数学,是一门有趣而又很有学问的学科。生活中存在着无穷的数学故事,与你我的生活息息相关,也是一个游戏的宝塔。2022中考数学知识点有哪些你知道吗?一起来看看2022中考数学知识点,欢迎查阅!下面是小编辛苦为大家带来的一元二次方程的解法教案(优秀9篇),希望能够给予您一些参考与帮助。
【知识与技能】
1.理解一元二次方程求根公式的推导过程,了解公式法的概念。
2.会熟练应用公式法解一元二次方程。
【过程与方法】
通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系。
【情感态度】
经历探索求根公式的过程,培养学生抽象思维能力,渗透辩证唯物主义观点。
【教学重点】
求根公式的推导和公式法的应用。
【教学难点】
一元二次方程求根公式的推导。
一、情境导入,初步认识
用配方法解方程:(1)x2+3x+2=0 (2)2x2-3x+5=0
解:(1)x1=-1,x2=-2 (2)无解
二、思考探究,获取新知
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?
问题 已知ax2+bx+c=0(a≠0),试推导它的两个根
【分析】因为前面具体数字的题目已做得很多,现在不妨把a,b,c也当成具体数字,根据上面的解题步骤就可以推导下去。
探究 一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子 就得到方程的根,当b2-4ac<0时,方程没有实数根。
(2) 叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式。
(3)利用求根公式解一元二次方程的方法叫公式法。
【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示。
例1 用公式法解下列方程:
①2x2-4x-1=0 ②5x+2=3x2
③(x-2)(3x-5)=0 ④4x2-3x+1=0
解:①x1=1+ ,x2=1-
②x1=2,x2=-
③x1=2,x2=
④无解
【教学说明】(1)对②、③要先化成一般形式;(2)强调确定a,b,c的值,注意它们的符号;(3)先计算b2-4ac的值,再代入公式。
三、运用新知,深化理解
1.用公式法解下列方程:
(1)x2+x-12=0
(2)x2- x- =0
(3)x2+4x+8=2x+11
(4)x(x-4)=2-8x
(5)x2+2x=0
(6)x2+2 x+10=0
解:(1)x1=3,x2=-4;
(2)x1= ,x2= ;
(3)x1=1,x2=-3;
(4)x1=-2+ ,x2=-2- ;
(5)x1=0,x2=-2;
(6)无解。
【教学说明】用公式法解方程关键是要先将方程化为一般形式。
四、师生互动,课堂小结
1.求根公式的概念及其推导过程。
2.公式法的概念。
3.应用公式法解一元二次方程。
1.布置作业:从教材相应练习和“习题22.2”中选取。
2.完成练习册中本课时练习的“课时作业”部分。
在学习活动中,要求学生主动参与,认真思考,比较观察,交流与表述,体验知识的获取的过程,激发学生的学习兴趣,利用师生的双边活动,适时调试,从而提高学习效率。
12.6 一元二次方程的应用(三)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题。
2.教学难点 :有关增长率之间的数量关系。下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。
三、教学步骤
(一)明确目标。
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量。
(2)单位时间增产量=原产量×增长率。
(3)实际产量=原产量×(1+增长率).
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x.
则2月份的产量是5000+5000x=5000(1+x)(吨).
3月份的产量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(吨).
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合题意,舍去).
取x=0.2=20%.
教师引导,点拨、板书,学生回答。
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x.
(2)认真审题,弄清基数,增长了,增长到等词语的关系。
(3)用直接开平方法做简单,不要将括号打开。
练习1.教材P.42中5.
学生分析题意,板书,笔答,评价。
练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程。
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率。
(1+x)2=b(把原来的总产值看作是1.)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数。
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数。
((1+x)2=b+1把原来的总产值看作是1.)
以上学生回答,教师点拨。引导学生总结下面的规律:
设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n.
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力。
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x.
第一次降价后,每件为600-600x=600(1-x)(元).
第二次降价后,每件为600(1-x)-600(1-x)•x
=600(1-x)2(元).
解:设每次降价为x,据题意得
600(1-x)2=384.
答:平均每次降价为20%.
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结。
引导学生对比“增长”、“下降”的区别。如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).
(四)总结、扩展
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程。培养学生用数学的意识以及渗透转化和方程的思想方法。
2.在解方程时,注意巧算;注意方程两根的取舍问题。
3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率。3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程。
四、布置作业
教材P.42中A8
五、板书设计
12.6 一元二次方程应用(三)
1.数量关系: 例1…… 例2……
(1)原产量+增产量=实际产量 分析:…… 分析……
(2)单位时间增产量=原产量×增长率 解…… 解……
(3)实际产量=原产量(1+增长率)
2.最后产值、基数、平均增长率、时间
的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率
本节是一元二次方程的应用的继续和发展,由于能用一元二次方程解的应用题,一般都可以用算术方法解而需要用一元二次方程来解的应用题,一般说是不能用算术方法来解的,所以讲本节可以使学生认识到用代数方法解应用题的优越性和必要性。
列一元二次方程解应用题,其应用相当广泛,如在几何、物理及其他学科中都有应用;其数量关系也比可以用一元一次方程解决的问题复杂的多。因此,本节所学习的内容,不仅是中学数学中的重点,也是难点。
在教学过程中,通过列一元二次方程解应用题提高学生的逻辑思维能力和分析、解决问题的能力。
教学目的
1.了解整式方程和一元二次方程的概念;2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点: 一元二次方程的含义。
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程 ( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3: (2)x2=4
(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。
4. 一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称。
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本p6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=o (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。
课外作业:略
12.6 一元二次方程的应用(二)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识。
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题。
2.教学难点 :找等量关系。列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解。例如线段的长度不为负值,人的个数不能为分数等。
三、教学步骤
(一)明确目标。
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用题的步骤?
(2)长方形的周长、面积?长方体的体积?
2.例1 现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?
解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,
据题意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 当x=13时,15-2x=-11(不合题意,舍去。)
答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子。
练习1.章节前引例。
学生笔答、板书、评价。
练习2.教材P.42中4.
学生笔答、板书、评价。
注意:全面积=各部分面积之和。
剩余面积=原面积-截取面积。
例2 要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?
分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程。
解:长方体底面的宽为xcm,则长为(x+5)cm,
解:长方体底面的宽为xcm,则长为(x+5)cm,
据题意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解这个方程x1=9.0,x2=-14.0(不合题意,舍去).
当x=9.0时,x+17=26.0,x+12=21.0.
答:可以选用宽为21cm,长为26cm的长方形铁皮。
教师引导,学生板书,笔答,评价。
(四)总结、扩展
1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系。
2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负。
3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力。
四、布置作业
教材P.42中A3、6、7.
教材P.41中3.4
五、板书设计
12.6 一元二次方程的应用(二)
例1.略
例2.略
解:设……… 解:…………
………… …………
12.6 一元二次方程的应用(二)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识。
二、教学重点、难点
1.教学重点:会用列一元二次方程的方法解有关面积、体积方面的应用题。
2.教学难点 :找等量关系。列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解。例如线段的长度不为负值,人的个数不能为分数等。
三、教学步骤
(一)明确目标。
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)列方程解应用题的步骤?
(2)长方形的周长、面积?长方体的体积?
2.例1 现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?
解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19-2x)cm,宽为(15-2x)cm,
据题意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 当x=13时,15-2x=-11(不合题意,舍去。)
答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子。
练习1.章节前引例。
学生笔答、板书、评价。
练习2.教材P.42中4.
学生笔答、板书、评价。
注意:全面积=各部分面积之和。
剩余面积=原面积-截取面积。
例2 要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0.1cm)?
分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的等式——方程。
解:长方体底面的宽为xcm,则长为(x+5)cm,
解:长方体底面的宽为xcm,则长为(x+5)cm,
据题意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解这个方程x1=9.0,x2=-14.0(不合题意,舍去).
当x=9.0时,x+17=26.0,x+12=21.0.
答:可以选用宽为21cm,长为26cm的长方形铁皮。
教师引导,学生板书,笔答,评价。
(四)总结、扩展
1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系。
2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负。
3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力。
四、布置作业
教材P.42中A3、6、7.
教材P.41中3.4
五、板书设计
12.6 一元二次方程的应用(二)
例1.略
例2.略
解:设……… 解:…………
………… …………
教学内容:12.1 用公式解一元二次方程(一)
教学目标:
知识与技能目标:使学生了解一元二次方程及整式方程的意义;掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
过程与方法目标:通过一元二次方程的引入,培养学生分析问题和解决问题的能力;通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。
教学重、难点与关键:
重点:一元二次方程的意义及一般形式.
难点:正确识别一般式中的“项”及“系数”。
教学程序设计:
1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.
2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?
教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
学生看投影并思考问题
通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.
探究新知1
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
(3)什么叫做分式方程?
2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?
引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的`概念.
整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.
一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.
3.练习:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
(4)6x2=x;
(5)2x2=5y;
(6)-x2=0
4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.
一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.
5.例1 把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?
教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.
讨论后回答
学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,
独立完成
加深理解
学生试解
问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫
反馈训练应用提高
练习1:教材P.5中1,2.
练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:.
(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.
教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.
要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.
小结提高
(四)总结、扩展
引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?
1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.
3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.
学生讨论回答
布置作业
1.教材P.6 练习2.
2.思考题:
1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”
2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).
【学习目标】
1、了解整式方程和一元二次方程的概念 。
2、 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
【重点、难点】
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定
【学习过程】
一、
知识回顾
1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。
2、指出下列方程那些是一元二次方程:那些是一元一次方程?
(1) 3x十2=5x-3
(2) x2=4
(3) (x十3)(3xo4)=(x十2)2;
(4) (x-1)(x-2)=x2十8;
以上是 一元二次方程的为: ___________ 以上是 一元一次方程的为________
二、
探究新知[一]
1、一元二次方程的一般形式是( )
1)。提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠ 0 就成了一元一次方程了)
2)。方程中ax2、bx、c各项的名称及a、b的系数名称各是什么?
3)。强调:一元二次方程的一般形式中"="的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是"="的右边必须整理成0.
探究新知(二)
1、说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x 2十3x十2=O ___________
(2)x 2-3x十4=0; __________
(3)3x 2-5=0 ____________
(4)4x 2十3x-2=0; _________
(5)3x 2-5=0; ________
(6)6x 2-x=0. _______
2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;
(3) (3x十2) 2=4(x-3) 2
[学以致用:]
强化概念:
1、 说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O ______
(2)x2-3x十4=0;_______
(3) 3x2-5=0 _____________
(4)4x2十3x-2=0;____________
(5)3x2-5=0______________
(6)6x2-x=0________
2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x
(2)3x(x-1)=2(x十2)-4
(3)(3x十2)2=4(x-3)2
[知识总结:]
(1) 什么是一元二次方程?是一元二次方程满足哪几个条件?
(2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左边最多几项、其中( )可以不出现、但( )必须存在。特别注意的是"="的右边必须整理成( );
(3) 要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。如:(3x十2) 2=4(x-3)____________
诊断检测题一:
1、一元二次方程的一般形式是_________,其中_____是二次项,____是一次项,_______是常数项。
2、方程(3x-7)(2x+4)=4化为一般形式为_____,其中二次项系数为_____,一次项系数为_______.
3、方程mx2+5x+n=0一定是( )。
A.一元二次方程 B.一元一次方程
C.整式方程 D.关于x的一元二次方程
4、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值范围是( )
A.任意实数 B. m≠-1 C. m>1 D. m>0
5、方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);
3X2+Y=2X那些是一元二次方程?
6、把下列方程化成一般形式,且指出其二次项,一次项和常数项
(1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x
诊断检测题二:
1、方程 的二次项系数是 ,一次项系数是 ,常数项是 。
2、把一元二次方程 化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ;
3、一元二次方程 的一个根是3,则 ;
4、 是实数,且 ,则 的值是 。
5、关于 的方程 是一元二次方程,则 。
6、方程:① ② ③ ④ 中一元二次程是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和③
1、自我介绍:30s
大家下午好!我叫XXX,20XX年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!
2、一元二次方程概念、系数、根的判别式:8min30s
我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:
(1)x -10x+9=0 是 1 -10 9
(2)x +2=0 是 1 0 2
(3)ax +bx+c=0 不是 a必须不等于0(追问为什么)
(4)3x -5x=3x 不是 整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!
一元:只含一个未知数
二次:含未知数项的最高次数为2
方程:一个等式
一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。 那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。
3、一元二次方程的解法:20min
那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~
(1)直接开方法
遇到形如x =n的二元一次方程,可以直接使用开方法来求解。若n <0,方程无解;若n=0,则x=0,若n >0, 则x=±n 。同学们能明白吗?
(2)配方法
大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:
简单的一眼看出来的:x -2x+1=0 (x-1)=0(让同学回答)
需要变换的:2x +4x-8=0
步骤:将二次项系数化为1,左右同除2得:x +2x-4=0
将常数项移到等号右边得:x +2x=4
左右同时加上一次项系数一半的平方得:x +2x+1=4+1
所以有方程为:(x+1)=5 形似 x=n
然后用直接开平方解得x+1=±5 x=±5-1
大家能听懂吗?现在我们一起来做一道练习题,2min 时间,大家一起报个答案给我!
题目:1/2x-5x-1=0 答案:x=±+5
大家都会做吗?还需要讲解详细步骤吗?
(3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc ,没有公式法求不出来的解,当然啦,除非是无解~
首先,公式法里面的公式大家还记得吗?
x=(-b ±2-4ac )/2a
这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x 的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。 我们来做一道简单的例题:
3x -2x-4=0
其中a=3,b=-2,c=-4
带入公式得:x=((-(-2))± 2) 2-4x(-4)x3/(2x3)
化简得:x1=(1-)/3 x2=(1+)/3
同学们你们解对了吗?
使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~
(4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!
简单来说,因式分解就是将多项式化为式子的乘积形式。
比如说ab+ab 可以化成ab (1+a)的乘积形式。
那么对于二元一次方程,我们的目标是要将其化成(mx+a)x(nx+b)=0 这样就可以解出x=-a/m x=-b/n
我们一起做一个例题巩固一下:4x +5x+1=0
则可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0
所以有x=-1 x=-1/4
同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。 练习题:x -5x+6=0 x=2 x=3
x-9=0 x=3 x=-3
4、总结:1min
好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc 系数,会用Δ=b-4ac 来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!
教学目的
使学生掌握有关面积和体积方面以及“药液问题”的一元二次方程应用题的解法.提高学生化实际问题为数学问题的能力.
教学重点、难点
重点:用图示法分析题意列方程.
难点:将实际问题转化为对方程的求解问题
教学过程
复习提问
本小节第一课我们介绍了什么问题?
引入新课
今天我们进一步研究有关面积和体积方面以及“药液问题”的`一元二次方程的应用题及其解法.
新课
例1 如图1,有一块长25c,宽15c的长方形铁皮.如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为231c2的无盖长方体盒子,求截去的小正方形的边长应是多少?
分析:如图1,考虑设截去的小正方形边长为xc,则底面的长为(25-2x)c,宽为(15-2x)c,由此,知由长×宽=矩形面积,可列出方程.
解:设小正方形的边长为xc,依题意,得(25-2x)(15-2x)=231,
即x2-20x+36=0,
解得x1=2,x2=18(舍去).
答:截去的小正方形的边长为2c.
例2 一个容器盛满药液20升,第一次倒出若干升,用水加满;第二次倒出同样的升数,这时容器里剩下药液5升,问每次倒出药液多少升?
∴x=10.
答:第一、二次倒出药液分别为10升,5升.
练习 P41 3、4
归纳总结
1.注意充分利用图示列方程解有关面积和体积的应用题.
2.要注意关于“药液问题”应用题,列方程要以“剩下药液”为依据列式.
布置作业:习题22.3 8、9题