作为一无名无私奉献的教育工作者,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案应该怎么写才好呢?下面是整理的二次根式教案【优秀6篇】,如果对您有一些参考与帮助,请分享给最好的朋友。
一、教学目标
1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。
2、使学生掌握化简一个二次根式成最简二次根式的方法。
3、使学生了解把二次根式化简成最简二次根式在实际问题中的应用。
二、教学重点和难点
1、重点:能够把所给的二次根式,化成最简二次根式。
2、难点:正确运用化一个二次根式成为最简二次根式的方法。
三、教学方法
通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法。
四、教学手段
利用投影仪。
五、教学过程
(一)引入新课
提出问题:如果一个正方形的面积是0.5m2,那么它的边长是多少?能不能求出它的近似值?
了。这样会给解决实际问题带来方便。
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数。
总结满足什么样的条件是最简二次根式。即:满足下列两个条件的二次根式,叫做最简二次根式:
1、被开方数的因数是整数,因式是整式。
2、被开方数中不含能开得尽方的因数或因式。
例1 指出下列根式中的最简二次根式,并说明为什么。
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式。前面二次根式的运算结果也都是最简二次根式。
例2 把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简。
例3 把下列各式化简成最简二次根式:
说明:
1、引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简。
2、要提问学生
问题,通过这个小题使学生明确如何使用化简中的条件。
通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题。
注意:
①化简时,一般需要把被开方数分解因数或分解因式。
②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化。
(三)小结
1、满足什么条件的根式是最简二次根式。
2、把一个二次根式化成最简二次根式的主要方法。
(四)练习
1、指出下列各式中的最简二次根式:
2、把下列各式化成最简二次根式:
六、作业
教材P.187习题11.4;A组1;B组1.
七、板书设计
【教学目标】
1、运用法则
进行二次根式的乘除运算;
2、会用公式
化简二次根式。
【教学重点】
运用
进行化简或计算
【教学难点】
经历二次根式的乘除法则的探究过程
【教学过程】
一、情境创设:
1、复习旧知:什么是二次根式?已学过二次根式的哪些性质?
2、计算:
二、探索活动:
1、学生计算;
2、观察上式及其运算结果,看看其中有什么规律?
3、概括:
得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:
积的算术平方根,等于积中各因式的算术平方根的积。
三、例题讲解:
1、计算:
2、化简:
小结:如何化简二次根式?
1、(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;
2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:
(一)。P62 练习1、2
其中2中(5)
注意:
不是积的形式,要因数分解为36×16=242.
(二)。P67 3 计算 (2)(4)
补充练习:
1、(x>0,y>0)
2、拓展与提高:
化简:1)。(a>0,b>0)
2)。(y
2、若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:
小结:二次根式的乘法法则
作业:
1)。课课练P9-10
2)。补充习题
教学目标
1.使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;
2.熟练地进行二次根式的加、减、乘、除混合运算.
教学重点和难点
重点:含二次根式的式子的混合运算.
难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子.
教学过程设计
一、复习
1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件.
指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式.
2.二次根式 的乘法及除法的法则是什么?用式子表示出来.
指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,
计算结果要把分母有理化.
3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:
4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:
二、例题
例1 x取什么值时,下列各式在实数范围内有意义:
分析:
(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(3)题是两个二次根式的和, x的取值必须使两个二次根式都有意义;
(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.
x-2且x0.
解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0.
解 因为1-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.
问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?
分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.
注意:
所以在化简过程中,
例6
分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、课堂练习
1.选择题:
A.a2B.a2
C.a2D.a<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空题:
4.计算:
四、小结
1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.
2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.
3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.
4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.
五、作业
1.x是什么值时,下列各式在实数范围内有意义?
2.把下列各式化成最简二次根式:
一、内容和内容解析
1.内容
二次根式的概念。
2.内容解析
本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。
本节课的教学重点是:了解二次根式的概念;
二、目标和目标解析
1、教学目标
(1)体会研究二次根式是实际的需要.
(2)了解二次根式的概念.
2、 教学目标解析
(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.
三、教学问题诊断分析
对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。
本节课的教学难点为:理解二次根式的双重非负性。
四、教学过程设计
1.创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.
(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______.
(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.
师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。
【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.
问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?
师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.
【设计意图】为概括二次根式的概念作铺垫.
2.抽象概括,形成概念
问题3 你能用一个式子表示一个非负数的算术平方根吗?
师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.
追问:在二次根式的概念中,为什么要强调“a≥0”?
师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.
【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.
3.辨析概念,应用巩固
例1 当 时怎样的实数时, 在实数范围内有意义?
师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.
例2 当 是怎样的实数时, 在实数范围内有意义? 呢?
师生活动:先让学生独立思考,再追问.
【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.
问题4 你能比较 与0的大小吗?
师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,
【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。
4.综合运用,巩固提高
练习1 完成教科书第3页的练习。
练习2 当x 是什么实数时,下列各式有意义。
(1) ;(2) ;(3) ;(4) 。
【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件。
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。
5.总结反思
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。
(1)本节课你学到了哪一类新的式子?
(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?
(3)二次根式与算术平方根有什么关系?
师生活动:教师引导,学生小结。
【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。
6.布置作业:
教科书习题16.1第1,3,5, 7,10题.
五、目标检测设计
1、 下列各式中,一定是二次根式的是( )
A. B. C. D.
【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.
2、 当 时,二次根式 无意义.
【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.
3、当 时,二次根式 有最小值,其最小值是 .
【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.
4、对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ .小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出 的取值范围.
【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.
教学目的:
1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;
2、会求二次根式的代数的值;
3、进一步提高学生的综合运算能力。
教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式
教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值
教学过程:
一、二次根式的混合运算
例1 计算:
分析:(1)题是二次根式的。加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。
(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。
练习1:P206 / 8--① P207 / 1①②
例2 计算
问:计算思路是什么?
答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。
二、求代数式的值。 注意两点:
(1)如果已知条件为含二次根式的式子,先把它化简;
(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。
例3 已知,求的值。
分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。
例4 已知,求的值。
观察代数式的特点,请说出求这个代数式的值的思路。
答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。
三、小结
1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。
2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。
3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。
四、作业
P206 / 7 P206 / 8---②③
一、内容和内容解析
1、内容
二次根式的概念。
2、内容解析
本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础。
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。
本节课的教学重点是:了解二次根式的概念;
二、目标和目标解析
1、教学目标
(1)体会研究二次根式是实际的需要。
(2)了解二次根式的概念。
2、 教学目标解析
(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性。
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围。
三、教学问题诊断分析
对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数。教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断。
本节课的教学难点为:理解二次根式的双重非负性。
四、教学过程设计
1、创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.
(2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.
(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.
师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。
【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性。
问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?
师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数) 的算术平方根。
【设计意图】为概括二次根式的概念作铺垫。
2、抽象概括,形成概念
问题3 你能用一个式子表示一个非负数的算术平方根吗?
师生活动:学生小组讨论,全班交流。教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号。
【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力。
追问:在二次根式的概念中,为什么要强调“a≥0”?
师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由。
【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解。
3、辨析概念,应用巩固
例1 当 时怎样的实数时, 在实数范围内有意义?
师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解。
例2 当 是怎样的实数时, 在实数范围内有意义? 呢?
师生活动:先让学生独立思考,再追问。
【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解。
问题4 你能比较 与0的大小吗?
师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的理解,
【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力。
4、综合运用,巩固提高
练习1 完成教科书第3页的练习。
练习2 当x 是什么实数时,下列各式有意义。
(1) ;(2) ;(3) ;(4) 。
【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件。
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维。
5、总结反思
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题。
(1)本节课你学到了哪一类新的式子?
(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?
(3)二次根式与算术平方根有什么关系?
师生活动:教师引导,学生小结。
【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法。
6、布置作业:
教科书习题16.1第1,3,5, 7,10题。
五、目标检测设计
1、 下列各式中,一定是二次根式的是( )
A. B. C. D.
【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数。
2、 当 时,二次根式 无意义。
【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题。
3、当 时,二次根式 有最小值,其最小值是 。
【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用。
4、对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ 。小慧认为还应考虑分母不为0的情况。你认为小慧的想法正确吗?试求出 的取值范围。
【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑。