作为一名辛苦耕耘的教育工作者,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那要怎么写好教案呢?这里给大家分享一些关于高中数学教案优秀范文,方便大家学习。以下是人见人爱的小编分享的高中数学教案优秀范文【最新8篇】,在大家参照的同时,也可以分享一下给您最好的朋友。
教学准备
教学目标
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学重难点
掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。
教学过程
等比数列性质请同学们类比得出。
【方法规律】
1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。
2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数
a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)
3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决。
【示范举例】
例1:
(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。
(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。
例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。
例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。
指数与指数幂的运算教案
整体设计
教学分析
我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质。从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。
教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题。前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值。后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫。
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值。
根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持。
三维目标
1、通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质。掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质。培养学生观察分析、抽象类比的能力。
2、掌握根式与分数指数幂的互化,渗透“转化”的数学思想。通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理。
3、能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力。
4、通过训练及点评,让学生更能熟练掌握指数幂的运算性质。展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美。
重点难点
教学重点
(1)分数指数幂和根式概念的理解。
(2)掌握并运用分数指数幂的运算性质。
(3)运用有理指数幂的性质进行化简、求值。
教学难点
(1)分数指数幂及根式概念的理解。
(2)有理指数幂性质的灵活应用。
课时安排
3课时
教学过程
第1课时
作者:路致芳
导入新课
思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的。教师板书本节课题:指数函数——指数与指数幂的运算。
思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算。
推进新课
新知探究
提出问题
(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?
(2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?
(3)根据上面的结论我们能得到一般性的结论吗?
(4)可否用一个式子表达呢?
活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维。
讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.
(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根。一个数的五次方等于a,则这个数叫a的五次方根。一个数的六次方等于a,则这个数叫a的六次方根。
(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根。
(4)用一个式子表达是,若xn=a,则x叫a的n次方根。
教师板书n次方根的意义:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整数集。
可以看出数的平方根、立方根的概念是n次方根的概念的特例。
提出问题
(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目)。
①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。
(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质 的数,有什么特点?
(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?
(4)任何一个数a的偶次方根是否存在呢?
活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的 特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路。
讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所 以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.
(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数。总的来看,这些数包括正数,负数和零。
(3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数。0的任何次方根都是0.
(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数。
类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:
①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。
②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。
③负数没有偶次方根;0的任何次方根都是零。
上面的文字语言可用下面的式子表示:
a为正数:n为奇数, a的n次方根有一个为na,n为偶数, a的n次方根有两个为±na.
a为负数:n为奇数, a的n次方根只有一个为na,n为偶数, a的n次方根不存在。
零的n次方根为零,记为n0=0.
可以看出数的平方根、立方根的性质是n次方根的性质的特例。
思考
根据n次方根的性质能否举例说明上述几种情况?
活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题。
解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等。其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式。
根式的概念:
式子na叫做根式,其中a叫做被开方数,n叫做根指数。
如3-27中,3叫根指数,-27叫被开方数。
思考
nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?
活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论。教师点拨,注意归纳整理。
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。
解答:根据n次方根的意义,可得:(na)n=a.
通过探究得到:n为奇数,nan=a.
n为偶数,nan=|a|=a,-a,a≥0,a<0.
因此我们得到n次方根的运算性质:
①(na)n=a.先开方,再乘方(同次),结果为被开方数。
②n为奇数,nan=a.先奇次乘方,再开方(同次),结果为被开方数。
n为偶数,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再开方(同次),结果为被开方数的绝对值。
应用示例
思路1
例 求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。
活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析。观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药。求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数。
解:(1)3(-8)3=-8;
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b)。
点评:不注意n的奇偶性对式子nan的值的影响 ,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用。
变式训练
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解。
思路2
例1 下列各式中正确的是( )
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答。
解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错。
(2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错。
(3)a0=1是有条件的,即a≠0,故C项也错。
(4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确。所以答案选D.
答案:D
点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心。
例2 3+22+3-22=__________.
活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式。正确分析题意是关键,教师提示,引导学生解题的思路。
解析:因为3+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式。
思考
上面的例2还有别的解法吗?
活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消。同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法。
另解:利用整体思想,x=3+22+3-22,
两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解。
变式训练
若a2-2a+1=a-1,求a的取值范围。
解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
点评:利用方根的运算性质转化为去绝对值符号,是解题的关键。
知能训练
(教师用多媒体显示在屏幕上)
1、以下说法正确的是( )
A.正数的n次方根是一个正数
B.负数的n次方根是一个负数
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈正整数集)
答案:C
2、化简下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。
3、计算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25?2+(2)2+(5)2-25?2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明。
活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义。
通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下。再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论。
解:(1)(na)n=a(n>1,n∈N)。
如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立。
例如:(43)4=3,(3-5)3=-5.
(2)nan=a,|a|,当n为奇数,当n为偶数。
当n为奇数时,a∈R,nan=a恒成立。
例如:525=2,5(-2)5=-2.
当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,
即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的。
点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解。
课堂小结
学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上。
1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集。用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数。
(1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。
(2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。
(3)负数没有偶次方根。0的任何次方根都是零。
2、掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a<0.
作业
课本习题2.1A组 1.
补充作业:
1、化简下列各式:
(1)681;(2)15-32;(3)6a2b4.
解:(1)681=634=332=39;
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|?b2)2=3|a|?b2.
2、若5
解析:因为5
答案:2a-13
3.5+26+5-26=__________.
解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,
不难看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
设计感想
学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学。
第2课时
作者:郝云静
导入新课
思路1.碳14测年法。原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平。而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失。对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半)。引出本节课题:指数与指数幂的运算之分数指数幂。
思路2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的。这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂。
推进新课
新知探究
提出问题
(1)整数指数幂的运算性质是什么?
(2)观察以下式子,并总结出规律:a>0 ,
① ;
②a8=(a4)2=a4= ,;
③4a12=4(a3)4=a3= ;
④2a10=2(a5)2=a5= 。
(3)利用(2)的规律,你能表示下列式子吗?
, , , (x>0,m,n∈正整数集,且n>1)。
(4)你能用方根的意义来解释(3)的式子吗?
(5)你能推广到一般的情形吗?
活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示。
讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。实质上①5a10= ,②a8= ,③4a12= ,④2a10= 结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变。
根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式)。
(3)利用(2)的规律,453= ,375= ,5a7= ,nxm= 。
(4)53的四次方根是 ,75的三次方根是 ,a7的五次方根是 ,xm的n次方根是 。
结果表明方根的结果和分数指数幂是相通的。
(5)如果a>0,那么am的n次方根可表示为nam= ,即 =nam(a>0,m,n∈正整数集,n>1)。
综上所述,我们得到正数的正分数指数幂的意义,教师板书:
规定:正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1)。
提出问题
(1)负整数指数幂的意义是怎样规定的?
(2)你能得出负分数指数幂的意义吗?
(3)你认为应怎样规定零的分数指数幂的意义?
(4)综合上述,如何规定分数指数幂的意义?
(5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?
(6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?
活动:学生回想初中学习的情形,结合 自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价。
讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N+。
(2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义。
规定:正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈=N+,n>1)。
(3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义。
(4)教师板书分数指数幂的意义。分数指数幂的意义就是:
正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。
(5)若没有a>0这个条件会怎样呢?
如 =3-1=-1, =6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的。因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2= ,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上。
(6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。
有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:
①ar?as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
③(a?b)r=arbr(a>0,b>0,r∈Q)。
我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题。
应用示例
例1 求值:(1) ;(2) ;(3)12-5;(4) 。
活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来。
解:(1) =22=4;
(2) =5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
(4) =23-3=278.
点评:本例主要考查幂值运算,要按规定来解。在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如 =382=364=4.
例2 用分数指数幂的形式表示下列各式。
a3?a;a2?3a2;a3a(a>0)。
活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结。
解:a3?a=a3? = ;
a2?3a2=a2? = ;
a3a= 。
点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数 幂,再由幂的运算性质来运算。对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数。
例3 计算下列各式(式中字母都是正数)。
(1) ;
(2) 。
活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤。
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
(2) =m2n-3=m2n3.
点评:分数指数幂不表示相同因式的积,而是根式的另一种写法。有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了。
本例主要是指数幂的运算法则的综合考查和应用。
变式训练
求值:(1)33?33?63;
(2)627m3125n64.
解:(1)33?33?63= =32=9;
(2)627m3125n64= =9m225n4=925m2n-4.
例4 计算下列各式:
(1)(325-125)÷425;
(2)a2a?3a2(a>0)。
活动:先由学生观察以上两个式子的特 征,然后分析,化为同底。利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答。
解:(1)原式=
= =65-5;
(2)a2a?3a2= =6a5.
知能训练
课本本节练习 1,2,3
【补充练习】
教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励。
1、(1)下列运算中,正确的是( )
A.a2?a3=a6 B.(-a2)3=(-a3)2
C.(a-1)0=0 D.(-a2)3=-a6
(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是( )
A.①② B.①③ C.①②③④ D.①③④
(3)(34a6)2?(43a6)2等于( )
A.a B.a2 C.a3 D.a4
(4)把根式-25(a-b)-2改写成分数指数幂的形式为( )
A. B.
C. D.
(5)化简 的结果是( )
A.6a B.-a C.-9a D.9a
2、计算:(1) --17-2+ -3-1+(2-1)0=__________.
(2)设5x=4,5y=2,则52x-y=__________.
3、已知x+y=12,xy=9且x 答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8 3、解: 。 因为x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因为x 所以原式= =12-6-63=-33. 拓展提升 1、化简: 。 活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到: x-1= -13= ; x+1= +13= ; 。 构建解题思路教师适时启发提示。 解: = = = = 。 点拨:解这类题目,要注意运用以下公式, =a-b, =a± +b, =a±b. 2、已知 ,探究下列各式的值的求法。 (1)a+a-1;(2)a2+a-2;(3) 。 解:(1)将 ,两边平方,得a+a-1+2=9,即a+a-1=7; (2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+ a-2=47; (3)由于 , 所以有 =a+a-1+1=8. 点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值。 课堂小结 活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流。同时教师用投影仪显示本堂课的知识要点: (1)分数指数幂的意义就是:正数的正分数指数幂的意义是 =nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是 = =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。 (2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。 (3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: ①ar?as=ar+s(a>0,r,s∈Q), ②(ar)s=ars(a>0,r,s∈Q), ③(a?b)r=arbr(a>0,b>0,r∈Q)。 (4)说明两点: ①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系。 ②整数指数幂的运算性质对任意的有理数指数幂也同样适用。因而分数指数幂与根式可以互化,也可以利用 =am来计算。 作业 课本习题2.1A组 2,4. 设计感想 本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务。 第3课时 作者:郑芳鸣 导入新课 思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数。并且知道,在有理数到实数的扩充过程中,增添的数是无理数。对无理数指数幂,也是这样扩充而来。既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂。 思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题。 推进新课 新知探究 提出问题 (1)我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值? (2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律? 2的过剩近似值 的近似值 1.5 11.180 339 89 1.42 9.829 635 328 1.415 9.750 851 808 1.414 3 9.739 872 62 1.414 22 9.738 618 643 1.414 214 9.738 524 602 1.414 213 6 9.738 518 332 1.414 213 57 9.738 517 862 1.414 213 563 9.738 517 752 … … 的近似值 2的不足近似值 9.518 269 694 1.4 9.672 669 973 1.41 9.735 171 039 1.414 9.738 305 174 1.414 2 9.738 461 907 1.414 21 9.738 508 928 1.414 213 9.738 516 765 1.414 213 5 9.738 517 705 1.414 213 56 9.738 517 736 1.414 213 562 … … (3)你能给上述思想起个名字吗? (4)一个正数的无理数次幂到底是一个什么性质的数呢?如 ,根据你学过的知识,能作出判断并合理地解释吗? (5)借助上面的结论你能说出一般性的结论吗? 活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容: 问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向。 问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联。 问题(3)上述方法实际上是无限接近,最后是逼近。 问题(4)对问题给予大胆猜测,从数轴的观点加以解释。 问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般。 讨论结果:(1)1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值。 (2)第一个表:从大于2的方向逼近2时, 就从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向逼近 。 第二个表:从小于2的方向逼近2时, 就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向逼近 。 从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面 从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向接近 ,而另一方面 从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向接近 ,可以说从两个方向无限地接近 ,即逼近 ,所以 是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.414 3,51.414 22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示 的点靠近,但这个点一定在数轴上,由此我们可得到的结论是 一定是一个实数,即51.4<51.41<51.414<51.414 2<51.414 21<…<<…<51.414 22<51.414 3<51.415<51.42<51.5. 充分表明 是一个实数。 (3)逼近思想,事实上里面含有极限的思想,这是以后要学的知识。 (4)根据(2)(3)我们可以推断 是一个实数,猜测一个正数的无理数次幂是一个实数。 (5)无理数指数幂的意义: 一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数。 也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数。我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂。 提出问题 (1)为什么在规定无理数指数幂的意义时,必须规定底数是正数? (2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢? (3)你能给出实数指数幂的运算法则吗? 活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳。 对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明。 对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通。 对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了。 讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱。 (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂。类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则: ①ar?as=ar+s(a>0,r,s都是无理数)。 ②(ar)s=ars(a>0,r,s都是无理数)。 ③(a?b)r=arbr(a>0,b>0,r是无理数)。 (3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂。 实数指数幂的运算性质: 对任意的实数r,s,均有下面的运算性质: ①ar?as=ar+s(a>0,r,s∈R)。 ②(ar)s=ars(a>0,r,s∈R)。 ③(a?b)r=arbr(a>0,b>0,r∈R)。 应用示例 例1 利用函数计算器计算。(精确到0.001) (1)0.32.1;(2)3.14-3;(3) ;(4) 。 活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值; 对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可; 对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可; 对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按 键,再按3,最后按=键。有时也可按2ndf或shift键,使用键上面的功能去运算。 学生可以相互交流,挖掘计算器的用途。 解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705. 点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可。 例2 求值或化简。 (1)a-4b23ab2(a>0,b>0); (2) (a>0,b>0); (3)5-26+7-43-6-42. 活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律。 解:(1)a-4b23ab2= =3b46a11 。 点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示。 (2) = =425a0b0=425. 点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数。 (3)5-26+7-43-6-42 =(3-2)2+(2-3)2-(2-2)2 =3-2+2-3-2+2=0. 点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用。 例3 已知 ,n∈正整数集,求(x+1+x2)n的值。 活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性, 与 具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示。 = 。 这时应看到1+x2= , 这样先算出1+x2,再算出1+x2,代入即可。 解:将 代入1+x2,得1+x2= , 所以(x+1+x2)n= = = =5. 点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法。 知能训练 课本习题2.1A组 3. 利用投影仪投射下列补充练习: 1、化简: 的结果是( ) A. B. C. D. 解析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形。 因为 ,所以原式的分子分母同乘以 。 依次类推,所以 。 答案:A 2、计算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4. 解:原式= =53+100+916-3+13+716=100. 3、计算a+2a-1+a-2a-1(a≥1)。 解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1)。 本题可以继续向下做,去掉绝对值,作为思考留作课下练习。 4、设a>0, ,则(x+1+x2)n的值为__________. 解析:1+x2= 。 这样先算出1+x2,再算出1+x2, 将 代入1+x2,得1+x2= 。 所以(x+1+x2)n= = =a. 答案:a 拓展提升 参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂 的意义。 活动:教师引导学生回顾无理数指数幂 的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算 的过剩近似值和不足近似值,利用逼近思想,“逼出” 的意义,学生合作交流,在投影仪上展示自己的探究结果。 解:3=1.732 050 80…,取它的过剩近似值和不足近似值如下表。 3的过剩近似值 的过剩近似值 3的不足近似值 的不足近似值 1.8 3.482 202 253 1.7 3.249 009 585 1.74 3.340 351 678 1.73 3.317 278 183 1.733 3.324 183 446 1.731 3.319 578 342 1.732 1 3.322 110 36 1.731 9 3.321 649 849 1.732 06 3.322 018 252 1.732 04 3.321 972 2 1.732 051 3.321 997 529 1.732 049 3.321 992 923 1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838 1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045 … … … … 我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数 21.7,21.72,21.731,21.731 9,…, 同样把用2作底数,3的过剩近似值作指数的各个幂排成从大到小的一列数: 21.8,21.74,21.733,21.732 1,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为 , 即21.7<21.73<21.731<21.731 9<…<<…<21.732 1<21.733<21.74<21.8. 也就是说 是一个实数, =3.321 997 …也可以这样解释: 当3的过剩近似值从大于3的方向逼近3时,23的近似值从大于 的方向逼近 ; 当3的不足近似值从小于3的方向逼近3时,23的近似值从小于 的方向逼近 。 所以 就是一串有理指数幂21.7,21.73,21.731,21.731 9,…,和另一串有理指数幂21.8,21.74,21.733,21.732 1,…,按上述规律变化的结果,即 ≈3.321 997. 课堂小结 (1)无理指数幂的意义。 一般地,无理数指数幂aα(a>0,α是无理数) 是一个确定的实数。 (2)实数指数幂的运算性质: 对任意的实数r,s,均有下面的运算性质: ①ar?as=ar+s(a>0,r,s∈R)。 ②(ar)s=ars(a>0,r,s∈R)。 ③(a?b)r=arbr(a>0,b>0,r∈R)。 (3)逼近的思想,体会无限接近的含义。 作业 课本习题2.1 B组 2. 设计感想 无理数指数是指数概念的又一次扩充, 教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力。 备课资料 【备用习题】 1、以下各式中成立且结果为最简根式的是( ) A.a?5a3a?10a7=10a4 B.3xy2(xy)2=y?3x2 C.a2bb3aab3=8a7b15 D.(35-125)3=5+125125-235?125 答案:B 2、对于a>0,r,s∈Q,以下运算中正确的是( ) A.ar?as=ars B.(ar)s=ars C.abr=ar?bs D.arbs=(ab)r+s 答案:B 3、式子x-2x-1=x-2x-1成立当且仅当( ) A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2 解析:方法一: 要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2. 若x≥2,则式子x-2x-1=x-2x-1成立。 故选D. 方法二: 对A,式子x-2x-1≥0连式子成立也保证不了,尤其x-2≤0,x-1<0时式子不成立。 对B,x-1<0时式子不成立。 对C,x<1时x-1无意义。 对D正确。 答案:D 4、化简b-(2b-1)(1 解:b-(2b-1)=(b-1)2=b-1(1 5、计算32+5+32-5. 解:令x=32+5+32-5, 两边立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0. ∵x2+x+4=x+122+154>0,∴x-1=0,即x=1. ∴32+5+32-5=1. 教学准备 教学目标 数列求和的综合应用 教学重难点 数列求和的综合应用 教学过程 典例分析 3、数列{an}的前n项和Sn=n2-7n-8, (1)求{an}的通项公式 (2)求{|an|}的前n项和Tn 4、等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99= 5、已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|= 6、数列{an}是等差数列,且a1=2,a1+a2+a3=12 (1)求{an}的通项公式 (2)令bn=anxn,求数列{bn}前n项和公式 7、四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数 8、在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有最大值,并求出它的最大值 。已知数列{an},an∈N,Sn=(an+2)2 (1)求证{an}是等差数列 (2)若bn=an-30,求数列{bn}前n项的最小值 0、已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N) (1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列 (2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn. 11、购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元) 12、某商品在最近100天内的价格f(t)与时间t的 函数关系式是f(t)=销售量g(t)与时间t的函数关系是g(t)=-t/3+109/3(0≤t≤100) 求这种商品的日销售额的最大值 注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值 教学准备 教学目标 1、数学知识:掌握等比数列的概念,通项公式,及其有关性质; 2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力; 归纳——猜想——证明的数学研究方法; 3、数学思想:培养学生分类讨论,函数的数学思想。 教学重难点 重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列; 难点:等比数列的性质的探索过程。 教学过程 教学过程: 1、问题引入: 前面我们已经研究了一类特殊的数列——等差数列。 问题1:满足什么条件的数列是等差数列?如何确定一个等差数列? (学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。 要想确定一个等差数列,只要知道它的首项a1和公差d。 已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。 师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。 (第一次类比)类似的,我们提出这样一个问题。 问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。 (这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。) 2、新课: 1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。 师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么? 师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。 公式的推导:(师生共同完成) 若设等比数列的公比为q和首项为a1,则有: 方法一:(累乘法) 3)等比数列的性质: 下面我们一起来研究一下等比数列的性质 通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。 问题4:如果{an}是一个等差数列,它有哪些性质? (根据学生实际情况,可引导学生通过具体例子,寻找规律,如: 3、例题巩固: 例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。 答案:1458或128。 例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____. 例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{},使得{}是一个公比为2的等比数列,若能请指出{}中的第k项是等差数列中的第几项? (本题为开放题,没有唯一的答案,如对于{}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解) 1、小结: 今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习 我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。 2、作业: P129:1,2,3 思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{},{}是一个公比为2的等比数列,请指出{}中的第k项是等差数列中的第几项? 教学设计说明: 1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。 2、教学设计过程:本节课主要从以下几个方面展开: 1)通过复习等差数列的定义,类比得出等比数列的定义; 2)等比数列的通项公式的推导; 3)等比数列的性质; 有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧 知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。 在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。 在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。 通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。 等比性质的研究是本节课的高潮,通过类比 关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。 两角差的余弦公式 【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案 2、有余力的学生可在完成探究案中的部分内容。 【学习目标】 知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。 过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。 情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。 。【重点】通过探索得到两角差的余弦公式以及公式的灵活运用 【难点】两角差余弦公式的推导过程 预习自学案 一、知识链接 1、 写出 的三角函数线 : 2、 向量 , 的数量积, ①定义: ②坐标运算法则: 3、 , ,那么 是否等于 呢? 下面我们就探讨两角差的余弦公式 二、教材导读 1、、两角差的余弦公式的推导思路 如图,建立单位圆O (1)利用单位圆上的三角函数线 设 则 又OM=OB+BM =OB+CP =OA_____ +AP_____ = 从而得到两角差的余弦公式: ____________________________________ (2)利用两点间距离公式 如图,角 的终边与单位圆交于A( ) 角 的终边与单位圆交于B( ) 角 的终边与单位圆交于P( ) 点T( ) AB与PT关系如何? 从而得到两角差的余弦公式: ____________________________________ (3) 利用平面向量的知识 用 表示向量 , =( , ) =( , ) 则 。 = 设 与 的夹角为 ①当 时: = 从而得出 ②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角。我们设夹角为 ,则 + = 此时 = 从而得出 2、两角差的余弦公式 ____________________________ 三、预习检测 1、 利用余弦公式计算 的值。 2、 怎样求 的值 你的疑惑是什么? ________________________________________________________ ______________________________________________________ 探究案 例1. 利用差角余弦公式求 的值。 例2.已知 , 是第三象限角,求 的值。 训练案 一、 基础训练题 1、 2、 3、 二、综合题 教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法 (2)使学生初步了解“属于”关系的意义 (3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。 本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。 这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。 教学过程: 一、复习引入: 1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2、教材中的章头引言; 3、集合论的创始人——康托尔(德国数学家)(见附录); 4.“物以类聚”,“人以群分”; 5.教材中例子(P4) 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。 定义:一般地,某些指定的对象集在一起就成为一个集合. 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合 记作N, (2)正整数集:非负整数集内排除0的集 记作N*或N+ (3)整数集:全体整数的集合 记作Z , (4)有理数集:全体有理数的集合 记作Q , (5)实数集:全体实数的集合 记作R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z* 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的开口方向,不能把a∈A颠倒过来写 三、练习题: 1、教材P5练习1、2 2、下列各组对象能确定一个集合吗? (1)所有很大的实数 (不确定) (2)好心的人 (不确定) (3)1,2,2,3,4,5.(有重复) 3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__ 4、由实数x,-x,|x|, 所组成的集合,最多含( A ) (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素 5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证: (1) 当x∈N时, x∈G; (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G 证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G 证明(2):∵x∈G,y∈G, ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z) ∴x+y=( a+b )+( c+d )=(a+c)+(b+d) ∵a∈Z, b∈Z,c∈Z, d∈Z ∴(a+c) ∈Z, (b+d) ∈Z ∴x+y =(a+c)+(b+d) ∈G, 又∵ =且 不一定都是整数, ∴ = 不一定属于集合G 四、小结:本节课学习了以下内容: 1、集合的有关概念:(集合、元素、属于、不属于) 2、集合元素的性质:确定性,互异性,无序性 3、常用数集的定义及记法 教学目标 1、明确等差数列的定义。 2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题 3、培养学生观察、归纳能力。 教学重点 1、 等差数列的概念; 2、 等差数列的通项公式 教学难点 等差数列“等差”特点的理解、把握和应用 教具准备 投影片1张 教学过程 (I)复习回顾 师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片) (Ⅱ)讲授新课 师:看这些数列有什么共同的特点? 1,2,3,4,5,6; ① 10,8,6,4,2,…; ② 生:积极思考,找上述数列共同特点。 对于数列①(1≤n≤6);(2≤n≤6) 对于数列②-2n(n≥1)(n≥2) 对于数列③(n≥1)(n≥2) 共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。 师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。 一、定义: 等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。 如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。 二、等差数列的通项公式 师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得: 若将这n-1个等式相加,则可得: 即:即:即:…… 由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。 如数列①(1≤n≤6) 数列②:(n≥1) 数列③:(n≥1) 由上述关系还可得:即:则:=如:三、例题讲解 例1:(1)求等差数列8,5,2…的第20项 (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。 (Ⅲ)课堂练习 生:(口答)课本P118练习3 (书面练习)课本P117练习1 师:组织学生自评练习(同桌讨论) (Ⅳ)课时小结 师:本节主要内容为:①等差数列定义。 即(n≥2) ②等差数列通项公式 (n≥1) 推导出公式: (V)课后作业 一、课本P118习题3.2 1,2 二、1.预习内容:课本P116例2P117例4 2、预习提纲: ①如何应用等差数列的定义及通项公式解决一些相关问题? ②等差数列有哪些性质? 1.课题 填写课题名称(高中代数类课题) 2.教学目标 (1)知识与技能: 通过本节课的学习,掌握。.。.。.知识,提高学生解决实际问题的能力; (2)过程与方法: 通过。.。.。.(讨论、发现、探究),提高。.。.。.(分析、归纳、比较和概括)的能力; (3)情感态度与价值观: 通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。 3.教学重难点 (1)教学重点:本节课的知识重点 (2)教学难点:易错点、难以理解的知识点 4、教学方法(一般从中选择3个就可以了) (1)讨论法 (2)情景教学法 (3)问答法 (4)发现法 (5)讲授法 5、教学过程 (1)导入 简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题) (2)新授课程(一般分为三个小步骤) ①简单讲解本节课基础知识点(例:奇函数的定义)。 ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。 ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。 (在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。) (3)课堂小结 教师提问,学生回答本节课的收获。 (4)作业提高 布置作业(尽量与实际生活相联系,有所创新)。 6、教学板书 2.高中数学教案格式 一.课题(说明本课名称) 二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务) 三.课型(说明属新授课,还是复习课) 四.课时(说明属第几课时) 五.教学重点(说明本课所必须解决的关键性问题) 六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点) 七.教学方法要根据学生实际,注重引导自学,注重启发思维 八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤) 九.作业处理(说明如何布置书面或口头作业) 十.板书设计(说明上课时准备写在黑板上的内容) 十一.教具(或称教具准备,说明辅助教学手段使用的工具) 十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法) 3.高中数学教案范文 【教学目标】 1、知识与技能 (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列: (2)账务等差数列的通项公式及其推导过程: (3)会应用等差数列通项公式解决简单问题。 2、过程与方法 在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。 3、情感、态度与价值观 通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。 【教学重点】 ①等差数列的概念; ②等差数列的通项公式 【教学难点】 ①理解等差数列“等差”的特点及通项公式的含义; ②等差数列的通项公式的推导过程。 【学情分析】 我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。 【设计思路】 1、教法 ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 2、学法 引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。 【教学过程】 一、创设情境,引入新课 1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么? 2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列? 3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列? 教师:以上三个问题中的数蕴涵着三列数。 学生: ①0,5,10,15,20,25,…。 ②18,15.5,13,10.5,8,5.5. ③10072,10144,10216,10288,10360. (设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力。 二、观察归纳,形成定义 ①0,5,10,15,20,25,…。 ②18,15.5,13,10.5,8,5.5. ③10072,10144,10216,10288,10360. 思考1上述数列有什么共同特点? 思考2根据上数列的共同特点,你能给出等差数列的一般定义吗? 思考3你能将上述的文字语言转换成数学符号语言吗? 教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。 学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。 教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。 (设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。) 三、举一反三,巩固定义 1、判定下列数列是否为等差数列?若是,指出公差d. (1)1,1,1,1,1; (2)1,0,1,0,1; (3)2,1,0,-1,-2; (4)4,7,10,13,16. 教师出示题目,学生思考回答。教师订正并强调求公差应注意的问题。 注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0. (设计意图:强化学生对等差数列“等差”特征的理解和应用)。 2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么? (设计意图:强化等差数列的证明定义法) 四、利用定义,导出通项 1、已知等差数列:8,5,2,…,求第200项? 2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢? 教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法。 (设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力。学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。鼓励学生自主解答,培养学生运算能力) 五、应用通项,解决问题 1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项? 2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an. 3、求等差数列3,7,11,…的第4项和第10项 教师:给出问题,让学生自己操练,教师巡视学生答题情况。 学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式 (设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系。初步认识“基本量法”求解等差数列问题。) 六、反馈练习:教材13页练习1 七、归纳总结: 1、一个定义: 等差数列的定义及定义表达式 2、一个公式: 等差数列的通项公式 3、二个应用: 定义和通项公式的应用 教师:让学生思考整理,找几个代表发言,最后教师给出补充 (设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。) 【设计反思】 本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。高中数学教案 篇3
高中数学教案 篇4
数学教案 篇5
高中数学教案 篇6
高中数学教案模板 篇7
高中数学教案 篇8