平行四边形教案【优秀3篇】

作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。的小编精心为您带来了平行四边形教案【优秀3篇】,希望大家可以喜欢并分享出去。

平行四边形教案 篇1

一、垂直与平行

1、认识平行和垂直

①同一平面内的两条直线的位置关系只有两种:相交和不相交。相交又有成直角的和不成直角的两种情况。

X“同一平面”是确定两条直线平行关系的前提,如果不在同一平面内,即便不相交,也不能称为互相平行。

②平行线:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

平行的表示方法:a//b,读作a平行于b。

生活中平行的例子:窗户相对的框,黑板相对的两条边,公路上的斑马线、、、、、、

③垂直:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

垂直的表示方法:ab

生活中垂直的例子:三角尺上的两条直角边互相垂直、、、、、、

④三条直线的特殊关系:

a//b,b//c,那么a//c:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行

ab,bc,那么a//c:在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行。

2、垂线的画法和性质

①过直线上和直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的顶点和直线上的已知点重合;从直角的顶点起,沿着另一条直角边画出一条直线,这条直线就是已知直线的垂线。

②过直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的另一条直角边与直线外的一点重合;沿着三角尺的另一条直角边画一条直线

③垂线的性质:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

3、平行线的画法及运用

①平行线的画法:固定三角尺,沿一条直角边先画一条直线;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;再沿第一步中的直角边画出另一条直线。

②检验两条直线是否平行的方法:把三角尺的一条直角边与其中的一条直线重合;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;如果第一步的三角尺的直角边与另一条直线完全重合,这两条直线就互相平行,如果不完全重合,这两条直线就不平行。

③两条平行线之间的距离处处相等。

④怎样画长方形:

画垂线的方法:按画出长3厘米的线段,做长方形的长;从画出的线段两端画两条与这条线段垂直的线段,使这两条线段长2厘米;把两条2厘米长的线段点连接起来。

画平行线的方法:画出长3厘米的线段,做长方形的长;把三角尺的一条直角边与这条线段重合,用直尺紧靠三角尺的另一条边,固定直尺,然后平移三角尺使移动的距离达到宽所指定的长度,沿第一步中的直角边画出长所指定的长度;把两条线段相对应的端点连接起来。

二、平行四边形和梯形

1、认识平行四边形和梯形

①四边形分类:一类是两组对边分别平行;另一类是只有一组对边平行

②平行四边形:两组对边分别平行的四边形叫做平行四边形。长方形和正方形是特殊的平行四边形。正方形是特殊的长方形。

③梯形:只有一组对边平行的四边形叫做梯形。生活中的'梯形:梯子、堤坝的横截面等

④平行四边形和梯形的相同点和不同点:

相同点:都是四边形;都有平行的对边

不同点:平行四边形的两组对边平行且相等;梯形有且只有一组对边平行,且平行的这组对边不相等

2、平行四边形的特征:平行四边形容易变形,具有不稳定性。

生活中平行四边形不稳定的应用:校园电动推拉门,商店面铺推拉门等

3、平行四边形和梯形各部分名称及高的画法

①为平行四边形和梯形各条边命名

平行四边形的底和高:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

②梯形中互相平行的一组对边,较短的边叫做梯形的上底,较长的边叫做梯形的下底,不平行的那组对边,分别叫做梯形的腰。

③等腰梯形:两腰相等的梯形。

④直角梯形:当一条腰与上底、下底垂直时,这个梯形叫直角梯形。

⑤画高时注意:所画的高要用虚线表示;一定要画垂足符号。

平行四边形教案 篇2

【实验目的】

验证互成角度的两个力合成时的平行四边形定则。

【实验原理】

等效法:使一个力F的作用效果和两个力F1、F2的作用效果都是让同一条一端固定的橡皮条伸长到某点,所以这一个力F就是两个力F1和F2的合力,作出F的图示,再根据平行四边形定则作出F1和F2的合力F的图示,比较F和F的大小和方向是否都相同。

【实验器材】

方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔。

【实验步骤】

⑴用图钉把白纸钉在水平桌面上的方木板上,并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套。

⑵用两只弹簧≮≯测力计分别钩住细绳套,互成角度地拉像皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向。

⑶只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向。

⑷用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示。

⑸用刻度尺从O点按同样的标度沿记录的方向作出只用一只弹簧测力计的拉力F的图示。

⑹比较一下,力F与用平行四边形定则求出的合力F的大小和方向是否相同。

锦囊妙诀:白纸钉在木板处,两秤同拉有角度,读数画线选标度,再用一秤拉同处,作出力的矢量图。

交流与思考:每次实验都必须保证结点的位置保持不变,这体现了怎样的物理思想方法?若两次橡皮条的伸长长度相同,能否验证平行四边形定则?

提示:每次实验保证结点位置保持不变,是为了使合力的作用效果与两个分力共同作用的效果相同,这是物理学中等效替换的思想方法。由于力不仅有大小,还有方向,若两次橡皮条的伸长长度相同但结点位置不同,说明两次效果不同,不满足合力与分力的关系,不能验证平行四边形定则。

【误差分析】

⑴用两个测力计拉橡皮条时,橡皮条、细绳和测力计不在同一个平面内,这样两个测力计的水平分力的`实际合力比由作图法得到的合力小。

⑵结点O的位置和两个测力计的方向画得不准,造成作图的误差。

⑶两个分力的起始夹角太大,如大于120,再重做两次实验,为保证结点O位置不变(即保证合力不变),则变化范围不大,因而测力计示数变化不显着,读数误差大。

⑷作图比例不恰当造成作图误差。

交流与思考:实验时由作图法得到的合力F和单个测力计测量的实际合力F忘记标注而造成错乱,你如何加以区分?

提示:由弹簧测力计测量合力时必须使橡皮筋伸直,所以与AO共线的合力表示由单个测力计测量得到的实际合力F,不共线的合力表示由作图法得到的合力F。

【注意事项】

⑴不要直接以橡皮条端点为结点,可拴一短细绳连两细绳套,以三绳交点为结点,应使结点小些,以便准确地记录结点O的位置。

⑵使用弹簧秤前,应先调节零刻度,使用时不超量程,拉弹簧秤时,应使弹簧秤与木板平行。

⑶在同一次实验中,橡皮条伸长时的结点位置要相同。

⑷被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。

⑸读数时应正对、平视刻度。

⑹两拉力F1和F2夹角不宜过小,作力的图示,标度要一致。

交流与思考:如何设计实验探究两力合力随角度的变化规律?如何观察合力的变化规律?

提示:保持两力的大小不变,改变两力之间的夹角,使两力的合力发生变化,可以通过观察结点的位置变化,判断合力大小的变化情况,结点离固定点越远,说明两力的合力越大。

【正确使用弹簧秤】

⑴弹簧秤的选取方法是:将两只弹簧秤调零后互钩水平对拉,若两只弹簧在对拉过程中,读数相同,则可选;若读数不同,应另换弹簧,直至相同为止。

⑵弹簧秤不能在超出它的测量范围的情况下使用。

⑶使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差)。

⑷被测力的方向应与弹簧秤轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。

⑸读数时应正对、平视刻度。

平行四边形教案 篇3

教学目标

1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高.

2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念.

教学重点

掌握平行四边形的意义及特征.

教学难点

理解平行四边形与长方形、正方形的关系.

教学过程

一、复习准备.

我们已经学过一些几何图形,观察一下这些图形有什么共同特点?

在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形.

教师提问:我们学过哪些四边形呢?

学生举例.

说说哪些物体表面是平行四边形?

教师出示下图,让学生初步感知平行四边形.

二、学习新课.

1.理解平行四边形的意义.

首先出示一组图形.

教师提问:这些图形是什么形?它们有什么特征?

(1)看到这个名称你能想到什么?(板书:平行、四边形)

教师提问:你认为什么是四边形?你学过的什么图形是四边形的?

(2)动手测量.

指名到黑板上用三角板检验一下,每个图形的对边怎样.

(3)抽象概括.

根据你测量的结果,能说说什么叫平行四边形吗?

小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.)

教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”.

(4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】

2.平行四边形的特征和特性.

(1)教师演示.

教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?

学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角.

(2)动手操作.

学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行.

(3)归纳平行四边形特性.

根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形)

(4)对比.

三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性.

这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗?

(如汽车间的保护网,推拉门、放缩尺等.)

3.学习平行四形的底和高.

(1)认识平行四边形的底和高.

教师边演示边说明:从平行四边形一条边上的`一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底.

(2)找出相应的底和高.【继续演示课件“平行四边形”】

引导学生观察:图中有几条高?它位相对应的底各是哪条线段?

使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.

(3)画平行四边形的高.【继续演示课件“平行四边形”】

教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的延长线上.

①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形)

引导学生比较长方形和平行四边形的异同点,使学生明确:

相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形.

②引导学生比较正方形和平行四边形的相同点和不同点.

使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形.

③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】

三、巩固练习.【继续演示课件“平行四边形”】

1.判断下列图形哪些是平行四边形?

2.指出平行四边形的底,并画出相应的高.

3.在钉子板上围出不同的平行四边形.

4.数一数下图中有( )个平行四边形.

四、教师小结.

1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)

2.组织学生对所学知识提出质疑,并解疑.

3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)

五、布置作业.

1.用一套七巧板拼出不同的平行四边形.

2.在下面每个平行四边形中分别画出两条不同的高。

一键复制全文保存为WORD