圆的周长教案【优秀5篇】

在教学工作者开展教学活动前,常常需要准备教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么写教学设计需要注意哪些问题呢?下面是的小编为您带来的圆的周长教案【优秀5篇】,如果对您有一些参考与帮助,请分享给最好的朋友。

圆的周长教案 篇1

教学内容:

圆周长计算公式的推导、周长计算(课本第62——64页的内容、练习十五第1题)。

教学目标:

1、认识圆的周长,理解圆周率的意义。

2、掌握圆周长的计算公式,会用公式正确计算圆的周长。

3、介绍祖冲之在圆周率方面的成就,进行爱国主义教育。

教学重难点:

1、圆的周长公式推导及运用公式计算圆周长是重点。

2、通过实验找出圆的周长与直径的关系—圆周率是难点。

3、关键是让学生动手操作测周长与直径。

教学准备:

学生准备:大小不同的圆柱物体,光盘。直尺或三角板、绳子。

老师准备:小黑板

教学过程:

一、复习铺垫(5分钟)

1、小黑板出示

(1)

(2)

10厘米 6分米

2、提出问题:

同学们,老师要用铁丝分别做成上面两个图形的框架,

(1)请同学们帮助老师算一算每个图形需要用多长的铁丝?

(2)、每个图形需要用多长的铁丝,是求什么的?

(3)什么是周长?周长的单位有哪些?

(4)、要求图(1)、图(2)的周长应该知道什么条件?

二、探索新知(25分钟)

(一)认识圆的周长

1、出示:圆的图形 和其他实物圆。

2、提问:

(1)这是一个什么形实物?

(2)老师要用铁丝给它箍紧,需要用多长的铁丝,是求什么的?圆周长指哪儿?

3、感知圆的周长: 让学生拿出光盘或其它实物圆摸一摸,进行感知。

4、怎样才能知道一个圆的周长呢?让学生猜一猜,说一说,。

(二)提示课题

在现实生活中,有很多的圆形物体的周长测着很不方便。我们能不能也像计算长方形、正方形周长一样找到计算圆周长的计算公式呢,今天我们一起来探讨如何找到圆周长的计算公式,来计算圆的周长。

板书课题——圆周长计算

(三)圆的公式推导

1、猜一猜,想一想,动手操作(8分钟)

(1) 提问:通过前面复习,我们知道长方形的周长与它的长和宽有关,正方形的周长与它的边长有关。那么请同学们想一想:

圆的周长与它的什么条件有关?

独立思考后,前后桌四人交换意见

学生汇报:圆的周长和直径(或半径)有关。

继续提问:它们之间到底有什么的关系呢?

故事激趣

我国古代有一位伟大的数学家和文学家祖冲之就发现了圆的周长与它的直径之间的关系,这个发现是在1500年前。今天我们各位同学也当一回科学家,进行一次研究,来发现圆周长与直径之间到底有什么关系。

(2)动手实验:(四人一组,合作完成) (一组测一个)

a、取出圆形纸板,量出圆形纸板的直径。

b、用绳子绕圆形纸板一周,绕圆一周的绳子长度,就是这个圆形的周长,然后测出绳子长度。 c、填到书中表内。

d、算出周长和直径的比值。

e、 汇报,老师把表画在小黑板上,并填表。

2、观查数据,发现规律:(5分钟)

观察表中数据,说一说你有什么发现?(四人一组,共同讨论,)

小组汇报:

同一个圆,它的周长是它的直径的3倍多一些。

3、认识圆周率(2分钟)

(1)在学生发现圆周长与它的直径关系的基础上,老师明确:

刚才每一组同学测的圆大小都不同,但发现:任意一个圆的周长与它的直径的比是一个固定的数。即一个圆的周长是它的直径的3倍多一点。我们把这个比值,即这个固定的数(不变的数)给它起个名字叫圆周率。用字母π表示。 板书:圆周长=π 或 圆周长:它的直径=π 它的直径

(2)让学生读一读( Pài )写一写。

(3)了解π的值。

A、π是一个无限不循环小数,π=3.1415926535.。.。.。.。.。

B、在实际应用中一般只取它的近似值,即π≈3.14.

4、圆周长公式推导:(5分钟)

老师:如果已知圆的直径,如何计算圆的周长。

圆周长= π×直径

如果周长用C表示:字母公式C=πd

知道半径,怎样(★)求周长C=2πr

( 四)应用公式(2分钟)

教学例1:

(1)出示例题:圆形花坛的直径是20米,它的周长是多少米?

(2)学生读题并尝试列式计算。

(3)学生板演:3.14×20=62.8(米)

说明:解题时可以不写计算公式

π取两位小数3.14,计算中不必使用 ≈ ,直接用 = 号。

三、巩固练习(8分钟)

1、 完成课本64页做一做。

2、完成练习十五第1题。

3、补充作业。判断题:

(1)圆的周长刚好是直径的3.14倍。

(2)大圆的圆周率大,小圆的圆周率就小。

(3)π是两位小数。

(4)圆的周长等于它的半径的2π倍。

(5)求周长,直径是唯一条件。

四、课堂小结(2分钟)

本节课我们认识了圆的周长,并且通过实验知道,圆有大小,但每一个圆周长与它的直径的比的比

值都相等,并且是一个固定的数,这个数叫圆周率,用π表示。从而找到了计算圆周长的公式,周长=直径 × π或半径×2×π。

五、布置作业:课堂作业

六、板书设计圆周长计算

圆周长=π(圆周率) 周长是直径的3倍多一点 (即 周长是直径的π倍 ) 它的直径, 圆周长= π×直径

因为d=2r 圆周长=π×半径 ×2

π是一个无限不循环小数,π=3.1415926535 C=πd C=2πr

注:(1)在实际计算中,π取近似值保留两位小数约等于3.14 。

(2)π在计算的应用中,结果不用“≈”号,而用“=”号。

3.14×20=62.8(米)

答:圆形花坛的周长是68.2米

七、课后记

《圆的周长》是在学生学习了正方形周长的基础上进行教学的。由复习老知识引入课题,目的是激发学生的探究积极性,然后我让学生自己推导出圆的周长公式,让学生以小组为单位进行操作:用“化曲为直”的绕线法测量圆的周长,并做好相应记录,填好表,为下一步探究奠定基础,接下来让学生猜一猜、想一想圆的周长与直径有什么关系,进而找到圆的周长与直径的关系,推出圆周率,得出圆的周长公式。最后让学生把得出的圆的周长公式应用到练习中。

本节课中,我觉得比较成功的是:

首先,在创设情境时,我用旧知引新知导入新课,以学生的兴趣为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我想学生提出质疑测量、学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,再回到课前情境中,使学生在掌握新知识的基础上,解决实际问题,培养学生的应用意识。 在本节的教学中,我发现情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣,由于前面“正方形周长及圆的认识”知识的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流‘展示等活动,理解了“化曲为直”的数学思想方法。在推导公式过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。

本节课中也存在一些不足之处:比如:在对学生的表达进行评价是艺术性略显不足,应多鼓励,使学生获得成功的体验;另外,我对课堂的掌控和把握能力还需提高,虽然对教材进行了较为深入的分析,但还没有做到不彻底,小组合作要求不到位。

在今后的教学工作中,我将弥补以上不足之处,提高个人的理论修养,使自己的教学趋于完美。

圆的周长教案 篇2

教学目标:

1.经历圆周率的探索过程,理解并掌握圆周率的意义和近似值,初步理解并掌握圆的周长计算公式,能正确计算圆的周长。

2.培养学生的观察、比较、分析和动手操作的能力,发展学生的空间观念,培养学生抽象概括的能力和解决简单的实际问题的能力。

3.通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

教学重点:

理解并掌握圆的周长的计算公式。

教学难点:

理解圆的周长与直径之间的关系。

教学准备:

圆规、剪刀、绳子、尺子。

教学过程:

一、复习旧知,引入新知

1.教师在黑板上画圆。

(1)提问:你对圆有哪些了解?

(2)指名回答,同学之间相互补充。

(3)你还想了解什么?

2.通过学生的回答,引出:这节课我们就起来研究圆的周长。(板书:圆的周长)

二、合作交流,探究新知

1.认识周长的含义。

(1)师:你能指出黑板上这个圆的周长吗?

(2)从实物中指出圆的周长。

(3)用语言表述圆的周长。

学生回答,教师总结:圆的周长就是指围成圆的曲线的长度。

2.教学例4。

(1)出示例4,了解轮胎规格。明确:这里的22英寸、24英寸、26英寸是指

轮胎的直径。

(2)启发思考:如果把它们各滚动一圈,哪种车轮行驶的路程比较长?

(3)比较这三个车轮的直径和周长,你又有什么发现?

(4)小结:直径越大,圆就越大,圆的周长也就越长。圆的周长和直径到底有什么关系呢?接下来我们继续研究。

3.教学例5。

(1)讨论实验方案。要研究直径和周长间有什么关系,我们可以怎样做?

(2)学生回答后,小结:我们可以画几个圆,量一量它们的直径和周长,算一算周长除以直径的商。

(3)明确要求

①画三个大小不同的圆。

②用尺子量出直径。

③用线围出圆的周长并用尺子挞出长度。

④边操作边填好表格。

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

(4)学生分组按要求操作,要求分工明确。

(5)整理学生的测量结果,汇总。

(6)观察表格,说说有什么发现。

学生回答后,小结:一个圆的周长总是直径的3倍多一些。

4.认识圆周率。

(1)介绍圆周率,并板书: 3.14

(2)阅读教材第102页的你知道吗内容。

5.推导得出圆的周长计算公式及其字母公式。

板书: 或

三、巩固练习,加深理解

1.完成试一试。

(l)根据刚刚学过的圆的周长的计算方法,学生独立计算车轮的周长。

(2)指名说说计算方法。

2.完成练一练。

(l)学生独立完成计算。

(2)汇报交流。

3.完成练习十四第1题。

(1)学生看图,说说题目中的已知条件。

(2)学生独立完成计算。

(3)交流计算方法。

4.作业:练习十四第2、3、4题。

四、课堂小结

师:这节课我们研究了圆的周长,谁能说说是用什么方法进行研究的?你有

哪些收获?

板书设计:

圆的周长

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

圆的周长教案 篇3

教学内容:

圆的周长(小学数学九年制义务教材第十册).

教学目的:

1.让学生知道什么是圆的周长.

2.理解圆周率的意义.

3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

教学重点:

推导圆的周长计算公式.

教学难点:

理解圆周率的意义.

教具学具:

1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

2.电脑软件及演示教具.

教学过程:

一、复习:

上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

二、导入:

这节课我们继续研究圆的周长(板书课题).

1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

问:什么是圆的周长?

板书:围成圆的曲线的长是圆的周长.

3.你能测量出这个圆的周长吗?(能)

4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

回答:不能.

想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的。周长呢?今天我们就来研究这个问题.

三、互动

请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

四、学生动手测量、教师巡视指导.

五、统计测量结果.

观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

六、电脑演示

(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读通过实验到3.14.

七、看书后回答问题:

1.是谁把圆周率的值精确计算到6位小数?

2.什么叫圆周率?

3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

4.如果用字母c表示圆的周长,d表示直径,r表示半径,表示圆周率,圆的周长的计算公式应该怎样表示?

现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(取3.14)

八、出示例1:

一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

(得数保留两位小数)

请同学们想一想:车轮滚动一周的距离实际指的是什么?

解:d=1.95 单位:米

c=d

=3.141.95

=6.123

6.12(米)

答:车轮滚动一周约前进6.12米.

九、课堂练习:

1.投影:计算下面图形的周长.

2.判断下面各题(正确的出示,错误的出示)

(1)圆周率就是圆的周长除以它的直径所得的商. ( )

(2)圆的直径越大,圆周率越大. ( )

(3)圆的半径是3厘米,周长是9.42厘米. ( )

3.小明和爷爷分别沿小圆(ABCDEA)和大圆两条路线散步

圆的周长教案 篇4

一、指导思想与理论依据:

《新课标》指出:有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的的重要方式。数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

根据这一理念,在本节课的设计上,我突出两点,一是让学生主动经历数学结论的猜想动手操作,实践验证以及表述的过程;二是对学生放手,还学生自主的空间,自主探究,合作交流的学习方式贯穿课堂的始终。

二、教材及学情分析:

教材是在学生掌握了长方形和正方形周长,并初步认识了圆的基础上学习的。它是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。学情分析:学生虽然有计算直线图形周长的基础,但第一次接触曲线图形,概念比较抽象不容易理解,推导圆周长的计算方法、理解圆周率的含义会有一定的困难。

三、教学目标、重点及难点:

1、知识和技能:

使学生直观认识圆的周长,掌握圆的周长的计算方法,理解圆周率的意义,并能正确灵活应用计算公式解决简单的实际问题。

2、过程与方法:

(1)通过组织学生观察和实验等活动,引导学生经历“猜想-验证-归纳、概括”的学习过程,认识圆周率。

(2)经历圆的周长计算公式的发现、探索过程,培养学生分析、抽象、概括,以及发现规律的能力。

3、情感与态度:

(1)通过学生动手操作、发现,激发学习兴趣,使学生体验探究问题的乐趣;

(2)结合圆周率的介绍,使学生受到爱国主义科学精神的教育。

(3)在解决问题过程中,增强应用意识。

教学重点:

让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

教学难点:

对圆周率的认识。

教学准备:

⒈圆形物体实物,。

⒉每个学生准备三个大小不同的圆片,一根线,一把直尺。

四、教法:

1、自主探究法。通过学生动手实践,寻求测量圆周长的方法,培养学生动手操作的能力,激活学生的思维。

2、合作交流法。合作交流是学生学习数学的主要方式。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。

五、主要教学环节与设计:

通过以下环节教学本课:

一创设情境,初步感知

二合作交流,探究新知

三实践应用,解决问题

四畅谈收获,课外延伸

六、教学过程:

第一个环节:创设情境,初步感知师:

哪些同学会骑自行车?在骑车时,车轮向前滚动一周,行驶了多长的路程?怎样计算?(出示车轮向前滚动的录像。)

生:求行驶多长的路程就是求圆形的周长。

师:今天就来学习怎样计算圆的周长。

此环节的设计目的:从学生熟悉的自行车入手,让学生感知求车轮滚动一周就是求圆的周长,激发学生学习新知的兴趣。

第二个环节:合作交流、探究新知

(一) 直观感知什么圆的周长通过以下活动帮助学生认识什么是圆的周长。

1、请你指出老师手中圆形物体的周长。准备一些实物有硬币、茶杯垫,让学生用手在圆周上滑摸等方式认识并理解圆的周长。

2、分析比较长方形、正方形和圆的周长各有什么不同?

3、指一指、描一描自己手中圆片的周长。

设计意图:让学生动手摸一摸后,初步感知圆的周长就是圆一周的长度。更增强了对圆周长的感性认识,并形象理解圆周长的意义。

(二)探究圆周长的计算方法

圆周长计算公式的推导这一内容,我安排了三个环节:

1、揭示矛盾,产生探索新知欲望。请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

预设的几种情况:

(1)“滚动”——把实物圆沿直尺滚动一周;

(2)“缠绕”——用绳子缠绕实物圆一周并拉直;

(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

小结:以上的几种方法都是要“化曲为直”。

出示地球图片。

如果要计算地球赤道一周的长度,用刚才的绕线法、滚动法显然都无法测量怎么办?我们需要探讨求圆周长的一般方法。

设计意图:

1、这个过程中让学生明白 “缠绕”、“滚动” 的方法是有局限性的,引发其探索“计算公式”的积极性、必要性,为深入研究圆周长的计算问题作好了“心理”铺垫。这样的矛盾,反而更能激发学生的求知欲。

2、操作实验,探究圆周长计算方法在这一内容中,探究圆周率,理解圆周率是本课的难点,因此我设计让学生分小组合作,通过“猜想——实验验证——归纳概括得到结论”来完成。

(1)猜想,目的是让学生体会周长与直径之间的关系,重点解决“周长与什么有关”的问题。

师:圆的周长与它的什么有关呢?

生:圆的周长与它的直径有关。圆直径长,周长就大;直径短,圆周长就小。

(2)实验验证,目的是让学生发现周长与直径之间固定的倍数关系,重点解决“周长与直径有怎样的实质关系”的问题。

师:我们知道正方形周长是边长的4倍,那么圆的周长是直径的几倍呢?我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

请同学们分组做个小实验,请利用手中的学具,用你喜欢的方法验证圆的周长与直径的倍数关系,记录在表格中。请你按照“我们组利用什么方法——过程怎样——结果如何”的顺序汇报实验过程

小组汇报:

生:我们测量的第一个圆直径是10厘米,周长是31厘米,周长是直径的3.1倍。第二个圆直径是2厘米,周长是6.5厘米,周长是直径的3.25倍。第三个圆直径是5.5厘米,周长是16.5厘米,周长是直径的3倍。

师:通过计算你们发现了什么?

生:每个圆的周长,都是它的直径长度的3倍多一些。

追问:那么是不是所有的圆周长与它直径都有这种关系呢?

最后师生共同概括出:任何一个圆的周长总是它的直径长度的3倍多一些。

师:由于测量时存在误差,导致结果不太一样,这很正常。你们的研究结果已经很接近数学家的结果了。谁知道我们把这个3倍多一些的数叫做什么?

生:圆周率。

师:你对圆周率还有哪些了解?

这个3倍多一些的数经过数学家周密计算发现是一个固定不变的数,我们把这个倍数叫做圆周率。读作π。对圆周率的发现最杰出的贡献者是祖冲之。圆周率是一个无限小数,在科技飞速发展的今天,计算机已经计算到了小数点后上亿位。小学阶段取它的近似值为3.14。板书:π≈3.14(出示相关的资料)

设计意图:通过同学们在小组中操作、交流、观察等活动,亲历感悟发现知识,达到理解的目的。圆周率有的学生早已知道,圆周率的有关知识是在师生共同补充交流中得到的,体现以学生为主体。祖冲之的事迹是一个非常好的爱国主义教育的典型。使学生感受到中国文化的博大精深,发展学生的情感态度价值观目标。

(3)得出结论师:你知道圆周长的计算方法了吗?

生:知道。

板书公式:C=πd,C=2πr

设计意图:推导圆周长公式,解决好了圆周率的问题,圆的周长的计算方法只是水到渠成的结果。

第三个环节:实践应用,解决问题

这一环节是对我们所探究结果的运用,即运用圆周长的计算公式来解决生活中的实际问题。

1、解决刚上课时提出的问题:车轮向前滚动一周,行驶了多长的路程?做到首尾呼应。

2、设计了三道有梯度的练习:

①d=5米, C=?

②r=5厘米 C=?

③C=6.28米d=?

3、明辨是非,下面的说法对吗?

①π=3.14

②大圆的圆周率小于小圆的圆周率。

③圆的周长是它的半径的2π倍。

意图:设计有关圆周率的判断,是帮助学生巩固新概念,加深对圆周率的理解。

第四个环节:畅谈收获,课外延伸作业:

赤道就像地球的“腰带”,它的长度大约是4万千米。你知道地球的半径大约是多少吗?

设计意图:在课堂即将结束时,我设置了与前面相呼应的求赤道周长的课外的拓展。这样的设置,把课堂的教学延伸到课外,提高学生的学习能力。

你有什么收获?(引导学生总结所学内容,学习方法,获得情感态度等体验。)

七、板书设计:

圆的周长

化曲为直 圆的周长÷直径=圆周率

C÷d=π 3.14×20=62.8(英寸)

C= πd 答:车轮向前滚动一周,行驶了62.8英寸。

C=2πr

圆的周长教案 篇5

一、教学目标

【知识与技能】

掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。

【过程与方法】

通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。

【情感态度与价值观】

积极参与数学活动,培养学习数学的兴趣。

二、教学重难点

【重点】圆的周长的计算公式。

【难点】圆的周长公式的推导过程。

三、教学过程

(一)导入新课

创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。

学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。

教师明确,圆一圈的长度即为圆的周长。

引入课题——圆的周长。

(二)探索新知

1、探索发现

学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。

学生汇报测量结果及测量方法。

教师引导学生思考,圆的周长大小与什么有关。

学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。

教师明确直径是半径的2倍,可看其中一项即可。

2、探索圆的周长与圆的直径关系

小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。

小组汇报分享测量结果,教师板书。

学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。

学生汇报通过多次测量计算比值总在3.1左右。

教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。

给出圆周率的特点:

(1)是一个无限不循环的小数;

(2)我国伟大的数学家祖冲之将其精确到小数点后七位;

(3)现在为了方便只要取小数点后两位即可。

(三)应用新知

问题:大头儿子家圆桌直径为1米,求需要买多长的'铁丝?3.1米够吗?

教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。

(四)小结作业

提问:通过本节课,你有什么收获?

课后作业:回家找一个圆形,借助直尺测量,计算出周长。

四、板书设计

一键复制全文保存为WORD