倍 生3 :…… )
4.我们能不能像求正方形周长那样找到求圆周长的一般方法呢?
二、实际动手,发现规律
(一)分组合作
1.明确要求:将前面测量的结果填入表格,并计算圆周长除以直径的结果,填入表格里。
2.反馈数据
生1:我们小组算出圆的周长大约是直径的3.4倍。
生2:我们小组算出圆的周长大约是直径的3.2倍。
生3:我们小组算出圆的周长大约是直径的4倍。
师:课件演示:圆的周长总是直径的三倍多一些。
(二)介绍祖冲之
这个倍数通常被人们叫做圆周率,用希腊字母π表示。
板书 :圆周率=圆的周长÷直径
早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他是谁吗?
这个倍数究竟是多少呢?我们来看一段资料。
(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4.理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
(三)总结圆周长的计算公式
1. 如果知道圆的直径,你能计算圆的周长吗
板书:圆的周长 = 直径× 圆周率
C = πd
2. 如果知道圆的半径,又该怎样计算圆的周长呢?
板书: C = 2πr
3.应用
(1)甩动小圆球,告知绳长3分米请学生选用公式计算此圆的周长。
生:我选 C = 2πr,2×3.14×3=18.84分米,此圆的周长是18.84分米。
(2)课题外的圆的直径是20厘米,用哪个公式计算?
生:我用 C = πd计算,3.14×20=62.8厘米,此圆的周长是62.8厘米
(3)解答开始的问题:现在你能准确的判断出黑兔和白兔谁跑的路程长了吗?
三、巩固练习,形成能力
1.判断
(1)圆的周长是直径的π倍。 ( )
(2)大圆的圆周率大于小圆的圆周率。( )
(3)π=3.14 ( )
2.出示例1,学生自己计算。
3.如果黑兔沿着大圆跑,白兔沿着两个小圆绕8字跑,谁跑的路程近?
四、课内小结,扎实掌握
通过今天的学习,你有什么收获?
五、课外引申,拓展思维
一个茶杯口的直径你有什么方法知道?
【内容】圆的周长(小学数学九年级义务教材第十一册)
【教学目标】
1、让学生知道什么是圆的周长。
2、理解并掌握圆周率的意义和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。
5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、激情导入
1、动物王国正在举行动物运动会可热闹了,想不想去看一看?
2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?
二、探究新知
(一)复习正方形的周长,猜想圆的周长可能和什么有关系。
1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)
2、(生答正方形的周长)追问:你是怎么算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)
3、圆的周长能算吗?如果知道了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一起研究圆的周长。(板书课题:圆的周长)
4、猜想:你觉得圆的周长可能和什么有关系?
(二)测量验证
1、教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。
2、①学生动手测量,验证猜想。学生分组实验,并记下它们的周长、直径,填入书中的表格里。
②观察数据,对比发现。
提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
3、比较数据,揭示关系
正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。
(三)介绍圆周率
1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。
2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。
3、小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,今天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。
圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们现在得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你知道了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)
(四)推导公式
1、到现在,你会计算圆的周长吗?怎样算?
2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。
3、知道半径,能求圆的周长吗?周长是它半径的多少倍?
三、运用公式解决问题
1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)
2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?
3、钟面直径40厘米,钟面的周长是多少厘米?
4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?
5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?
四、课堂小结
通过这节课的学习你想和大家说点什么?
这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,希望你们能坚持不懈的走下去。
教学目标:
1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。
2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。
3.初步学会透过现象看本质的辨证思想方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:正确计算圆的周长。
教学难点:理解圆周率的意义,推导圆周长的计算公式。
教具准备:多媒体课件三套、系绳的小球。
学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。
教学过程:
一、以旧引新,导入新课
1.复习长方形、正方形的周长。
我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?
2.揭示圆的周长。
(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。
(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?
二、动手操作,引导探索
1.测量圆周长的方法。
(1)提问:你知道了什么是圆的周长,还想知道什么?
我们先研究怎样测量圆的周长,请同学们分组讨论一下。
把你们讨论的结果向大家汇报一下?学生边回答边演示。
(2)教师甩动绳子系的小球,形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?
2.认识圆周率。
(1)探讨圆的周长与直径的关系。
①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。
请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?
课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)
提问:你们是怎么看出来的圆周长跟直径有关系?
②学生测量圆周长,并计算周长和直径的比值。
圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。
生测量、计算、填表。在黑板上出示一组结果。
请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?
③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)
这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)
(2)揭示圆周率的概念。
通过以上的观察你发现了什么?
任何圆的周长总是直径的3倍多一些。
那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用表示。(指导读写。)
(3)了解让中国人引以为自豪的圆周率的历史。
关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?
很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。=3.141592653
3.推导圆周长的计算公式。
根据刚才的探索,你能总结出圆周长的计算公式吗?