平行四边形教案优秀3篇

作为一位无私奉献的人民教师,往往需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。写教案需要注意哪些格式呢?这次帅气的小编为您整理了平行四边形教案优秀3篇,在大家参照的同时,也可以分享一下给您最好的朋友。

平行四边形教案 篇1

一、垂直与平行

1、认识平行和垂直

①同一平面内的两条直线的位置关系只有两种:相交和不相交。相交又有成直角的和不成直角的两种情况。

X“同一平面”是确定两条直线平行关系的前提,如果不在同一平面内,即便不相交,也不能称为互相平行。

②平行线:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

平行的表示方法:a//b,读作a平行于b。

生活中平行的例子:窗户相对的框,黑板相对的两条边,公路上的斑马线、、、、、、

③垂直:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

垂直的表示方法:ab

生活中垂直的例子:三角尺上的两条直角边互相垂直、、、、、、

④三条直线的特殊关系:

a//b,b//c,那么a//c:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行

ab,bc,那么a//c:在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行。

2、垂线的画法和性质

①过直线上和直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的顶点和直线上的已知点重合;从直角的顶点起,沿着另一条直角边画出一条直线,这条直线就是已知直线的垂线。

②过直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的另一条直角边与直线外的一点重合;沿着三角尺的另一条直角边画一条直线

③垂线的性质:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

3、平行线的画法及运用

①平行线的画法:固定三角尺,沿一条直角边先画一条直线;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;再沿第一步中的直角边画出另一条直线。

②检验两条直线是否平行的方法:把三角尺的一条直角边与其中的一条直线重合;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;如果第一步的三角尺的直角边与另一条直线完全重合,这两条直线就互相平行,如果不完全重合,这两条直线就不平行。

③两条平行线之间的距离处处相等。

④怎样画长方形:

画垂线的方法:按画出长3厘米的线段,做长方形的长;从画出的线段两端画两条与这条线段垂直的线段,使这两条线段长2厘米;把两条2厘米长的线段点连接起来。

画平行线的方法:画出长3厘米的线段,做长方形的长;把三角尺的一条直角边与这条线段重合,用直尺紧靠三角尺的另一条边,固定直尺,然后平移三角尺使移动的距离达到宽所指定的长度,沿第一步中的直角边画出长所指定的长度;把两条线段相对应的端点连接起来。

二、平行四边形和梯形

1、认识平行四边形和梯形

①四边形分类:一类是两组对边分别平行;另一类是只有一组对边平行

②平行四边形:两组对边分别平行的四边形叫做平行四边形。长方形和正方形是特殊的平行四边形。正方形是特殊的长方形。

③梯形:只有一组对边平行的四边形叫做梯形。生活中的'梯形:梯子、堤坝的横截面等

④平行四边形和梯形的相同点和不同点:

相同点:都是四边形;都有平行的对边

不同点:平行四边形的两组对边平行且相等;梯形有且只有一组对边平行,且平行的这组对边不相等

2、平行四边形的特征:平行四边形容易变形,具有不稳定性。

生活中平行四边形不稳定的应用:校园电动推拉门,商店面铺推拉门等

3、平行四边形和梯形各部分名称及高的画法

①为平行四边形和梯形各条边命名

平行四边形的底和高:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

②梯形中互相平行的一组对边,较短的边叫做梯形的上底,较长的边叫做梯形的下底,不平行的那组对边,分别叫做梯形的腰。

③等腰梯形:两腰相等的梯形。

④直角梯形:当一条腰与上底、下底垂直时,这个梯形叫直角梯形。

⑤画高时注意:所画的高要用虚线表示;一定要画垂足符号。

平行四边形教案 篇2

五年级上册第79—81页。

1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

掌握平行四边的面积计算公式,并能正确运用。

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

动手操作、小组讨论、演示等

每个学生一把剪刀,一个平行四边形

一、导入:

1、出示课本p79主题图,“这是一幅街道图,仔细观察,找一找图中有哪些学过的图形?你会计算哪些图形的面积?”板书:长方形的面积=长x宽

2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”

二、探索新知

1、用数方格的方法验证:

我们把这两个花坛按比例缩小画到纸上,用数方格的方法数数看,它们的面积各是多少。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。”让学生打开书第80页,先独立思考并数一数,填一填下面的表格,然后再和同桌互相交流。(注意再引导学生找找平行四边形的底和高分别是哪里)“观察表格中的数据。你发现了什么?

2、猜测:

谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法是怎样的?这个猜想到底对不对呢?

3、探究平行四边形面积公式

不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)

学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”

小组讨论:平行四边形转化成长方形后,什么变了?什么没变?

转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?

平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底x高)(字母式)

小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。

刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。

4、应用:出示例1,谁来说一说你是怎么做的?

要求平行四边形的面积,我们必须知道哪些条件?

三、巩固练习

四、提高练习

五、总结

在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。

平行四边形教案 篇3

教学目标

1、知识目标

(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

2、能力目标

(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标

渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

教学重点、难点

重点:平行四边形的概念及其性质.

难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用

教学方法讲解、分析、转化

教学过程设计

一、利用分类、特殊化的方法引出平行四边形的概念

1.复习四边形的知识.

(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

(2)将四边形的边角按位置关系分为两类:

教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

2.教师提问:四边形中的两组对边按位置关系分为几种情况?

引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

3.对比引出平行四边形的概念.

(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

练习1(投影)

如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

二、探索平行四边形的性质并证明

1.探索性质.

启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

(3)对角线

⑤对角线互相平分(性质定理3)

教师注意解释并强调对角线互相平分的含义及表示方法.

2.利用化归的方法对性质逐一进行证明.

(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

(3)写出证明过程.

3.关于“两条平行线间的平行线段和距离”的教学.

(1)利用性质定理2

导出推论:夹在两条平行线间的平行线段相等.

①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

练习2

(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

练习3

在图4-15(d)中,

①点A与点C的距离是线段__的长;

②点A到直线l2的距离是线段__的长;

③两条平行线l1与l2的`距离是线段__或__的长;

④由推论可得:两条平行线间的距离__.

三、平行四边形的定义及性质的应用

1.计算.

例1填空.

(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

2.证明.

例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

分析:

(1)尽量利用平行四边形的定义和性质,避免证三角形全等.

(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

分析:

(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

3.供选用例题.

(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

四、师生共同小结

1.平行四边形与四边形的关系.

2.学习了平行四边形哪些方面的性质?

3.两条平行线的距离是怎样定义的?有什么性质?

五、作业

课本第143页第2,3,4,5,6题.

课堂教学设计说明

本教学设计需2课时完成.

这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

平行四边形及其性质

教学目标

1、知识目标

(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

2、能力目标

(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标

渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

教学重点、难点

重点:平行四边形的概念及其性质.

难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用

教学方法:讲解、分析、转化

教学过程设计

一、利用分类、特殊化的方法引出平行四边形的概念

1.复习四边形的知识.

(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

(2)将四边形的边角按位置关系分为两类:

教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

2.教师提问:四边形中的两组对边按位置关系分为几种情况?

引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

3.对比引出平行四边形的概念.

(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

练习1(投影)

如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

二、探索平行四边形的性质并证明

1.探索性质.

启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

(3)对角线

⑤对角线互相平分(性质定理3)

教师注意解释并强调对角线互相平分的含义及表示方法.

2.利用化归的方法对性质逐一进行证明.

(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

(3)写出证明过程.

3.关于“两条平行线间的平行线段和距离”的教学.

(1)利用性质定理2

导出推论:夹在两条平行线间的平行线段相等.

①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

练习2

(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

练习3

在图4-15(d)中,

①点A与点C的距离是线段__的长;

②点A到直线l2的距离是线段__的长;

③两条平行线l1与l2的距离是线段__或__的长;

④由推论可得:两条平行线间的距离__.

三、平行四边形的定义及性质的应用

1.计算.

例1填空.

(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

2.证明.

例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

分析:

(1)尽量利用平行四边形的定义和性质,避免证三角形全等.

(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

分析:

(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

3.供选用例题.

(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

四、师生共同小结

1.平行四边形与四边形的关系.

2.学习了平行四边形哪些方面的性质?

3.两条平行线的距离是怎样定义的?有什么性质?

五、作业

课本第143页第2,3,4,5,6题.

课堂教学设计说明

本教学设计需2课时完成.

这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

一键复制全文保存为WORD