作为一位杰出的老师,总不可避免地需要编写教案,借助教案可以有效提升自己的教学能力。那要怎么写好教案呢?
【教材分析】
重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。
【学情分析】
学生从一开始学习数学,其实就已经在运用集合的思想方法了。如学习数数时,把2个三角形用一条封闭的曲线圈起来。而以后学习的平面图形之间的关系都要用到集合的思想。集合是比较系统、抽象的数学思想方法,针对三年级学生的认识水平,应让学生通过生活中容易理解的题材去初步体会集合思想,为后续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
【教学目标】
1.通过观察、猜测、操作、交流等活动,让学生在自主探究活动中感知集合图形的过程,体会集合图的优点,能用集合图分析生活中简单的有重复部分的问题。
2.结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重复部分的问题。
【教学重难点】
重点:理解集合图的各部分意义,能用集合图分析生活中简单的有重复部分的问题。
难点:借助直观图解决集合问题。
【教学准备】
课件。
【教学流程】
【情境导入】
1.看电影:两位妈妈和两位女儿一同去看电影,可她们只买了3张票,便顺利地进了电影院,这是为什么?
2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?
师:在生活中这种现象很多,我们经常会遇到,今天我们就一起走进数学广角,来研究一下这有趣的重复现象。(板书课题)
【探究新知】
1.巧妙设疑,直观感悟,初步感知重复现象。
(1)调查本班学生参加数学小组、作文小组的情况。
(2)游戏:参加数学小组、作文小组的学生分别站在两个呼啦圈里。
问题:当有同学既参加数学小组,又参加作文小组时怎么站?
引出问题,学生想办法解决。
(3)说说呼啦圈里各部分学生所表示的意思。
2.自主绘图,加深理解。
课件出示:
三(1)班参加数学、作文课外小组的学生情况表
数学
小明丁旭小小小强小兵小东张伟赵军
作文
小平刘红小东于丽小史陶伟小小卢强小光
(1)提问:参加数学课外小组的学生有几人?参加作文课外小组的学生有几人?参加数学、作文课外小组的学生共有多少人?(学生意见不统一,请学生说说理由)
师:能不能设计一幅图,把学生的姓名写在合适的位置,让我们能一眼就看出参加数学的、参加作文的和两个项目都参加的有哪些同学呢?
(2)学生小组合作,自主绘图。教师巡视指导。
3.学生汇报交流,逐步整理出简洁明了的直观图(韦恩图)。
师:你们知道吗?这个图是一个名叫韦恩的科学家创造的。你们刚才也像科学家一样,把这个图创造出来了,真了不起!
4.读图训练。教师引导学生用准确的语言表述图中的各种信息。
5.观察图表,算法探究。
师:你们能很快地算出参加数学、作文课外小组的一共有多少人吗?怎样列式?
学生回答列式。
6.比较图与表格,突出韦恩图的优点,肯定学生的科学创造过程。
【巩固应用】
教材第106页练习二十三第1、2、3题。
【课堂小结】
通过今天的学习,你有什么收获?
【板书设计】
既……又……
8+9-2=15(人)8-2+9=15(人)
9-2+8=15(人)6+7+2=15(人)
教学内容:教材P113第1题及练习二十五第2、3、13、14、21题。
教学目标:
知识与技能:帮助学生建构小数乘法的知识网络,并能理清各知识点之间的联系。能熟练、正确地进行笔算小数乘法,按照要求截取积的近似值,并能解答有关的小数乘法应用题。
过程与方法:通过题组练习,进一步培养学生的分析、判断和概括能力;通过小组合作学习,让学生学会交流,相互评价,提高学生的合作意识和数学交流表达能力。
情感、态度与价值观:培养学生良好的计算习惯,提高计算正确率及速度,更深刻了解积与因数的联系。
教学重、难点
重点:通过合作题组练习,使学生自我意识中建立小数乘法的知识网络,并能准确地用数学语言表达各个知识点,在思维中理清各知识之间的联系。
难点:深刻理清积与因数的联系及培养合作意识和数学交流表达能力。
教学方法:复习归纳,质疑引导;练习体验,小组交流。
教学准备:多媒体。
教学过程
一、复习小数点的移动引起小数大小的变化规律。
学生独立做一做
老师生交流小数点的移动的规律。
即时练习:完成教材第113页第1题(1)。
二、整理和复习小数乘除法的计算方法。
老师:元旦节,老老师家搞了一次小活动,我们一起来看看老老师的购物清单吧!
出示购物清单:苹果每千克2.5元,买了4.8千克;
买了3件同样的玩具,共用73.5元;糖果每千克1.2元,共用22.32元;
老师:从清单中你得到了哪些信息?根据信息你可以解决哪些数学问题?
老师:下面就请同学们算一算苹果的总价和玩具的单价吧!教老师巡视,算完后。
老师:谁来说说苹果的总价你是怎么解决的?
(先让一个学生在实物投影仪下展示,并让他说说2.5×4.8是怎样算的,
老师:那也就是说,计算小数乘法的方法是先,再,最后。板书:计算方法
老师:玩具的单价你又怎么解决的?(再让一个学生说73。5÷3是怎么算的,一起回忆数除数是整数的小数除法的计算方法。)
老师:算算糖果的单价吧。教老师巡视,算完后汇报方法。22.32÷1.2
老师:也就是说在计算除数是小数的除法时必须先把除数转化成整数,就像这里的22.32÷1.2就要转化为223.2÷12,再按除数是整数的除法进行计算。
出示:5.98÷0.23 19.76÷5.2 8.84÷1.7 21÷1.4
老师:这几道题在计算时该怎么转化呢?
除法法则:一看:看看除数是几位小数。二移:把除数和被除数的小数点同时向右移动相同的数位(把除数转换成整数)。三对齐:商的小数点和被除数的小数点对齐。
老师:同学们刚才算的三道题到底对不对呢?你有什么好办法?(说验算的方法)
老师:小数乘除法的验算与整数乘除法的验算方法是相通的。
即时练习:指名板演教材第115页练习二十五第2题。
三、整理和复习小数乘除法的简算
老师:刚才我们用竖式算出了苹果的总价,请同学们仔细观察这两个数的特征,你还可以用什么方法进行计算?试试吧!
(巡视,选有代表性的作业展示,指名说简算依据。)
老师:看来整数乘法运算定律也适用于小数。(板书:运算定律)
即时练习:完成教材练习二十五第3、13题。
四、复习取近似数
老师:既然是元旦节就要有节日的气氛,老老师准备用彩带布置家。我们一起看看吧!
用40米彩带做花环,彩带每卷长7.5米。
(1)需要买几卷彩带?40÷7.5=5.333(卷)≈6(卷)
老师:5.333是循环小数,而且循环小数是无限小数。(板:循环小数—无限小数)
老师:这里要用进一法取商的近似数。(板书:取近似数:进一法)
(2)一卷彩带3.18元,一共需要多少钱?(得数保留一位小数)
3.18×6=19.08(元)≈19.1(元)(板书:四舍五入法)
(3)每1.5米做一个花环,40米彩带可以做多少个花环?
40÷1.5=26.666(个)≈26(个)(板书:去尾法)
老师:取近似数就有三种方法,同学们可要根据实际情况灵活应用哟!
即时练习:完成教材第117页练习二十五第14题。
五、混合运算
老师:同学们的表现可真棒!这么快就把清单中的一些问题解决了。老老师这也有两道题目想请你们帮忙算一下,好吗?比比看谁算的快。
4.6+5.4÷0.27 3.2×25 ÷8
(学生汇报时要说运算顺序。)
老师:你是怎么想到要先算再算
老师:看来小数混合运算的运算顺序和整数混合运算的运算顺序是一样的。
(板书:运算顺序与整数的相同)
六、拓展提高:教材第118页练习二十五第21__题。
学生阅读题目,理解题意。
分析:领先的运动员与最后的运动员相遇时,两人跑完了2个3km即6km,所以两人的相遇时间可以用两人跑的总路程6km除以两人的速度和求得。相遇时离返回点的距离可以3km减去最后的运动员跑的路程,也可以用领运动员跑的路程减去3km求得。(10分钟,100m)
七、小结
老师:今天这节课我们一起对小数乘除法进行了整理与复习。谁来说说我们主要复习了哪些知识?这节课你收获最大的是什么?
八、作业:教材第113页第1题(2),练习二十五第3、5、6、16题。
板书设计
小数乘、除法复习课
因数→整数计算方法先,再,最后
除数→整数一看、二移、三对齐
运算定律
小数乘除法运算顺序与整数的相同
循环小数——无限小数
四舍五入法
近似数进一法
去尾法
教材:集合的概念
目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。
过程:
一、引言:(实例)用到过的“正数的集合”、“负数的集合”
如:2x-1>3 x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合 0,1,2,3,……
如:高一(5)全体同学组成的集合。
结论: 某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
指出:“集合”如点、直线、平面一样是不定义概念。
二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}
常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N或 N+
整数集 Z
有理数集 Q
实数集 R
集合的三要素: 1。元素的确定性; 2。元素的互异性; 3。元素的无序性
(例子 略)
三、关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作 a(A ,相反,a不属于集A 记作 a(A (或a(A)
例: 见P4—5中例
四、练习 P5 略
五、集合的表示方法:列举法与描述法
列举法:把集合中的元素一一列举出来。
例:由方程x2-1=0的所有解组成的集合可表示为{(1,1}
例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}
描述法:用确定的条件表示某些对象是否属于这个集合的方法。
语言描述法:例{不是直角三角形的三角形}再见P6例
数学式子描述法:例 不等式x-3>2的解集是{x(R| x-3>2}或{x| x-3>2}或{x:x-3>2} 再见P6例
六、集合的分类
1、有限集 含有有限个元素的集合
2、无限集 含有无限个元素的集合 例题略
3、空集 不含任何元素的集合 (
七、用图形表示集合 P6略
八、练习 P6
小结:概念、符号、分类、表示法
九、作业 P7习题1.1
第二教时
教材: 1、复习 2、《课课练》及《教学与测试》中的有关内容
目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
过程:
复习:(结合提问)
1、集合的概念 含集合三要素
2、集合的表示、符号、常用数集、列举法、描述法
3、集合的分类:有限集、无限集、空集、单元集、二元集
4、关于“属于”的概念
例一 用适当的方法表示下列集合:
平方后仍等于原数的数集
解:{x|x2=x}={0,1}
比2大3的数的集合
解:{x|x=2+3}={5}
不等式x2-x-6<0的整数解集
解:{x(Z| x2-x-6<0}={x(Z| -2
过原点的直线的集合
解:{(x,y)|y=kx}
方程4x2+9y2-4x+12y+5=0的解集
解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,-2/3)}
使函数y= 有意义的实数x的集合
解:{x|x2+x-6(0}={x|x(2且x(3,x(R}
处理苏大《教学与测试》第一课 含思考题、备用题
处理《课课练》
作业 《教学与测试》 第一课 练习题
第三教时
教材: 子集
目的: 让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念。
过程:
一 提出问题:现在开始研究集合与集合之间的关系。
存在着两种关系:“包含”与“相等”两种关系。
二 “包含”关系—子集
1、 实例: A={1,2,3} B={1,2,3,4,5} 引导观察。
结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,
则说:集合A包含于集合B,或集合B包含集合A,记作A(B (或B(A)
也说: 集合A是集合B的子集。
2、 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A(B (或B(A)
注意: (也可写成(;(也可写成(;( 也可写成(;(也可写成(。
3、 规定: 空集是任何集合的子集 。 φ(A
三 “相等”关系
实例:设 A={x|x2-1=0} B={-1,1} “元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B, 即: A=B
① 任何一个集合是它本身的子集。 A(A
② 真子集:如果A(B ,且A( B那就说集合A是集合B的真子集,记作A B
③ 空集是任何非空集合的真子集。
④ 如果 A(B, B(C ,那么 A(C
证明:设x是A的任一元素,则 x(A
A(B, x(B 又 B(C x(C 从而 A(C
同样;如果 A(B, B(C ,那么 A(C
⑤ 如果A(B 同时 B(A 那么A=B
四 例题: P8 例一,例二 (略) 练习 P9
补充例题 《课课练》 课时2 P3
五 小结:子集、真子集的概念,等集的概念及其符号
几个性质: A(A
A(B, B(C (A(C
A(B B(A( A=B
作业:P10 习题1.2 1,2,3 《课课练》 课时中选择
第四教时
教材:全集与补集
目的:要求学生掌握全集与补集的概念及其表示法
过程:
一 复习:子集的概念及有关符号与性质。
提问(板演):用列举法表示集合:A={6的正约数},B={10的正约数},C={6与10的正公约数},并用适当的符号表示它们之间的关系。
解: A=(1,2,3,6}, B={1,2,5,10}, C={1,2}
C(A,C(B
二 补集
实例:S是全班同学的集合,集合A是班上所有参加校运会同学的集合,集合B是班上所有没有参加校运动会同学的集合。
集合B是集合S中除去集合A之后余下来的集合。
结论:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作: CsA 即 CsA ={x ( x(S且 x(A}
2、例:S={1,2,3,4,5,6} A={1,3,5} CsA ={2,4,6}
三 全集
定义: 如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
如:把实数R看作全集U, 则有理数集Q的补集CUQ是全体无理数的集合。
四 练习:P10(略)
五 处理 《课课练》课时3 子集、全集、补集 (二)
六 小结:全集、补集
七 作业 P10 4,5
《课课练》课时3 余下练习
第五教时
教材: 子集,补集,全集
目的: 复习子集、补集与全集,要求学生对上述概念的认识更清楚,并能较好地处理有关问题。
过程:
一、复习:子集、补集与全集的概念,符号
二、辨析: 1。补集必定是全集的子集,但未必是真子集。什么时候是真子集?
2。A(B 如果把B看成全集,则CBA是B的真子集吗?什么时候(什么条件下)CBA是B的真子集?
三、处理苏大《教学与测试》第二、第三课
作业为余下部分选
第六教时
教材: 交集与并集(1)
目的: 通过实例及图形让学生理解交集与并集的概念及有关性质。
过程:
复习:子集、补集与全集的概念及其表示方法
提问(板演):U={x|0≤x<6,x(Z} A={1,3,5} B={1,4}
求:CuA= {0,2,4}。 CuB= {0,2,3,5}。
新授:
1、实例: A={a,b,c,d} B={a,b,e,f}
图
公共部分 A∩B 合并在一起 A∪B
2、定义: 交集: A∩B ={x|x(A且x(B} 符号、读法
并集: A∪B ={x|x(A或x(B}
见课本P10--11 定义 (略)
3、例题:课本P11例一至例五
高一数学教案精选30篇
补充: 例一、设A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7} 且A∩B=C求x,y。
解:由A∩B=C知 7(A ∴必然 x2-x+1=7 得
x1=-2, x2=3
由x=-2 得 x+4=2(C ∴x(-2
∴x=3 x+4=7(C 此时 2y=-1 ∴y=-
∴x=3 , y=-
例二、已知A={x|2x2=sx-r}, B={x|6x2+(s+2)x+r=0} 且 A∩B={ }求A∪B。
解:
∵ (A且 (B ∴
解之得 s= (2 r= (
∴A={ ( } B={ ( }
∴A∪B={ ( ,( }
三、小结: 交集、并集的定义
四、作业:课本 P13习题1、3 1--5
补充:设集合A = {x | (4≤x≤2}, B = {x | (1≤x≤3}, C = {x |x≤0或x≥ },
求A∩B∩C, A∪B∪C。
《课课练》 P 6--7 “基础训练题”及“ 例题推荐”
第七教时
教材:交集与并集(2)
目的:通过复习及对交集与并集性质的剖析,使学生对概念有更深刻的理解
过程:一、复习:交集、并集的定义、符号
提问(板演):(P13 例8 )
设全集 U = {1,2,3,4,5,6,7,8},A = {3,4,5} B = {4,7,8}
求:(CU A)∩(CU B), (CU A)∪(CU B), CU(A∪B), CU (A∩B)
解:CU A = {1,2,6,7,8} CU B = {1,2,3,5,6}
(CU A)∩(CU B) = {1,2,6}
(CU A)∪(CU B) = {1,2,3,5,6,7,8}
A∪B = {3,4,5,7,8} A∩B = {4}
∴ CU (A∪B) = {1,2,6}
CU (A∩B) = {1,2,3,5,6,7,8,}
结合图 说明:我们有一个公式:
(CUA)∩( CU B) = CU(A∪B)
(CUA)∪( CUB) = CU(A∩B)
二、另外几个性质:A∩A = A, A∩φ= φ, A∩B = B∩A,
A∪A = A, A∪φ= A , A∪B = B∪A.
(注意与实数性质类比)
例6 ( P12 ) 略
进而讨论 (x,y) 可以看作直线上的点的坐标
A∩B 是两直线交点或二元一次方程组的解
同样设 A = {x | x2(x(6 = 0} B = {x | x2+x(12 = 0}
则 (x2(x(6)(x2+x(12) = 0 的解相当于 A∪B
即: A = {3,(2} B = {(4,3} 则 A∪B = {(4,(2,3}
三、关于奇数集、偶数集的概念 略 见P12
例7 ( P12 ) 略
练习 P13
四、关于集合中元素的个数
规定:集合A 的元素个数记作: card (A)
作图 观察、分析得:
card (A∪B) ( card (A) + card (B)
card (A∪B) = card (A) +card (B) (card (A∩B)
五、(机动):《课课练》 P8 课时5 “基础训练”、“例题推荐”
六、作业: 课本 P14 6、7、8
《课课练》 P8—9 课时5中选部分
第八教时
教材:交集与并集(3)
目的:复习交集与并集,并处理“教学与测试”内容,使学生逐步达到熟练技巧。
过程:
一、复习:交集、并集
二、1.如图(1) U是全集,A,B是U的两个子集,图中有四个用数字标出的区域,试填下表:
区域号 相应的集合 1 CUA∩CUB 2 A∩CUB 3 A∩B 4 CUA∩B 集合 相应的区域号 A 2,3 B 3,4 U 1,2,3,4 A∩B 3
图(1)
图(2)
2、如图(2) U是全集,A,B,C是U的三个子集,图中有8个用数字标
出的区域,试填下表: (见右半版)
3、已知:A={(x,y)|y=x2+1,x(R} B={(x,y)| y=x+1,x(R }求A∩B。
解:
∴ A∩B= {(0,1),(1,2)}
区域号 相应的集合 1 CUA∩CUB∩CUC 2 A∩CUB∩CUC 3 A∩B∩CUC 4 CUA∩B∩CUC 5 A∩CUB∩C 6 A∩B∩C 7 CUA∩B∩C 8 CUA∩CUB∩C 集合 相应的区域号 A 2,3,5,6 B 3,4,6,7 C 5,6,7,8 ∪ 1,2,3,4,5,6,7,8 A∪B 2,3,4,5,6,7 A∪C 2,3,5,6,7,8 B∪C 3,4,5,6,7,8 三、《教学与测试》P7-P8 (第四课) P9-P10 (第五课)中例题
如有时间多余,则处理练习题中选择题
四、作业: 上述两课练习题中余下部分
第九教时
(可以考虑分两个教时授完)
教材: 单元小结,综合练习
目的: 小结、复习整单元的内容,使学生对有关的知识有全面系统的理解。
过程:
一、复习:
1、基本概念:集合的定义、元素、集合的分类、表示法、常见数集
2、含同类元素的集合间的包含关系:子集、等集、真子集
3、集合与集合间的运算关系:全集与补集、交集、并集
二、苏大《教学与测试》第6课 习题课(1)其中“基础训练”、例题
三、补充:(以下选部分作例题,部分作课外作业)
1、用适当的符号((,(, , ,=,()填空:
0 ( (; 0 ( N; ( {0}; 2 ( {x|x(2=0};
{x|x2-5x+6=0} = {2,3}; (0,1) ( {(x,y)|y=x+1};
{x|x=4k,k(Z} {y|y=2n,n(Z}; {x|x=3k,k(Z} ( {x|x=2k,k(Z};
{x|x=a2-4a,a(R} {y|y=b2+2b,b(R}
2、用适当的方法表示下列集合,然后说出其是有限集还是无限集。
① 由所有非负奇数组成的集合; {x=|x=2n+1,n(N} 无限集
② 由所有小于20的奇质数组成的集合; {3,5,7,11,13,17,19} 有限集
③ 平面直角坐标系内第二象限的点组成的集合; {(x,y)|x<0,y>0} 无限集
④ 方程x2-x+1=0的实根组成的集合; ( 有限集
⑤ 所有周长等于10cm的三角形组成的集合;
{x|x为周长等于10cm的三角形} 无限集
3、已知集合A={x,x2,y2-1}, B={0,|x|,y} 且 A=B求x,y。
解:由A=B且0(B知 0(A
若x2=0则x=0且|x|=0 不合元素互异性,应舍去
若x=0 则x2=0且|x|=0 也不合
∴必有y2-1=0 得y=1或y=-1
若y=1 则必然有1(A, 若x=1则x2=1 |x|=1同样不合,应舍去
若y=-1则-1(A 只能 x=-1这时 x2=1,|x|=1 A={-1,1,0} B={0,1,-1}
即 A=B
综上所述: x=-1, y=-1
4、求满足{1} A({1,2,3,4,5}的所有集合A。
解:由题设:二元集A有 {1,2}、{1,3}、{1,4}、{1,5}
三元集A有 {1,2,3}、{1,2,4}、{1,2,5}、{1,3,4}、{1,3,5}、{1,4,5}
四元集A有 {1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,3,4,5}
五元集A有 {1,2,3,4,5}
5、设U={
m、n(Z}, B={x|x=4k,k(Z} 求证:1。 8(A 2。 A=B
证:1。若12m+28n=8 则m= 当n=3l或n=3l+1(l(Z)时
m均不为整数 当n=3l+2(l(Z)时 m=-7l-4也为整数
不妨设 l=-1则 m=3,n=-1 ∵8=12×3+28×(-1) 且 3(Z -1(Z
∴8(A
2。任取x1(A 即x1=12m+28n (m,n(Z)
由12m+28n=4=4(3m+7n) 且3m+7n(Z 而B={x|x=4k,k(Z}
∴12m+28n(B 即x1(B 于是A(B
任取x2(B 即x2=4k, k(Z
由4k=12×(-2)+28k 且 -2k(Z 而A={x|x=12m+28n,m,m(Z}
∴4k(A 即x2(A 于是 B(A
综上:A=B
7、设 A∩B={3}, (CuA)∩B={4,6,8}, A∩(CuB)={1,5}, (CuA)∪(CuB)
={x(N|x<10且x(3} , 求Cu(A∪B), A, B。
解一: (CuA)∪(CuB) =Cu(A∩B)={x(N|x<10且x(3} 又:A∩B={3}
U=(A∩B)∪Cu(A∩B)={ x(N|x<10}={1,2,3,4,5,6,7,8,9}
A∪B中的元素可分为三类:一类属于A不属于B;一类属于B不属于A;一类既属A又属于B
由(CuA)∩B={4,6,8} 即4,6,8属于B不属于A
由(CuB)∩A={1,5} 即 1,5 属于A不属于B
由A∩B ={3} 即 3 既属于A又属于B
∴A∪B ={1,3,4,5,6,8}
∴Cu(A∪B)={2,7,9}
A中的元素可分为两类:一类是属于A不属于B,另一类既属于A又属于B
∴A={1,3,5}
同理 B={3,4,6,8}
解二 (韦恩图法) 略
8、设A={x|(3≤x≤a}, B={y|y=3x+10,x(A}, C={z|z=5(x,x(A}且B∩C=C求实数a的取值。
解:由A={x|(3≤x≤a} 必有a≥(3 由(3≤x≤a知
3×((3)+10≤3x+10≤3a+10
故 1≤3x+10≤3a+10 于是 B={y|y=3x+10,x(A}={y|1≤y≤3a+10}
又 (3≤x≤a ∴(a≤(x≤3 5(a≤5(x≤8
∴C={z|z=5(x,x(A}={z|5(a≤z≤8}
由B∩C=C知 C(B 由数轴分析: 且 a≥(3
( ( ≤a≤4 且都适合a≥(3
综上所得:a的取值范围{a|( ≤a≤4 }
9、设集合A={x(R|x2+6x=0},B={ x(R|x2+3(a+1)x+a2(1=0}且A∪B=A求实数a的取值。
解:A={x(R|x2+6x=0}={0,(6} 由A∪B=A 知 B(A
当B=A时 B={0,(6} ( a=1 此时 B={x(R|x2+6x=0}=A
当B A时
1。若 B(( 则 B={0}或 B={(6}
由 (=[3(a+1)]2(4(a2(1)=0 即5a2+18a+13=0 解得a=(1或 a=(
当a=(1时 x2=0 ∴B={0} 满足B A
当a=( 时 方程为 x1=x2=
∴B={ } 则 B(A(故不合,舍去)
2。若B=( 即 ((0 由 (=5a2+18a+13(0 解得( (a((1
此时 B=( 也满足B A
综上: ( (a≤(1或 a=1
10、方程x2(ax+b=0的两实根为m,n,方程x2(bx+c=0的两实根为p,q,其中m、n、p、q互不相等,集合A={m,n,p,q},作集合S={x|x=(+(,((A,((A且(((},P={x|x=((,((A,((A且(((},若已知S={1,2,5,6,9,10},P={(7,(3,(2,6,
14,21}求a,b,c的值。
解:由根与系数的关系知:m+n=a mn=b p+q=b pq=c
又: mn(P p+q(S 即 b(P且 b(S
∴ b(P∩S 又由已知得 S∩P={1,2,5,6,9,10}∩{(7,(3,(2,6,14,21}={6}
∴b=6
又:S的元素是m+n,m+p,m+q,n+p,n+q,p+q其和为
3(m+n+p+q)=1+2+5+6+9+10=33 ∴m+n+p+q=11 即 a+b=11
由 b=6得 a=5
又:P的元素是mn,mp,mq,np,nq,pq其和为
mn+mp+mq+np+nq+pq=mn+(m+n)(p+q)+pq=(7(3(2+6+14+21=29
且 mn=b m+n=a p+q=b pq=c
即 b+ab+c=29 再把b=6 , a=5 代入即得 c=(7
∴a=5, b=6, c=(7
四、作业:《教学与测试》余下部分及补充题余下部分
第十一教时
教材:含绝对值不等式的解法
目的:从绝对值的意义出发,掌握形如 | x | = a的方程和形如 | x | > a, | x | < a (a>0)不等式的解法,并了解数形结合、分类讨论的思想。
过程:
一、实例导入,提出课题
实例:课本 P14(略) 得出两种表示方法:
1、不等式组表示: 2.绝对值不等式表示::| x ( 500 | ≤5
课题:含绝对值不等式解法
二、形如 | x | = a (a≥0) 的方程解法
复习绝对值意义:| a | =
几何意义:数轴上表示 a 的点到原点的距离
。 例:| x | = 2 。
三、形如| x | > a与 | x | < a 的不等式的解法
例 | x | > 2与 | x | < 2
1(从数轴上,绝对值的几何意义出发分析、作图。解之、见 P15 略
结论:不等式 | x | > a 的解集是 { x | (a< x < a}
| x | < a 的解集是 { x | x > a 或 x < (a}
2(从另一个角度出发:用讨论法打开绝对值号
| x | < 2 或 ( 0 ≤ x < 2或(2 < x < 0
合并为 { x | (2 < x < 2}
同理 | x | < 2 或 ( { x | x > 2或 x < (2}
3(例题 P15 例一、例二 略
4(《课课练》 P12 “例题推荐”
四、小结:含绝对值不等式的两种解法。
五、作业: P16 练习 及习题1.4
第十二教时
教材:一元二次不等式解法
目的:从一元二次方程、一元二次不等式与二次函数的关系出发,掌握运用二次函数求解一元二次不等式的方法。
过程 :
一、课题:一元二次不等式的解法
先回忆一下初中学过的一元一次不等式的解法:如 2x(7>0 x>
这里利用不等式的性质解题
从另一个角度考虑:令 y=2x(7 作一次函数图象:
引导观察,并列表,见 P17 略
当 x=3.5 时, y=0 即 2x(7=0
当 x<3.5 时, y<0 即 2x(7<0
当 x>3.5 时, y>0 即 2x(7>0
结论:略 见P17
注意强调:1(直线与 x轴的交点x0是方程 ax+b=0的解
2(当 a>0 时, ax+b>0的解集为 {x | x > x0 }
当 a<0 时, ax+b<0可化为 (ax(b<0来解
二、一元二次不等式的解法
同样用图象来解,实例:y=x2(x(6 作图、列表、观察
当 x=(2 或 x=3 时, y=0 即 x2(x(6=0
当 x<(2 或 x>3 时, y>0 即 x2(x(6>0
当 (2
∴方程 x2(x(6=0 的解集:{ x | x = (2或 x = 3 }
不等式 x2(x(6 > 0 的解集:{ x | x < (2或 x > 3 }
不等式 x2(x(6 < 0 的解集:{ x | (2 < x < 3 }
这是 △>0 的情况:
若 △=0 , △<0 分别作图观察讨论
得出结论:见 P18--19
说明:上述结论是一元二次不等式 ax+bx+c>0(<0) 当 a>0时的情况
若 a<0, 一般可先把二次项系数化成正数再求解
三、例题 P19 例一至例四
练习:(板演)
有时间多余,则处理《课课练》P14 “例题推荐”
四、小结:一元二次不等式解法(务必联系图象法)
五、作业:P21 习题 1.5
《课课练》第8课余下部分
第十三教时
教材:一元二次不等式解法(续)
目的:要求学生学会将一元二次不等式转化为一元二次不等式组求解的方法,进而学会简单分式不等式的解法。
过程:
一、复习:(板演)
一元二次不等式 ax2+bx+c>0与 ax2+bx+c<0 的解法
(分 △>0, △=0, △<0 三种情况)
1.2x4(x2(1≥0 2.1≤x2(2x<3 (《课课练》 P15 第8题中)
解:1.2x4(x2(1≥0 (2x2+1)(x2(1)≥0 x2≥1
x≤(1 或 x≥1
2.1≤x2(2x<3
(1
二、新授:
1、讨论课本中问题:(x+4)(x(1)<0
等价于(x+4)与(x(1)异号,即: 与
解之得:(4 < x < 1 与 无解
∴原不等式的解集是:{ x | }∪{ x | }
={ x | (4 < x < 1 }∪φ= { x | (4 < x < 1 }
同理:(x+4)(x(1)>0 的解集是:{ x | }∪{ x | }
2、提出问题:形如 的简单分式不等式的解法:
同样可转化为一元二次不等式组 { x | }∪{ x | }
也可转化(略)
注意:1(实际上 (x+a)(x+b)>0(<0) 可考虑两根 (a与 (b,利用法则求解:但此时必须注意 x 的�
2(简单分式不等式也同样要注意的是分母不能0(如 时)
3(形如 的分式不等式,可先通分,然后用上述方法求解
3、例五:P21 略
4、练习 P21 口答板演
三、如若有时间多余,处理《课课练》P16--17 “例题推荐”
四、小结:突出“转化”
五、作业:P22 习题1.5 2--8 及《课课练》第9课中挑选部分
第十四教时
教材: 苏大《教学与测试》P13-16第七、第八课
目的: 通过教学复习含绝对值不等式与一元二次不等式的解法,逐步形成教熟练的技巧。
过程:
一、复习:1. 含绝对值不等式式的解法:(1)利用法则;
(2)讨论,打开绝对值符号
2、一元二次不等式的解法:利用法则(图形法)
二、处理苏大《教学与测试》第七课 — 含绝对值的不等式
《课课练》P13 第10题:
设A= B={x|2≤x≤3a+1}是否存在实数a的值,分别使得:(1) A∩B=A (2)A∪B=A
解:∵ ∴ 2a≤x≤a2+1
∴ A={x|2a≤x≤a2+1}
(1) 若A∩B=A 则A(B ∴ 2≤2a≤a2+1≤3a+1 1≤a≤3
(2) 若A∪B=A 则B(A
∴当B=?时 2>3a+1 a<
当B(?时 2a≤2≤3a+1≤a2+1 无解
∴ a<
三、处理《教学与测试》第八课 — 一元二次不等式的解法
《课课练》 P19 “例题推荐” 3
关于x的不等式 对一切实数x恒成立, 求实数k的取值范围。
解:∵ x2(x+3>0恒成立 ∴ 原不等式可转化为不等式组:
由题意上述两不等式解集为实数
∴
即为所求。
四、作业:《教学与测试》第七、第八课中余下部分。
第十五教时
教材:二次函数的图形与性质(含最值);
苏大《教学与测试》第9课、《课课练》第十课。
目的: 复习二次函数的图形与性质,期望学生对二次函数y=ax2+bx+c的三个参数a,b,c的作用及对称轴、顶点、开口方向和 △ 有更清楚的认识;同时对闭区间内的二次函数最值有所了解、掌握。
过程:
一、复习二次函数的图形及其性质 y=ax2+bx+c (a(0)
1、配方 顶点,对称轴
2、交点:与y轴交点(0,c)
与x轴交点(x1,0)(x2,0)
求根公式
3、开口
4、增减情况(单调性) 5.△的定义
二、图形与性质的作用 处理苏大《教学与测试》第九课
例题:《教学与测试》P17-18例一至例三 略
三、关于闭区间内二次函数的最值问题
结合图形讲解: 突出如下几点:
1、必须是“闭区间” a1≤x≤a2
2、关键是“顶点”是否在给定的区间内;
3、次之,还必须结合抛物线的开口方向,“顶点”在区间中点的左侧还是右侧综合判断。
处理《课课练》 P20“例题推荐”中例一至例三 略
四、小结:1。 调二次函数y=ax2+bx+c (a(0) 中三个“参数”的地位与作用。我们实际上就是利用这一点来处理解决问题。
2。 于二次函数在闭区间上的最值问题应注意顶点的位置。
五、作业: 《课课练》中 P21 6、7、8
《教学与测试》 P18 5、6、7、8 及“思考题”
第十六教时
教材: 一元二次方程根的分布
目的: 介绍符号“f(x)”,并要求学生理解一元二次方程ax2+bx+c=0 (a(0)的根的分布与系数a,b,c之间的关系,并能处理有关问题。
过程:
一、为了本课教学内容的需要与方便,先介绍函数符号“f(x)”。 如:二次函数记作f(x)= ax2+bx+c (a(0)
控制”一元二次方程根的分布。
例三 已知关于x的方程x2(2tx+t2(1=0的两个实根介于(2和4之间,求实数t的取值。
解:
此题既利用了函数值,还利用了 及顶点坐标来解题。
三、作业题(补充)
1、 关于x的方程x2+ax+a(1=0,有异号的两个实根,求a的取值范围。(a<1)
2、 如果方程x2+2(a+3)x+(2a(3)=0的两个实根中一根大于3,另一根小于3,求实数a的取值范围。 (a<(3)
3、 若方程8x2+(m+1)x+m(7=0有两个负根,求实数m的取值范围。
(m>7)
4、 关于x的方程x2(ax+a2(4=0有两个正根,求实数a的取值范围。
(a>2)
(注:上述题目当堂巩固使用)
5、设关于x的方程4x2(4(m+n)x+m2+n2=0有一个实根大于(1,另一个实根小于(1,则m,n必须满足什么关系。 ((m+2)2+(n+2)2<4)
6、关于x的方程2kx2(2x(3k(2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。 (k<(4 或 k>0)
7、实数m为何值时关于x的方程7x2((m+13)x+m2(m(2=0的两个实根x1,x2满足0
8、已知方程x2+ (a2(9)x+a2(5a+6=0的一根小于0,另一根大于2,求实数a的取值范围。 (2
9、关于x的二次方程2x2+3x(5m=0有两个小于1的实根,求实数 m的取值范围。 ((9/40≤m<1)
10、已知方程x2(mx+4=0在(1≤x≤1上有解,求实数m的取值范围。
解:如果在(1≤x≤1上有两个解,则
如果有一个解,则f(1)?f((1)≤0 得 m≤(5 或 m≥5
(附:作业补充题)
作 业 题(补充)
1、 关于x的方程x2+ax+a(1=0,有异号的两个实根,求a的取值范围。
2、 如果方程x2+2(a+3)x+(2a(3)=0的两个实根中一根大于3,另一根小于3,求实数a的取值范围。
3、 若方程8x2+(m+1)x+m(7=0有两个负根,求实数m的取值范围。
4、 关于x的方程x2(ax+a2(4=0有两个正根,求实数a的取值范围。
(注:上述题目当堂巩固使用)
5、设关于x的方程4x2(4(m+n)x+m2+n2=0有一个实根大于(1,另一个实根小于(1,则m,n必须满足什么关系。
6、关于x的方程2kx2(2x(3k(2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。
7、实数m为何值时关于x的方程7x2((m+13)x+m2(m(2=0的两个实根x1,x2满足0
8、已知方程x2+ (a2(9)x+a2(5a+6=0的一根小于0,另一根大于2,求实数a的取值范围。
9、关于x的二次方程2x2+3x(5m=0有两个小于1的实根,求实数 m的取值范围。
10、已知方程x2(mx+4=0在(1≤x≤1上有解,求实数m的取值范围。
作 业 题(补充)
1、 关于x的方程x2+ax+a(1=0,有异号的两个实根,求a的取值范围。
2、 如果方程x2+2(a+3)x+(2a(3)=0的两个实根中一根大于3,另一根小于3,求实数a的取值范围。
3、 若方程8x2+(m+1)x+m(7=0有两个负根,求实数m的取值范围。
4、 关于x的方程x2(ax+a2(4=0有两个正根,求实数a的取值范围。
(注:上述题目当堂巩固使用)
5、设关于x的方程4x2(4(m+n)x+m2+n2=0有一个实根大于(1,另一个实根小于(1,则m,n必须满足什么关系。
6、关于x的方程2kx2(2x(3k(2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。
7、实数m为何值时关于x的方程7x2((m+13)x+m2(m(2=0的两个实根x1,x2满足0
8、已知方程x2+ (a2(9)x+a2(5a+6=0的一根小于0,另一根大于2,求实数a的取值范围。
9、关于x的二次方程2x2+3x(5m=0有两个小于1的实根,求实数 m的取值范围。
10、已知方程x2(mx+4=0在(1≤x≤1上有解,求实数m的取值范围。
第十七教时
教材: 绝对值不等式与一元二次不等式练习课
活动目标:
1、手口一致进行6以内点数,说出总数。
2、运动感知数量(6以内),并对数数感兴趣。
活动准备:
1、画有1—6只不等的蚊子图片若干。
2、贴有1—6个点的不等的图片的盒子6个。
活动过程:
一、念儿歌:蚊子是个坏东西,传染疾病真可恶。小朋友们本领大,看见蚊子拍死它。看撒落在地上的蚊子图片,玩拍蚊子的游戏:图片上有1个蚊子拍一下,图片一有2个蚊子拍二下……图片上有几个蚊子就拍几下,表示你把它们拍死啦!捡起图片,再去拍别的图片上的蚊子。
二、集体拍蚊子:在自己图片上找出有3个蚊子的`放地上,做出拍三下的动作,送入贴着相应圆点卡的盒子里。图片上有2个蚊子的放地上,做出拍两下的动作,送入贴着相应圆点卡的盒子里。把手里还有的蚊子图片分别送入有相应点子卡的盒子里。
三、念儿歌:蚊子是个坏东西,传染疾病真可恶,小朋友本领大,看见蚊子拍死它,小朋友拍手笑,蚊子全部死光光。
活动目标
1、正确感知比6少的数量,理解数的意义。
2、有良好的操作习惯,能积极地与材料互动。
3、在活动中体验数学活动的乐趣。
4、培养幼儿对数字的认识能力。
5、引发幼儿学习的兴趣。
活动准备
塑料空瓶若干,赤豆、数字卡、圆点卡、动物图卡、背景图、大瓶子
活动过程
(一)开火车游戏,激发幼儿活动的兴趣
老师手拿点子、数字、动物卡片,和孩子们进行问答游戏
师:嘿嘿,我的火车几点开?(随机出示6以内的点卡、数卡)
幼:嘿嘿,我的火车ж点开。
师:嘿嘿,来了几位小客人?(出示动物卡)
幼:嘿嘿,来了ж位小客人。
(二)通过看看说说,理解数字“6”的意义
师:呜呜,火车开到了数字城(出示背景图,拿出数字6)看,数字6来迎接我们了,6可以表示什么?6也可以表示这个动物瓶上的6只小刺猬,6只小刺猬可以用几个圆点来表示?请一幼儿上来选出6个圆点的卡片贴在数字瓶上。
(三)亲自实践,感知比6少的数量
1、自由探索做动物瓶
(1)要求找出比6少的动物卡贴在瓶身上。
(2)幼儿集中交流,将幼儿探索的。结果用圆点表示出来。
(3)师生总结:比6个圆点少的有5个、4个、3个、2个、1个。
2、再次操作,进一步感知比6少的数量
请小朋友介绍自己的瓶上贴了几只小动物,为什么?这些动物瓶上的数量可以用哪几个数字来表示?请小朋友把它贴在点卡左边。
(四)将数字、实物、图卡对应匹配
师:小朋友做的动物瓶真漂亮,豆宝宝看见了,心里可喜欢呢。它们想住在动物瓶里,你们愿意吗?那我们一起来帮豆宝宝搬家吧,但是要看仔细瓶上有几只小动物就住几个豆宝宝,不能多住也不能少住。(出示一个动物瓶,请小朋友观察动物数量,然后说应该住几个豆宝宝,老师操作放入相应数量的豆宝宝)豆宝宝住在里面好开心,天冷了,赶快把它关好门,再贴上一个门牌号,应该贴数字几呢?请幼儿选一数字贴在瓶盖上。
幼儿操作:根据动物瓶身上的动物数量放入相应数量的豆宝宝,并在瓶盖上贴上数字,然后集体检查个别幼儿的操作结果。
(五)游戏:数字宝宝找朋友
每个小朋友拿一个自己喜欢的数字拿在手里,记住自己是数字几,由数字6开始按比自己小1的顺序找朋友,找到新的朋友排在前面,继续找新朋友,按6、5、4、3、2、1的顺序组成几列小车厢。
师:“呜――我的火车要开了,小小车厢快快来。”师幼开火车出活动室,结束活动。
活动反思
幼儿是数学学习的主人,教师是数学学习的组织者、引导者与合作者,课堂上幼儿唱“主角”,教师只是一个“配角”,把时间和空间都留给幼儿进行思考、探究、交流,关注幼儿在学习的过程中表现出来的情感、态度、思维等方面。活动穿插游戏或组织一些有趣的活动,让幼儿在愉快的活动氛围中得到提高。
活动目标:
1、通过找颜色或形状相同的物体,初步感知集合。
2、观察、理解图示,学习将相同特性物品圈在一起的方式表示集合。
活动准备:
1、红、蓝色色小筐各一个。
2、红、蓝小玩具每幼儿各一个(大小、形状不相同)、红、蓝颜色的积塑每人一颗(大小、形状不相同)。
活动过程:
一、将花按颜色进行分类。
1、教师出示红、蓝色的玩具;这是什么?是什么颜色?
2、请幼儿每人拿一个玩具,要求幼儿大声说:我拿了一个红(绿)玩具,然后回位子上。
3、出示红、蓝两种颜色的筐子:这是玩具的“家”,它们有什么不同?(颜色) “想一想哪个是红玩具的家?哪个是蓝玩具的家?”(红筐是红玩具的家、蓝筐是蓝玩具的家)“小朋友看看你拿的是什么颜色的玩具,想想把它送到哪个家里去?边送边大声说:红(蓝)玩具,我送你回家。
二、将积塑按形状分类。
1、出示积塑;这是什么?是什么形状的?(红、蓝颜色的积塑) 请幼儿每人拿一颗积塑,并大声说:红、蓝积塑,我和你做好朋友。
2、出示红、绿两种形状的筐子。
积塑要回家了,请小朋友看看自己手上的'积塑的形状,想想应该把它送到哪个家。要求幼儿边送边说:红、蓝积塑我送你回家。
三、比较两个筐里的物体。
出示红、蓝两个筐:这是什么形状的筐?住着谁?为什么它们能住在一起?(因为形状相同。)
四、幼儿做练习册,教师个别指导。东营区实验幼儿园李真
教学目标:
1、学会jqx三个声母,读准音,记清形。
教学过程:
(一)复习引入。
1、认读6个韵母。比较u和ü的区别。声母b-----dp------g顺口溜念。
2、我们已经学了几个声母了?认读声母,哪几个声母读的时候要送气?(ptk)
(二)引出新课,提出要求。我们已经学了6个单韵母,13个声母。学会了拼读音节,帮助我们认字。今天我们还要学习3个声母,比一比,看谁最先学会,做到会读、会认、会写。
(三)教学声母jqx。1、教学声母j。
(1)说:图上画着谁在干什么?(一只鸡伸长脖子去啄头顶上的蝴蝶。)我们把“母鸡”的“鸡”读得轻一点,短一点就是声母j。板书:j
(2)听:教师示范,学生边听边看。
(3)读:学生试读,齐读,开火车读。
(4)记:看看j像什么?(像一只伸长脖子的母鸡,上面的就像母鸡头上的蝴蝶。)
教顺口溜:鸡吃小虫jjj,竖弯加点jjj。(边念顺口溜,边书空j的笔顺。)
2、教学声母q。
(1)看图说话:图上画了什么?(七只气球在天上飞。)气球的“气”改成第声,读得轻短一些,就是声母q。
(2)听老师读j和q,有什么不同?(q要用力,是送气的。)教师领读、指名读、j―q对比读。
(3)q像什么?教顺口溜:气球拖线qqq,左上半圆qqq,像个9字qqq。
3、教学声母x。
(1)看图说话:图上画着什么?
(2)教师领读,学生模仿。
(3)你能用什么方法来记住它?(刀切西瓜__x,像个叉叉__x。)
(四)教学声母jqx与i的拼音。
1、出示jqx与i的拼音,学生自由拼读。
2、指名读,开火车读,齐读。
{五)小结。学了这一课,我们又学会了3个声母j、q、x
【教学目的】
(1)使学生初步理解集合的概念,知道常用数集的概念及记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
【重点难点】
教学重点:集合的基本概念及表示方法
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
【内容分析】
1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子
这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念
集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明
【教学过程】
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:
由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。
定义:一般地,某些指定的对象集在一起就成为一个集合。
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合 记作N,
(2)正整数集:非负整数集内排除0的集 记作N*或N+
(3)整数集:全体整数的集合 记作Z ,
(4)有理数集:全体有理数的集合 记作Q ,
(5)实数集:全体实数的集合 记作R
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的'集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写
三、练习题:
1、教材P5练习1、2
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数 (不确定)
(2)好心的人 (不确定)
(3)1,2,2,3,4,5.(有重复)
3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__
4、由实数x,-x,|x|, 所组成的集合,最多含( A )
(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素
5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:
(1) 当x∈N时, x∈G;
(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G
证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0* = a+b ∈G,即x∈G
证明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整数,
∴ = 不一定属于集合G
一、教学目标:
1、集合的两种表示方法(列举法和特征性质描述法).
2、能选择适当的方法正确的表示一个集合。
重点:集合的表示方法。
难点:集合的特征性质的概念,以及运用特征性质描述法表示集合。
二、复习回顾:
1.集合中元素的特性:______________.
2.常见的数集的简写符号:自然数集 整数集 正整数集
有理数集 实数集
三、知识预习:
1. _______叫做列举法;
2. ______叫做集合A的一个特征性质。
叫做特征性质描述法,简称描述法。
说明:概念的理解和注意问题
1. 用列举法表示集合时应注意以下5点:
(1) 元素间用分隔号,
(2) 元素不重复;
(3) 不考虑元素顺序;
(4) 对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但必须把元素间的规律显示清楚后方能用省略号。
(5) 无限集有时也可用列举法表示。
2. 用特征性质描述法表示集合时应注意以下6点;
(1) 写清楚该集合中元素的代号(字母或用字母表达的元素符号);
(2) 说明该集合中元素的性质;
(3) 不能出现未被说明的字母;
(4) 多层描述时,应当准确使用且和或
(5) 所有描述的内容都要写在集合符号内;
(6) 用于描述的'语句力求简明,准确。
四、典例分析
题型一 用列举法表示下列集合
例1 用列举法表示下列集合
(1)A={x N|0
高一数学教案精选30篇
题型二 用描述法表示集合
例2 用描述法表示下列集合
(1){-1,1} (2)大于3的全体偶数构成的集合 (3)在平面 内,线段AB的垂直平分线
高一数学教案精选30篇
题型三 集合表示方法的灵活运用
例3 分别判断下列各组集合是否为同一个集合:
(1)A={x|x+32} B={y|y+32}
(2) A={(1,2)} B={1,2}
(3) M={(x,y)|y= +1} N={y| y= +1}
变式训练:
1、集合A={x|y= ,x Z,y Z},则集合A的元素个数为( )
A 4 B 5 C 10 D 12
2、课本8页练习B第1题、习题A第1题
例4 已知集合A={x|k -8x+16=0}只有一个元素,试求实数k的值,并用列举法表示集合A.
作业:课本第9页A组第2题、B组第1、2题。
限时训练
1. 选择
(1)集合 的另一种表示法是( B )
A. B. C. D.
(2) 由大于-3小于11的偶数所组成的集合是( D )
A. B.
C. D.
(3) 方程组 的解集是( D )
A. (5, 4) B. C. (-5, 4) D. (5,-4)
(4)集合M= (x,y)| xy0, x , y 是( D )
A. 第一象限内的点集 B. 第三象限内的点集
C. 第四象限内的点集 D. 第二、四象限内的点集
(5)设a, b , 集合 1,a+b, a = 0, , b , 则b-a等于( C )
A. 1 B. -1 C. 2 D. -2
2. 填空
(1)已知集合A= 2, 4, x2-x , 若6 ,则x=___-2或3______.
(2)由平面直角坐标系内第二象限的点组成的集合为__ __.
(3)下面几种表示法:○1 ;○2 ; ○3 ;
○4(-1,2);○5 ;○6 . 能正确表示方程组的解集的是__○2__○5_______.
(4) 用列举法表示下列集合:
A= =___{0,1,2}________________________;
B= =___{-2,-1,0,1,2}________________________;
C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.
(5) 已知A= , B= , 则集合B=__{0,1,2}________.
3. 已知集合A= , 且-3 ,求实数a. (a= )
4. 已知集合A= .
(1) 若A中只有一个元素,求a的值;(a=0或a=1)
(2)若A中至少有一个元素,求a的取值范围;(a1)
(3)若A中至多有一个元素,求a的取值范围。(a=0或a1)
活动目标
1、在故事情境中,感知梯形的特征。
2、通过找一找、比一比、玩一玩,体验数学活动的乐趣。
活动准备
1、课件《图形王国的故事》。
2、蜘蛛拼图操作材料若干。
3、正方形、长方形、三角形的彩色手工纸若干。
4.纸板裁割成的图形若干。
活动过程
一、在故事情境中引出梯形,激发幼儿的探索兴趣
1、讲述故事《图形王国的故事》。
2、关键提问:
(1)咦?这里少了谁?
(引导幼儿快速观察,在众多的图形中发现少了什么形状,并鼓励他们大胆表述。)
(2)梯形弟弟在干什么?
(要求幼儿观察画面,尝试通过人物的动作、表情描述画面,引入“捉迷藏”的寻找游戏。)
(3)如果你们遇到梯形弟弟,会对他说什么?
(引导幼儿结合自己的生活经验大胆表达,在劝说“梯形”的过程中,换位思考,感受家人关爱、牵挂孩子的情感。)
二、在找找、玩玩中,加强感知,进一步掌握梯形的主要特征
1、第一次寻找比较,感知梯形的主要特征。
关键提问:
(1)请出一个三角形和梯形比一比,它们有什么不一样?
(教师出示九宫格,让幼儿在众多的三角形中指认梯形,说说三角形与梯形的不同,初步感知梯形“有四条边、四个角”的特征。)
(2)正方形、长方形为什么不能称梯形呢?
(教师出示不服气的正方形、长方形,鼓励幼儿观察正方形、长方形和梯形的'区别,尝试描述区别,感受梯形“一组对边平行、另一组对边不平行”的特征,说服不服气的形状们。)
2、第二次寻找比较,巩固对梯形主要特征的认识。
关键提问:
这些梯形长得一样吗?哪里不一样?
(出示九宫格,幼儿在众多形状中指认出直角梯形、等腰梯形、不等腰梯形,尝试描述不同梯形的特征,结合生活经验,展开想象,说说这些梯形像什么,通过对对边形态的感知,巩固梯形“一组对边平行、另一组对边不平行”的特征。)
3、蜘蛛拼图游戏,经验运用。
关键提问:
(1)这一次梯形躲到哪去了?
(出示蜘蛛拼图,提出操作要求。开始幼儿可能会遇到很多相似梯形的干扰,可以引导幼儿尝试转动蜘蛛网,调整观察角度,根据梯形的特征,比一比,找出梯形。)
(2)看一看,这些都是梯形吗?你是用什么方法找到梯形的。
(在集体验证中,幼儿观察黑板上的“梯形”,大胆纠错和辩论,再一次巩固对梯形特征的认识。)
三、折出梯形,体验图形游戏的乐趣
1、示正方形、长方形、三角形的彩色手工纸:瞧!这次梯形躲到哪去了?用什么方法可以找到它?
(请幼儿再一次自主探索,根据梯形的主要特征尝试自我验证,结合已有经验,动手尝试折出梯形,送到“梯形”小房子里,体验图形游戏的乐趣。)
2、延伸活动:拼图游戏
瞧,梯形请来了好多兄弟姐妹,我们和这些图形宝宝一起到图形王国玩拼图游戏吧!
活动目标:
1、通过排序活动,感受排序的活动美。
2、能用语言讲述排序规律。
3、尝试通过自己的排序活动,体验操作乐趣。
活动重点:
让幼儿在观察游戏操作的基础上了解排序活动,并体验排序的活动形式美。
活动难点:
引导幼儿自选某种规律排序物体。
活动准备:
1、三列长火车,每节可坐三个小动物。
2、小动物卡片若干,葫芦卡片若干。
3、进入森林的小脚丫线路图。
4、幼儿操作材料。
活动过程:
一、情景导入,激发幼儿的学习兴趣。
1、教师与幼儿谈话,进入角色。
教师:"大班的小朋友真听话,今天老师要带你们去打森林里去看一看,听说那的小动物今天要去旅行,我们去看一看有哪些小动物,好吗?"
2、出示小脚丫线路图,教师示范走,并引导幼儿观察其中规律。
二、分别出示三列火车,引导幼儿观察。
1、出示第一辆火车头,及第一节车厢(ABB)
(1)教师引导幼儿观察车厢小动物的位置。
(2)教师出示第二节车厢,让幼儿观察并了解规律。
(3)出示第三节车厢方法同上。
(4)出示第四节车厢,让幼儿猜是那些小动物。
教师小结:原来小动物们是按一定顺序坐火车的,你们觉得这样漂亮吗?这种排列的顺序叫有规律的'排序,你们知道了吧!
2、出示第二列火车头及第一节车厢(ABB)
(1)教师引导幼儿观察小动物座位。
(2)教师出示第2、3、4节车厢让幼儿上来操作,教师及时指导。
3、出示第三列火车头及第一节车厢(AAB)
(1)引导幼儿观察小动物的位置。
(2)教师出示第2、3节车厢,让幼儿上来操作,教师及时指导。
三、出示葫芦卡片,让幼儿接着排列。
1、教师引导幼儿观察,并操作。
2、提问:这些葫芦哪些不一样(颜色、大小)
教师小结:其实生活中的规律很多,他们可以按大小来分,也可以按颜色来分。还可以按高矮来分等等;这要我们认真观察,就能看出其中规律。
四、游戏:送礼物。
1、教师:小朋友,今天表现的很棒,老师想送礼物给孩子们,如果谁把你们手中的图形宝宝,按照一定的规律排好队,这些图形宝宝就是你们的了。
2、幼儿自由操作,教师巡回指导。
五、结束部分。
教师:其实在我们幼儿园里还有许多有规律的排序,我们一起出去找一找吧。
教学目标:
1.理解集合圈里各部分的意义。
2、会读集合圈中的信息,会按条件填写集合圈。
3、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。 教学重难点:
1、会读集合圈中的信息,会按条件填写集合圈。
2、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教具准备:
课件、活动卡 教学方法:探究法
教学课时:
1课时
教学过程:
一、帮小动物回家
1、创设情境,引入课题
(1)小动物在讨论在陆地上生活还是在水里生活好。一共来了10种动物,有6种动物可以在陆地上生活的,有6种动物可以在水里生活。这里面有几种动物既可以在陆地上生活也可以在水里生活?
引导学生质疑:
①来了10种小动物,为什么有6种生活在水里,6种生活在陆地?6+6=12(种)啊?
②有的既可以生活在陆地,又可以生活在水里。(适当给学生介绍“两栖动物”的常识,扩展学生知识面。)
(2)出示:蚂蚱 章鱼 虾 青蛙 蜗牛 鲤鱼 兔子 乌龟 海鱼 瓢虫
①这些动物和昆虫,你知道它们都是生活在哪里吗?(它们有的生活在陆地上,有的生活在水里)你能把它们分类一下吗?
②完成活动卡活动一,指名分类。
③全班一起分类。
④发现问题:乌龟和青蛙有时生活在水里,有时生活在陆地上。
2、图示方法,加深理解
(1)(课件出示)先是两个小组的集合圈。
(2)引导发现青蛙和乌龟两个圈里都有,如果只有一只小青蛙和一只小乌龟能分开站吗?
(3)出示合并隆的空集合圈,引导观察这个集合圈和分开的两个圈有什么不同。(有一块公共区域,这块公共区域可以表示什么?)
(4)全班交流,说说想法。
(5)师根据课堂实际情况适当小结。
(6)填写合并拢的集合圈。
(7)让学生说一说图中不同位置所表示的不同意义。
二、奇怪的报名表
1、出示:三(1)班参加语文、数学课外小组学生名单
(1)引导得到:
①参加语文小组的有(8)人 ②参加数学小组的有(9)人 (2)小猪的疑问
①小猪也有一个问题。是什么为题呢?出示:
这两个小组一共有( )人?(学生小组合作讨论答案,后指名回答,要说出思路)
②课件演示
a、找到即参加语文组又参加数学组的人(3人:杨明、李芳、刘红);
b、出示空集合圈,指名说说各个位置所表示的意义;
c、填写集合圈;(先填写公共部分)
d、出示各部分人数,引导计算两个小组一共有多少人?(让学生自己去找到答案,以得到多种解法)
解法一:5+3+6=14(人) 解法二:8+9-3=14(人)
三、巩固练习
1、活动卡-巩固练习
(1)只喜欢篮球的有( )人,只喜欢足球的有( )人。两种球都喜欢的有( )人。
2、教材p110——第1、2题。 板书设计:
数学广角
三(1)班参加语文、数学课外小组学生名单
解法一:5+3+6=14(人) 解法二:8+9-3=14(人)
教学目标:
1.让学生经历韦恩图的产生过程,能借助直观图,利用集合的思想方法解决简单的实际问题。
2.培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题,体验解决问题策略的多样性。
教学重点:让学生感知集合的思想,并利用集合的思想方法解决简单的实际问题。
教学难点:学生对重叠部分的理解。
教学准备:多媒体课件、姓名卡片等。
教学过程:
(一)创设情境,引出新知
1.出示信息。
出示教科书例1,只出示统计表,不出示问题。让学生说一说从中获得了哪些信息。
2.提出问题,激发“冲突”
让学生自由提出想要解决的问题,重点关注“参加这两项比赛的共有多少人”这个问题,让学生解答。关注不同的答案,抓住“冲突”,激发学生探究的欲望。
(二)自主探究,学习新知
1.独立思考表达方式,经历知识形成过程。
师:大家对这个问题产生了不同的意见。你能不能借助图、表或其他方式,让其他人清楚地看出结果呢?
学生独立思考,并尝试解决。
2.汇报交流,初步感知集合概念。
(1)小组交流,互相介绍自己的作品。
(2)选择有代表性的方案全班交流。
请每幅作品的创作者上台介绍自己的思考过程,注意追问“如何表示出两项比赛都参加的学生”,体会两个集合中的公共元素构成的交集。
预设1:把参加两项比赛的学生姓名分别列出,把相同的名字连起,就找到两项比赛都参加的学生了,有3人。这样参加跳绳比赛的9人,加上参加踢毽比赛的8人,再去掉3个重复的,应该是14人。
预设2:先写出所有参加跳绳比赛同学的姓名,再写参加踢毽比赛的。如果与前面的相同就不重复写了,连线就能表示了。一共写出了14个不同的姓名,说明参加比赛的有14人。从姓名上如果引出两条线,就说明他两项比赛都参加了。
预设3:把参加两项比赛学生的姓名分别放到两个长方形里,再把两项比赛都参加的学生的名字移到一边,两个长方形里都有这三个名字,把这两个长方形的这部分重叠起来,名字只出一次就可以了。可以看出只参加跳绳比赛的有6人,两项比赛都参加的有3人,只参加踢毽比赛的有5人,一共有14人。
3.对比分析,介绍韦恩图。
(1)对比、分析,提示课题。
师:同学们解决问题的能力真强,而且画出了这么多不同的图示表示。上面的三幅图中,你更喜欢哪一幅?为什么?
预设1:喜欢第三幅,去掉了重复的学生的姓名,更清楚,很容易看出参加这两项比赛的学生情况。
预设2:喜欢第三幅,用两个长方形的重叠部分表示两项比赛都参加的学生,很直观。
师:在数学上,我们把参加跳绳比赛的学生看作一个整体,叫做一个集合;把参加踢毽比赛的学生看作一个整体,也是一个集合。今天我们就研究集合。(板书课题:集合。)
(2)介绍用韦恩图表示集合。
师:第三幅图先把参加跳绳的和踢毽的学生的姓名分别放在了长方形里,很直观。回忆一下,在认识百以内数的时候,按要求写数时,就把提供的数和按要求写出的数都用类似长方形的圈圈了起,每个圈都分别表示一个集合。
师:在数学上我们常用这样的方法,直观地把集合中的具体事物表示出来。(多媒体课件出示左下图,或在黑板上将姓名卡片圈起。)
师:这个图表示什么?
预设:参加跳绳比赛的学生的集合。
出示右上图,随学生回答将参加踢毽比赛的学生姓名填入圈中。
在填入姓名时,引导学生发现,每个圈中的姓名不能重复、不能遗漏,体会集合元素的互异性;每个圈中姓名的摆放次序可以多样,体会集合元素的无序性。
(3)介绍用韦恩图表示集合的运算。
提问:利用这两个图怎样才能让他人直观地看出“参加这两项比赛的人员情况”呢?
通过多媒体课件,动态展示将左右两个图部分重叠的过程,或操作姓名卡片,去掉重复的姓名卡片,帮助学生理解姓名出现两次的学生是这两个集合的公共元素,可以用两个图的重叠部分表示它们的交集。
提问:中间重叠的部分表示的是什么?
预设:两项比赛都参加的学生;既参加跳绳比赛又参加踢毽比赛的学生。
提问:整个图表示的是什么?
预设:参加这两项比赛的学生;参加跳绳比赛或参加踢毽比赛的学生。
4.列式解答,加深对集合运算的认识。
(1)尝试独立解决。
(2)汇报交流,体会解决问题的多种方法。
预设:9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。
让学生通过图示与算式结合进行表达,感悟多种集合知识。可以让学生在韦恩图上指一指它们求出的是哪一部分,体会并集;指一指算式中每一步表达的是哪一部分,如“8-3”和“9-3”,体会差集。
(3)比较辨析,体会基本方法。
通过对各种计算方法的比较,发现虽然具体列式方法不同,但都解决了问题,即求出了两个集合的并集的元素个数。重点让学生说一说9+8-3=14这一算式表达的含义,“参加跳绳比赛的人数加上参加踢毽比赛的人数再减去两项比赛都参加的人数”,体会“求两个集合的并集的元素个数,就是用两个集合的元素个数的和减去它们的交集的元素个数”这一基本方法。
(三)联系生活,巩固练习
1.完成“做一做”第1题。
先独立完成,再汇报交流。
可先分别出示两个集合圈,让学生填入相应的序号,再利用多媒体课件动态展示将两个集合并的过程。
2.完成“做一做”第2题。
学生先独立完成,再汇报交流。
提问1:你是用什么方法解答第(1)题的?要注意什么?
预设:圈出重复的姓名,再数出。要认真仔细找,不要漏掉。
提问2:第(2)题是求什么?你是用什么方法解答的?
预设:第(2)题求的是获得“语文之星”或“数学之星”的一共有多少人,只要获得了任何一个奖都要计算进去。先数出获得“语文之星”的集合的人数,再数出获得“数学之星”的集合的人数,相加后,再去掉既获得“语文之星”又获得“数学之星”的人数。如果学生理解题意有困难,可以借助韦恩图帮助学生理解。
(四)全课小结
师:今天我们学习了集合的知识,还会运用集合知识解决生活中的问题。说一说今天你有什么收获。
1、设全集为 ,则有: , 。
2、 , 。
3、 , ,则有如下关系:
(1)若 时,则 是 的充分条件;
(2)若 时,则 是 的充分不必要条件;
(3)若 时,则 是 的充要条件。
4、由n个元素所组成的集合,其子集有 个,即 ,真子集 个,非空的真子集 个。
5、如果原命题是“若p则 ”,则原命题的否定是“若p则非 ”,而原命题的否命题是“若非p则非 ”,但对于全称命题其否定则应加以区别。
例如:命题“对任意的 , ”的否定为:“存在 , ”
6、使用反证法的重要一环是如何正确提出与原结论相反的假定,常见的有:
7、一般地,已知函数 ,定义域和值域有如下性质:
(1)若 的定义域为a,且 在集合b上有意义,则 。
(2)若 的值域为a,且 的取值范围为b,则 。
(3)若 的单调增(减)区间为a,且 在区间b上单调递增(减),则 。
8、描述法给出的集合,解题中应注意代表元素的属性。有关集合问题的讨论不能遗漏了空集。空集是任何集合的子集,是任何非空集合的真子集。有关集合问题的讨论应注意集合语言转化的等价性。
9、充要条件的判定:
(1)先分清哪是条件,哪是结论,将条件放在左边,结论放在右边;
(2)从条件推到结论,说明条件是充分的;从结论推到条件,说明条件是必要的。
10、“非 ”形式复合命题的真假与 的真假相反;“ 且 ”形式复合命题,当 与 同为真时为真,其它情况时为假;“ 或 ”形式复合命题,当 与 同为假时为假,其它情况时为真。
教学内容:
集合的有关思想(课本第108页的例、练习二十四的第l、2题)。
教学目标:
1、使学生能借助具体内容,初步体会集合的思想方法。
2、使学生能利用集合的思想方法解决简单的实际问题。
教学重难点:
被学生初步体会集合的有关思想方法。
教具准备:
利用教具,学具等教学辅助手段帮助学生理解。
教学过程:
一、导入谈话
今天老师将把同学们带人“数学广角”,让同学们去认识体会一些有趣的数学问题。
二、探究新知
1、教学例1
(1)读懂统计表。
教师用电脑课件出示统计表,列出参加语文兴趣小组和数学兴趣的学生名单。
说一说:从统计表中,你收集到哪些信息?
议一议:三(1)班共有多少人参加了这两个课外兴趣小组?
教师引导:看来同学们已经发现了问题,那么如何解决这一问题呢?我们可以用圈来表示:
(2)认识集合圈。
①用多媒体课件分别出示两个集合圈。
②让学生先在练习本上画出集合圈,填上相应的学生姓名,然后再汇报结果。教师根据学生汇报,多媒体显示填写内容。并让学生说一说两个图中所表示的意义。
③提出问题:
有的学生姓名在两个集合中都有,应该如何来表示才能更直观、更形象、更简单呢?
教师利用电脑课件再出来二个空白集合,并填上学生姓名再合并。
问:你们知道这个图的意思吗?(让学生大胆猜想,说出自己的想法)。
填写完成后,再让学生说一说不同位置所表示的不同意义,然后再引导学生将集合圈和统计表进行比较。
(3)列式计算。
通过以上分析、讨论,学生已经明白杨明、李芳、刘红这三位学生既参加了语文兴趣小组又参加了数学兴趣小组,所以是重复的,在计算点人数时只能计算一次。
学生列式计算,并说说算式的。意义。
三、巩固运用
1、课内外作业:
练习二十四的第1、2题。
第1题,首先要求学生根据动物的不同属性“"会游泳的”和“会飞的”把它们进行分类。然后再要说一说中间位置“表示什么”。
第2题,可以引导学生先把两天进的货中重复的部分找出来,然后再计算两天一共进了多少种货。学生计算的时候可以用加法进行计算,也可以直接点数。
四、课堂小结
本节课我们学习了什么?你有什么收获?
活动目标:
1、尝试根据物体的外部属性特征展开想象,选出符合线索的物品。
2、大胆清楚地表达自己的想法,体验和蜗牛一起寻找的乐趣。
活动准备:
蜗牛图片、红色物品图片、手工纸、记号笔、草莓味食物
活动过程:
一、出示蜗牛,引出故事教师出示蜗牛图片教师:这是谁?(蜗牛)对,今天有一只蜗牛来我们中一班找一样东西,是什么东西呢?蜗牛说,要找的这样东西的线索就藏在这个信封里,我们一起来看一看。
二、观察线索,感知属性
1、出示信的第一页(红色)教师:瞧,这是什么?(红色的纸)第一个线索是红色,那你们觉得蜗牛在找什么?(红色的东西)是的,这只蜗牛找的东西是红色的,谁来告诉蜗牛什么东西是红色的?(根据幼儿回答,边回答边出示图片)小结:哇,我们找到了这么多红色的东西!可是,到底哪个东西才是蜗牛想要找的呢?我们一起问问蜗牛,蜗牛蜗牛,你想要找的是哪个东西?
2、出示信的第二页(闻起来香香的)蜗牛说:谢谢你们帮我找东西,但是我找的东西是(边说边出示信的第二页)教师:这幅图是什么意思?(鼻子)谁来说说蜗牛要找的是怎样的东西?(红色的,闻起来香香的)对,蜗牛想要找红色的,闻起来香香的东西。那么这里面的哪些东西不是红色的又闻起来香香的?(根据幼儿回答请幼儿将不正确答案取下)小结:剩下的都是红色的闻起来又香香的东西了。那蜗牛要找的是这些东西吗?我们来看看蜗牛给我们留的线索。
3、出示信的第三页(吃起来甜甜的)教师:这幅图告诉了我们什么?(能吃的)那请你们猜猜这样东西吃起来味道是怎么样的呢?(甜的,酸的)你猜对了,蜗牛说,这样东西吃起来是甜甜的,那这上面哪些东西不能吃?(幼儿将不正确图片拿下)小结:剩下的东西都是红红的,闻起来香香的,吃起来甜甜的。
4、出示信的第四页(芝麻的红色心形)我们再来问一下蜗牛,这些是你要找的。东西吗?蜗牛说:谢谢你们,不过我要找的东西是(拿出第四页)教师:蜗牛找的东西是什么形状的?上面还有?(一点点的)谁能用完整的话说一说?(蜗牛要找的东西的红色的,闻起来香香的,吃起来甜甜的,心形的,还穿着一件芝麻外套),现在你知道蜗牛要找的是什么东西了吗?(幼儿取走不正确图片),黑板上只留下草莓图片。
小结:蜗牛要找的东西的红色的,闻起来香香的,吃起来甜甜的,心形的,还穿着一件芝麻外套,蜗牛要找的东西是草莓。
三、分享草莓,再次感知蜗牛说:谢谢你们呀,小朋友,你们帮我找到了我想找的这样东西--草莓,真是太棒了!我也带来了草莓味的美食和你们分享。
活动目标
1.通过参与愉悦的游戏情节,充分体验学习数学的乐趣,从而激发幼儿的探索欲望。
2.发展观察力、记忆力和初步的归类能力。
3.巩固圆形、三角形、正方形主要特征的掌握,能排除大小、颜色的干扰进行图形分类。
活动准备
1.ppt课件:图形宝宝回家
2.学具准备:圆形、方形、三角形卡片若干。
活动过程
一、导入
以到图形王国去参观的口吻,引起幼儿的兴趣,感知大众图形的特征,为图形分类做好铺垫。
教师:今天老师带领你们到图形王国里去参观,进图形王国要受门票,你们胸前都有一张图形门票,知道自己的门票是什么形状的吗?
提问幼儿:你的门票是什么形状的?
二、展开
1.引导幼儿按图形的形状入口,初步感知图形。
教师介绍图形王国的三种形状的入口,要求幼儿按自己门票的形状,走与自己门票相同形状的入口。
比如:有圆形门票的小朋友走圆形入口。依次组织幼儿入场。
2.复习三种图形的外形特征
(1)引出三种图形的名称。
提问:你是从哪个入口进来的?为什么?
分别提问三名门票形状不同的幼儿,从而引出图形的名称。
教师:圆形、正方形、三角形是我们已经认识的图形朋友,你们还记得它们长得什么样子吗?
(2)播放课件,引导幼儿回顾三种图形的外形特征。
提问:圆形长的什么样子?正方形长的什么样子?三角形长的什么样子?
教师:图形妈妈还有图形宝宝,宝宝很顽皮,喜欢跟妈妈做捉谜藏的游戏。
3.幼儿操作,学习图形分类:
(1)圆形分类:
出示圆形脸谱
提问问:圆形妈妈的宝宝是谁?
引导幼儿每人找一个圆形,观察不同点,从而理解,
虽然大小不同,但是形状相同,所以他们分在一起。
教师再利用两个颜色不同的圆形,
虽然颜色不同,但是形状相同,所以,他们分在一起。
小结归纳:所有长的圆圆的,周围很光滑,没有角的图形都是圆形妈妈的宝宝,
(2)依同样方法进行正方形、三角形分类。
三、结束
小朋友,图形王国的开放时间已经到了,我们一起听着音乐,开着小汽车,从出口回家吧!
一、教材分析
集合的基本运算是高中新课标A版实验教材第一册第一章第一节第三课时的内容,在此之前,学生已学习了集合的概念和基本关系,这为过渡到本节的学习起着铺垫的作用,本节内容在近年的高考中主要考核集合的基本运算,在整个教材中存在着基础的地位,为今后学习函数及不等式的解集奠定了基础数形结合的思想方法对学生今后的学习中有着铺垫的作用。
根据教材结构及内容以及教材地位和作用,考虑到学生已有的认知结构和心理特征,依据新课标制定以下教学目标:
二、教学目标
1,知识与技能目标:根据集合的图形表示,理解并集与交集的概念,掌握并集和交集
的表示法以及求解两个集合并集与交集的方法。
2,过程与方法目标:通过复习旧知,引入并集与交集的概念,培养学生观察、比较、分析、概括的能力,使学生的认知由具体到抽象的过程。
3,情感态度与价值观:积极引导学生主动参与学习的过程,激发他们用数学解决实际问题的兴趣,形成主动学习的态度,培养学生自主探究的数学精神以及合作交流的意识。
根据上述地位与作用的分析及教学目标,我确定了本节课的教学重点及难点,
三,教学重点与难点
重点:并集与交集的概念的理解,以及并集与交集的求解。
难点:并集与交集的概念的掌握以及并集与交集的求解各自的区别于联系。
为了突出重点和难点,结合学生的实际情况,接下来谈谈本节课的教法及学法;
四、教学方法与学法
本节课采用学生广泛参与,师生共同探讨的教学模式,对集合的基本关系适当的复习回顾以作铺垫,对交集与并集采用文字语言,数学语言,图形语言的分析,以突出重点,分散难点,通过启发式,观察的方法与数学结合的思想指导学生学习。
那么在本节课中我的教学过程是这样设计的,
五、教学过程
1复习旧知、引入主题
问题1、实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?
由此引入了本节课的课;集合的基本运算,并让学生观察这样三个集合
集合A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}并让学生思考集合A、集合B并与集合C之间有什么关系?
通过对以上集合的观察、比较、分析、学生容易得出集合C里面的元素由集合A或B里边得元素组成,像这样的关系我们把它叫做并集,得出并集的概念后我会引导学生发现并集里边的关键词“或”字,(为了使学生加深对“或”字的理解,我会举出生活中的例子,书记或主任去开会,这里有三层意思:(1)书记去开会,(2)主任去开会,(3)书记和主任都去开会类比这个例子让学生自己归纳出并集中“或”的三层意思)
引入并集的符号“”,并用数学语言描述A与B的并集:或}介绍Veen图
通过对书上例4的讲解,让学生了解当求解并集时出现相同的元素我们只能算一次,这是由集合的互易性确定的,由此复习了集合的互易性,
再对例5的讲解,让学生会用数轴来求解并集,
学生学习了并集含义之后,我会让学生思考这样一个问题,
问题2:除了并集之外,集合还有其他的运算吗?并让他们观以下的集合:
A={1,2,3}B={3,,4,5}C={3}让学生类比并集的方式归纳出它们之间的关系:集合C里面的元素在集合A且在集合B里面,像这样的关系我们把它叫做交集,
引导学生发现交集里面的关键词“且”,介绍交集的符号“”用数学语言表示交集:且};介绍Veen图
对书上例6的讲解让学生了解集合与我们的生活息息相关,从而激发他们学习是学的兴趣,并学会用自然语言来描述两个集合的交集,
例7:让学生了解当两条直线没有交点即两个集合没有公共部分的时候,他们的交集不是不存在,而是他们的交集为空集,由此复习了空集的概念,
让学生完成书上的练习,
1、课堂练习,反馈信息。(P11,1、2题)
在以上的环节中,老师只起了引导的作用,而学生是主体,充分的调动学生的积极性与主动性,让学生的学习过程在老师的引导下的知识在创造。
2、课堂小结,自我评价。
通过提问,引导学生对所学的知识、思想方法进行小结,形成知识系统,用激励性的语言加以点评,让学生思想尽量发挥完善。
3、作业布置,反馈矫正。(P12,6、7)
教学过程:
一、导入
老师:我们去菜市场买东西用什么称呢?
学生:秤、电子秤
老师:那你见过这样的秤吗?出示天平
二、介绍天平
它有两个托盘,中间有刻度,两天刻度相等,中间刻度为0.这就是天平。
三、探究新知,观看课件
(一)等式
1、在天平的两边放入砝码,左盘:20克和30克,右盘:50克,中间刻度指向0,那么说明天平平衡了。
提问:你能根据此列出一个式子吗?
学生:20+30=50
2、观看课件,列式子。
30+X=80X+20=702X=100
3、何为等式?学生一起说:表示相等的式子叫做等式。
举例:60+X=8070+20=9050-20=30
4、总结:我们刚刚说的都是等式,先找等量关系,等式是表示相等关系的式子。
5、举反例:5X>2930<70是等式吗?学生:不是。
6、齐说两遍等式的概念。
(二)方程1、像30+X=80、X+20=70、2X=100这样的式子又叫什么呢?
学生:方程老师:看来这位学生已经预习了本节内容,值得表扬。
2、对,就是方程,像这样含有未知数的等式叫做方程。反复读。举方程的例子。
3、等式和方程的关系。所有的方程都是等式,所有的等式不一定都是方程。
(三)板书20+30=50表示相等关系的式子叫做等式30+X=50X+20=702X=100含有未知数的等式
四、练习
1、判断哪些是方程,哪些是等式?为什么?
2、看图列方程,并说一说表达的意思。五、总结:何为等式?方程?表示相等关系的式子叫做等式。
含有未知数的等式叫做方程。
听课意见:
1、从生活中事物导入,来吸引学生们的眼球。
2、在课堂安排上具有逻辑性:等量关系——→等式——→方程
3、在板书上,注重用彩笔区分,清晰的描绘出了概念。
4、在课堂中照顾到了大部分学生,能做到一视同仁。
5、在强调重点时,采用多读、多念的方法,加深学生们的印象。
小学听课记录数学
一、教学构思
长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的'知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
二、教学目标:
1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。
2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
三、教学活动过程:
一、引导学生学习正方体表面积的计算方法
1.回忆
上节课我们学习了长方体表面积的概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?
2.联想:
(拿起一个正方体的模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?
3.归纳引入新课:
正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)
4.教学例2
提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?
(课堂实录:有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)
(点评:良好的开端是成功的一半,一堂课是否有好的开头是上好一堂课的关键。针对小学生的心理特点,上课一开始,我首先利用长方体和正方体的模型进行导入,先请学生思考用什么方法计算正方体的表面积,接着根据以前所学的知识进行推导,从而引出新的计算方法,使得学生愉快主动地进入学习情境,强化了有意注意,激发学生的求知欲望,对新的知识进行探索。通过教学的导入,明确了教学的目标,确定了研究方向,这时再引导学生学习就事半功倍了。)
师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。
二、鱼缸的制作问题
说明:我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算。如例3。
1.帮助学生回忆鱼缸的形状(长方体,但是没有上面)
2.如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)
3.教学例3
(出示长方体模型,把它看成鱼缸的模型)
(1)鱼缸缺少哪个面的玻璃?(上面)
(2)要求需要多少平方分米玻璃,要算几个面的面积和?哪几对面有相同的两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽*高前面=长*高底面=长*宽)
(3)指名学生板演,集体订正。
(点评:在教学中采用学生生活中较熟悉的物体“鱼缸”启发学生如何计算制作一个鱼缸所需材料的面积,也就是计算长方体某几个面的面积之和。这个事例在生活中较普遍,再加上利用一些模具进行教学,使得学生在学习中能够更好地联系实际情况进行学习。以上这一系列的活动表现了完整的探究过程,都体现让学生经历整个教学的探究过程。)
(4)改变题目要求,使得长方体的宽和高长度相等,观察模型,你发现了什么现象?怎样计算比较简便?
学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。
学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。
学生3:这个长方体没有上面,所以只要算5个面的面积,它的前面、后面、下面这三个面完全相同
说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。
(点评:数学是很严谨的,所以在学生叙述的时候要规范学生的语言。我在教学的时候还注重评价,运用语言和体态及时给予适当的鼓励和指导,促进学生的学习和发展。第三位同学回答地最完善,所以我表扬了他在叙述数学问题时所具有的严谨性,同时要求全班同学在这方面要向他学习。)
4、练习
书P42页练习二的第一、二题。
(点评:要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)
《长方体和正方体的表面积》的教学反思:
一、积极参与,发现问题
在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。在活动中,一方面要巩固学小学听课记录数学
(一)、创设情境,引入新课
1、复习:圆柱的体积公式是什么?
2、从日常生活中引出问题,激发学生求知欲望。
商店的冰箱里有两种香芋冰淇淋,圆柱形冰淇淋每支3元,圆锥形的冰淇淋每支0.8元,已知这两种冰淇淋的底面积相等,高也相等,�
3.导入:那么,到底谁的意见正确呢?通过今天这节课学习圆锥的体积计算之后,相信这个问题就很容易解答了。这节课我们就来研究圆锥的体积。(板书:圆锥的体积)
(二)、动手测量,大胆猜想
1.我们已经认识了圆柱和圆锥的各部分的名称,下面请同学们以小组为单位,动手测量一下你们手中的圆柱和圆锥,看看能发现什么?(按四人小组动手测量)教师巡视学生测量方法是否正确,不对的给予指导。
2.量后交流发现,得出结论:每个组的圆柱和圆锥都是等底等高的。
3.大胆猜想:估计一下,这个圆锥的体积与这个圆柱的体积有怎样的关系?可能是这个圆柱体积的几分之几?(给学生充分猜想的时间和机会)
(三)、实验操作,推导圆锥体积计算公式
1.谈话:下面请大家利用你们手中的圆柱体和圆锥体来做实验,验证一下
你们的猜想对不对。(你们打算怎样做实验,先在小组内商量好办法)
2.学生分组做实验,师巡回指导。
3.交流汇报。
(1)你们小组是怎样做实验的?
(2)通过做实验,你发现了什么规律?圆锥体积与等底等高的圆柱体积之间有怎样的关系?
师相机板书:圆锥的体积是与它等底等高的圆柱体积的
4.提问:是不是所有的圆柱和圆锥都有这样的关系?
教师出示不等底等高的圆锥、圆柱,让两学生上台操作实验。
提问:通过这个实验,你得出什么结论?(只有等底等高的圆锥才是圆柱体积的)
5.启发引导推导出圆锥体积公式并用字母表示。
提问:那么我们怎样计算圆锥的体积?
板书:圆锥的体积=等底等高的圆柱的体积×=底面积×高×用字母表示:=(先让学生试着写一写,然后师板书,学生进行对照)
6.提问:要求圆锥体积需要知道哪些条件?公式中的底面积乘高,求的是什么?为什么要乘。
7.练习(口答)
(1)一个圆柱体积是27立方分米,与它等底等高的圆锥体积是多少立方分米?
(2)一个圆锥体积是150立方厘米,与它等底等高的圆柱体积是多少立方厘米?
(四)、运用公式,拓展训练
1.教学“试一试”。
学生独立计算,指名报答案,共同评议。
2.做“练一练”第1题。
(1)指定2人板演,其余学生做在练习本上。集体订正。
3.判断
(1)圆锥体积是圆柱体积的1/3。( )
(2)圆柱体积一定比圆锥体积大。( )
(3)圆锥的底面积是3平方厘米,高是2厘米,体积是2立方厘米。( )
4.做“练一练”第2题。
提问:①谁能说一说做第2题的思路?
②计算圆锥体积时要特别注意什么?
5.完成练习八第2题。
(1)学生尝试做题。交流解答方法。
(2)提问:这道题为什么用“12÷3”可以直接得到答案?
(3)做实验加深理解。
6.考考你
一根圆柱形木料,底面半径是6厘米,高12厘米。要削成一个最大的圆锥形,削去的木料体积是多少?
7.现在你能回答本课开始时那个问题了吗?
(五)、课堂总结
提问:这节课你学会了哪些知识?圆锥的体积怎样计算?为什么?这节课你还有什么收获与心得?
(六)、布置作业
完成练习八第1、3题。
一、章节名称:
1.1集合
二、计划学时:1(45分钟)
三、教学目标:
1、知识目标:
(1)使学生初步理解集合的概念、性质,知道常用数集的概念及其记法
(2)使学生初步了解“属于∈”关系的意义
(3)使学生初步了解集合的分类:有限集、无限集、空集
2、能力目标:
探究集合在现实社会中的意义的能力;使学生学会自觉探究数学学习方法的能力。
3、情感、态度与价值观目标
通过集合学习,使学生认识自己在社会这个大集合中的地位与作用,树立正确的三观。
四、教学重难点
1、教学重点:集合的基本概念、集合中元素的性质
2、教学难点:点集与数集的特点及常用的数集及其记法
五、学习者特征分析:
学习特点:学习对象为高一新生,高一学生虽然在智力等各方面都有
较之初中的发展,但毕竟刚刚由初中阶段上升而来,对于新的知识朦胧性较大,虽然集合的思想在小学以及初中就有了渗透,但是由于学生之间知识的差异层次较大,再者,一个概念的引入,如想较理性的认识还得靠深入的学习和多一些的训练。
学习习惯:高中级学生经过多年的学习,已经有了自己初级的学习习惯和方法,我们可以充分调动他们的积极性,并且适当帮助他们调整学习方法中的不妥之处。
六、课程类型与教学方法
课型:理论课与现实材料相结合的形式为主导,打破传统的数学课的枯燥乏味性。
教学方法:以教师授与学生互动为主采用实例归纳、自主探究、合作交流等方法。教学中通过列举例子,引导学生进行讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质。。
七、教学过程设计
(一)、课前安排
由于是初次试讲,老师与学生都是第一次见面。所以,课前准备要求老师把所有的问题都想清楚,努力做到课程流畅不卡壳。
(二)、课堂教学
一、目标
1.认识数字6、7,知道它们能表示相应的数量。
2.能不受物体排列方式的影响,正确感知7以内的数量。
3.通过多种游戏,巩固对数字6、7的认识,体会数字的乐趣。
二、准备
1.大数卡1至7各一张。
2.挂图(草地上有6只鸡和条虫),一只小鸡和一条虫。
3.“数字宝宝回家”游戏道具(房子,实物卡片,数字等)。
三、过程
1.复习数字1~5。
老师:今天啊,老师请来了数字宝宝,小朋友看看都有谁啊?(教师逐一出示数卡)现在啊,老师来和你们做个游戏,请小朋友先把眼睛蒙起来。(拿走数字4,5)
老师:好,小朋友,现在看看,谁不见了啊?
2.认识数字6和7
⑴认识数字6
① 出示挂图。
老师:哦,原来啊数字宝宝4和5来到了草地上,看看草地边上有几只小鸡呀?我们一起来数一数。1、2、3、4、5、6,一共有6只小鸡。那一只小鸡吃一条虫子,草地上有几条虫子呢?恩,一共有6条虫。
老师:6只小鸡和6条虫子我们可以用数字几来表示啊?(一起说可以用6表示)
② 老师:6除了表示6只小鸡和6条虫子,还可以表示什么呀?小朋友动动你们的小脑筋,举手告诉老师。(幼儿自由回答,鼓励并表达回答正确的幼儿。)
⑵认识数字7
老师:老师刚刚啊收集了大家的魔力,现在要开始变魔术了,请小朋友们用手挡住自己的小眼睛,不许偷看哦!(老师在图上再添上一只小鸡和一条虫子)
老师:1、2、3,变。小朋友看看,现在草地上有几只小鸡?几条虫子啦?自己数在心里,等等告诉老师。一起说,有7只小鸡,7条虫子。
提问:7只小鸡和7条虫子可以用数字几来表示?一起说,可以用数字7来表示。
老师:我们一起用手来摆摆看数字7。
3.巩固对数字6、7的认识
老师:今天啊我们的数字宝玩的真开心,可是他们有点累了,想回家了。数字宝宝住在哪里呢?请小朋友来找找看呢!
游戏:数字宝宝回家
老师:小朋友走到房子面前,先用你的'小手数数看,有几个东西就把数字宝宝插在下面的格子里。
老师:我们来看看小朋友送的对不对呢?
老师:谢谢小朋友们送数字宝宝回家。小朋友们今天开心吗?(开心。)好,下次我们再请别的数字宝宝来做游戏吧。好,现在下课了!
一、教学目标
1、知识与技能:
(1)理解并集和交集的含义,会求两个简单集合的交集与并集
(2)能够使用Venn图表达两个集合的运算,体会直观图像对抽象概念理解的作用
2、过程与方法
(1)进一步体会类比的作用
(2)进一步树立数形结合的思想
3、情感态度与价值观
集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美。
二、教学重点与难点
教学重点:并集与交集的含义
教学难点:理解并集与交集的概念,符号之间的区别与联系
三、教学过程
1、创设情境
(1)通过师生互动的形式来创设问题情境,把学生全体作为一个集合,按学科兴趣划分子集,让他们亲身感受,激起他们的学习兴趣。
(2)用Venn图表示(阴影部分)
2、探究新知
(1)通过Venn图,类比实数的加法运算,引出并集的含义:一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A和集合B的并集。
记作:AB,读作:A并B,其含义用符号表示为:
(2)解剖分析:
1、所有:不能认为AB是由A的所有元素和B的所有元素组成的。集合,即简单平凑,要满足集合的互异性,相同的元素即A和B的公共元素只能算作并集中的一个元素
2、或:这一条件,包括下列三种情况:
3、用Venn图表示AB:
(3)完成教材P8的例4和例5(例4是较为简单的不用动笔,同学直接口答即可;例5必须动笔计算的,并且还要通过数轴辅助解决,充分体现了数形结合的思想。)
(4)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?(具体画出A与B相交的Venn图)
(5)交集的含义:一般地,由属于集合A和集合B的所有元素组成的集合,称为A与B的交集,记作:AB,读作:A交B,其含义用符号表示为
(6)解剖分析:
1、且
2、用Venn图表示AB:
(7)完成教材P9的例6(口述)
(8)(运用数轴,答案为)
3、巩固练习
(1)教材P9的例7
(2)教材P11#1#2
4、小结作业:
(1)小结:
1、并集和交集的含义及其符号表示
2、并集与交集的区别(符号等)
(2)作业:
教学目标:
1、通过教学,使学生牢固掌握中间、商末尾有0的除法计算方法。
2、能正确地、比较熟练地进行计算。
3、养成认真、仔细的良好学习习惯。
教学重点:巩固、掌握除数是两位数除法的计算方法。
教学过程
一、揭示课题、明确目标
二、基本训练
1、口算
49×3 840÷70 61×7 320÷80
120÷40 18×6 570÷30 65×5
2、先说说下面各题的商是几位数,再计算。
8505÷17 8355÷83 8160÷34
9045÷45 7816÷26 8232÷56
三、综合训练
1、对比练习
2856 ÷28 3840 ÷16
8484 5760
5788 8485
2、判断,把不对的改正过来?
25 12
26)5330 54)5508
52 54
130 108
130 108
0 0
3、计算并验算。
8640÷36 4935÷47 8945÷85
1185÷29 9600÷32 3854÷82
4、文字题
(1)一个数乘63得7560,这个数是多少?
(2)9548是77的多少倍?
(3)除数是24,商7余11,被除数是多少?
四、提高练习
+7004÷34=300(-)×26=3640
五、课堂
【教材分析】
1、知识内容与结构分析
集合论是现代数学的一个重要的基础。在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用。课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力。
2、知识学习意义分析
通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用。
3、教学建议与学法指导
由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用。通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性。
【学情分析】
在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线)。这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”。集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题。学习集合,可以发展同学们用数学语言进行交流的能力。
【教学目标】
1、知识与技能
(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;
(2)掌握集合的常用表示法——列举法和描述法。
2、过程与方法
通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。
3、情态与价值
在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。
【重点难点】
1、教学重点:集合的基本概念与表示方法。
2、教学难点:选择合适的方法正确表示集合。
【教学思路】
通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的。教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排。
【教学过程】
课前准备:
提前留给学生预习方案:a.预习初中数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。
导入新课:同学们,我们今天要学习的是集合的知识,在小学和初中,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-7<3的解得集合,到一个顶点的距离等于定长的点的集合(即圆),等等。现在呢,我要说的是:我们大家通过对初中知识的预习和对本节课的预习我相信你们能够很大一部分已经掌握了本节知识的主要问题,对不对?(同学们会高兴地说:对!)
下面我们分三个小组,做个游戏,好不好?我们互相竞赛答题,互相评论优点与不足,好不好?(同学们在被调动起情绪的时候应该说:好!)
教与学的过程:
预设问题 设计意图 师生活动 教师活动
一组二组三组活动 同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗? 提出一个模糊一点的问题,留给三组学生更宽的思考空间。启发思考,激发兴趣。 教师点拨,及时纠正偏差的回答方向。(理想答案:我们学过很多集合的知识了。我们会举出一些集合的例子。)
学生三个组分组轮流回答。 你能说出他们有什么共同的特征吗? 为集合的定义及含义的给出作出铺垫,并培养学生的总结概括能力。 引导学生共同得出正确的结论。最后给出准确的定义:我们把研究的对象称为元素(element);把一些元素组成的总体叫做集合(set)(简称集)。 学生讨论,分组轮流回答。 你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊? 通过学生自己总结,对元素与集合的关系记忆更深刻。 教师指导学生得出准确答案。(理想答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.如果a是集合A的元素,就说a属于A集合A,记做a∈A,如果a不是集合A中的元素,就说a不属于集合A,记做 A) 学生讨论,分组轮流回答。可以互相挑出对方回答问题的错误来比赛。 我们描述集合常用哪些方法呢?怎么表示? 引导学生认识集合的两种常见表示方法。 教师引导指正。(理想答案:列举法:把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法。 描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 同学们上黑板边回答边演练。 谁能试着说说集合中的元素有什么特点啊? 拓展知识,让学生对元素的特征有极爱哦理性的认识,并开发其探究思维。 教师点拨。(理想答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有顺序的,无序性。即(1) 确定性: 对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。(2) 互异性: 同一个集合中的元素是互不相同的。(3) 无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。) 学生探究讨论,回答。 什么叫两个集合相等呢? 深刻理解集合。 教师给出答案。(如果构成两个集合的元素是一样的,我们称这两个集合是相等的。) 学生探讨回答。 典型例题
【题型一】 元素与集合的关系
1、设集合A={1,a,b},B={a,a2,ab},且A=B,求实数a,b.
2、已知集合A={a+2,(a+1)2,a2+3a+3}若1∈A,求实数a的值。
【题型二】 元素的特征
⑴已知集合M={x∈N∣ ∈Z},求M
活动目标:
1、喜欢倾听故事,理解故事内容。
2、大胆想象讲述,感受故事中的小脚丫不断变化的快乐。
3、积极与老师和同伴互动,体验阅读的快乐。
星期一上午的第一个活动是绘画《冰糖葫芦》,目的是让孩子们学习画圆圈
授课教案第一章学前儿童数学集合概念的教育教学目的与要求:
通过本单元的学习,你应该能够;
1、了解学前儿童感知集合的发展及教育理解学前儿童集合概念的教育要求。
2、掌握学前儿童集合集概念教育活动设计与组织的基本要求,根据教学内容及儿童特点设计并组织集合类教育教学活动。
重点:集合的基本知识及概念发展的阶段、特点。
难点:集合概念教育活动设计与组织的基本要求,根据教学内容及儿童特点设计并组织集合类教育教学活动。
学时安排:
共14学时课题学时备注3.1学前儿童数学集合的基本知识概念发展与教育要求设计与组织3.2学前儿童数学教育集合概念、量的认识的发展及教育;学前儿童集合概念的教育活动的设计与组织3.3拓宽练习、案例评析3.2
(1)学前儿童数学教育集合概念、量的认识的发展及教育学前儿童数学教育集合概念教育要求教学目标知识目标
1、理解学前儿童数学教育集合概念教育要求
2、各年龄班集合教育的具体要求是那些内容
3、小班、中班、大班的要求能力目标培养学生知道各年龄班集合教育的具体要求德育目标渗透数学集合的思想教学重点学前儿童数学教育集合概念教育要求教学难点各年龄班集合教育的具体要求是那些内容小班、中班、大班的要求教学方法讲述法讲练结合阅读指导法备课时间13课件教学过程讲一讲课件展示练一练阅读
作业提问:学前儿童感知集合发展的特点分类对于孩子重要的意义学前儿童数学集合的基本知识概念发展的阶段
一、学前儿童数学教育集合概念教育要求
1、体验事务的共同属性
2、掌握求同和分类的技能
3、初步形成集合的概念
4、对集合元素进行比较和体验集合与子集的关系
二、各年龄班集合教育的具体要求是那些内容
小班
1、探索物体的特征,学习讲述物体的异同。
2、学习按物体的某一外部特征(如颜色、形状、大小)进行分类。
3、学习与分类有关的词语:如“相同”,“不同”,“把同样的东西放在一起”,“找出一个和某某一样的东西”等等。
中班
1、学习按物体的数量进行分类。
2、学习概括物体(或图形)的两个特征。
3、学习并掌握有关的词语:“分成”、“分开”、“合起来”
大班
1、学习按某一特征的肯定与否定进行分类,讲述出某种事物所不具有的特征。
2、学习按两个特征进行分类和在表格中摆放图形。
3、学习把集合分成若干组成部分(子集),比较集合与子集的数量,初步体验集与子集的关系。
p100-102备注1025 25 20 3、2(2)学前儿童数学教育集合概念、量的认识的发展及教育学前儿童集合概念教育活动的设计与组织教学目标知识目标理解学前儿童集合概念教育活动的设计与组织求同操作活动的设计与组织掌握分类操作活动的设计与组织能力目标培养细心耐性的能力德育目标比较法、启发探索法、归纳法和演绎法的思想教学重点求同操作活动的设计与组织教学难点分类操作活动的设计与组织教学方法讲述法讲练结合阅读指导法备课时间13课件教学过程讲一讲课件展示试一试阅读作业提问:
各年龄班集合教育的具体要求是那些内容学前儿童数学教育集合概念教育要求
一、求同操作活动的设计与组织
1、按标志求同
2、用排除法求同举例:黄、蓝、红的汽车等
二、分类操作活动的`设计与组织
1、按对象分按物体的名称分类。按物体的外部特征分类。按物体量的差异分类。
2、按包含关系分具体概念的分类。即对同类同名称物体分类。如从不同水果的卡片中将香蕉、苹果、葡萄、梨等分别归类。一级类概念分类。如从一堆画有各种水果、车辆、餐具等卡片中把车的卡片挑出来或分别归类。二级类概念分类。如按交通工具、玩具、植物等分类。
3、包括:感知集合10以内的数10以内的加减法简单的几何形体量的初步知识空间方位时间
4、按分类的难度按物体的一个特征分类按物体的二个特征分类多角度分类、层级分类p102---103备注1010 20 10 20 10
教学目标知识目标
1、知道排除法求同操作活动的设计与组织(按物体的用途分类)
2、配对操作活动的设计与组织方法。分类操作活动的设计与组织(按物体的材料性质分类)
3、了解分类活动中注意事项能力目标活动中的数学教育渗透德育目标感受数的意义教学重点求同操作活动的设计与组织教学难点分类操作活动的设计与组织教学方法讲述法讲练结合阅读指导法备课时间13课件教学过程讲一讲课件展示练一练作业提问:
求同操作活动的设计与组织形式分类操作活动的设计与组织方法求同操作活动的设计与组织的内容幼儿在体验的过程中发现并挑选出具有某种共同属性的物体。
一、排除法求同分类操作活动的设计与组织分类就是把一组物体分成各有其共同属性的几组。
(1)按外部特征
(2)按内部属性
(3)按数量和逻辑关系
(4)按两个或两个以上特征
(5)层级分类备注1015 20xx 15
(6)自由分类层级分类:按两个或两个以上特征分类、自由分类分类后的式比较两组物体相等与不等。
二、配对操作活动的设计与组织方法;比较两组物体相等与不等就是用一一对应的方法比较两个集合中元素的数量,确定是否一样多(配对)
(1)关系配对
(2)做等价集合
(3)等量配对
(4)变成一样多例如:儿童思考讨论:边上的红三角形应放在哪?
1.第一阶梯:感知操作认知维度,即动作水平
2.第二阶梯:形象表征认识维度,即表象水平
3.第三阶梯:词语符号认知维度,即概念水平
三、分类活动中注意事项
1、重视分类活动中的材料的提供
2、充分利用游戏引导幼儿分类
3、充分利用日常生活情景引导幼儿练习分类p112引导学前儿童比较应注意的几个方面?教学反馈
一、教材分析:
“渗透集合知识”是人教版《义务教育课程试验教科书数学》三年级下册第九单元《数学广角》第一课时的教学内容。小学生从一开始学习数学,就已经在运用集合的思想方法了。例如,学生在一年级学习数数时,把1个人、2朵花、3枝铅笔等等用一条封闭的曲线圈起来表示,这样表示的数学概念更直观、形象,给学生留下的印象更深刻。又如,我们学习过的分类实际上就是集合理论的基础。本节课教学的例1是借助学生熟悉的题材,渗透集合的思想,并利用直观图的方式求出两个小组的总人数。在教学例1时,我注重了三个方面的问题。
(1)集合的理解。
(2)有关计算。
(3)拓展延伸。基于以上的安排,结合新课程标准,我确定了本节课的教学目标:
二、教学内容:
教材第108页例1,练习二十四弟1、2题。
三、教学目标:
(1)知识与技能:同学们能够借助直观图,初步利用集合的思想方法去解决简单的问题。
(2)过程与方法:使学生能借助具体内容,利用集合的思想方法去解决问题。
(3)情感态度与价值观:培养学生观察思考问题的能力。
四、重难点
重点:初步体会集合的思想方法。 难点:用集合直观图来表示事物。
五、教法学法
教法:。情景演示与引导学习相结合。情景的演示激发学生兴趣,让学生进入到最佳学习状态。学生在老师的引领下,自主学习、观察、思考、交流、讨论和概括,从而完成本节课的教学目标。
学法:自主探究与合作学习相结合。2.补救法,在授课中有意将学生导入误区,最后学生用学到的知识判断并改正,这样做有利于学生的计算,一定得减去重复的个数。
六、教学准备:课件 图片等 七、教学流程:
教案目标
1、发现“1”和“许多”,感知“1”和“许多”的关系,即若干个1个合起来是许多个,许多个可以分成若干个1个。
2、知道班里除了有1个我,还有许多个我的好朋友,体验与小朋友在一起时的快乐。
教案准备
小镜子若干,大穿衣镜1面。
教案过程
1、看看小镜子,发现“1”个和“许多”个给每人提供一面小镜子,引导幼儿:“快看看小镜子里,有谁在里面?有几个你自己?”并告诉幼儿:“小镜子里还有你的好朋友。”让幼儿试一试,能不能从镜子里看到自己的'好朋友,看到了就大声说:“×××,你是我的好朋友。”然后比一比,看谁看到的好朋友多。
2、看看大镜子,体验“1”与“许多”的关系将幼儿集中到大镜子前,提问:大镜子里有谁?(引导幼儿说一说有许多小朋友)邀请全体小朋友当小猫,和老师一起做“老猫睡觉醒不了”的游戏。
游戏开始时,主班老师面朝镜子背对幼儿做睡觉状。当主班老师(老猫)嘴里念到:“老猫睡觉醒不了,小猫悄悄往外跑”时,配班老师悄悄请一个幼儿起身躲到屏风或布帘后面去(不能被镜子照到),主班老师睁开眼睛问:“几只小猫跑了?”幼儿回答:“1只。”游戏重新开始,如此反复直至所有幼儿都躲到屏风后面时,老师问大镜子:“每次只有1只小猫跑掉,怎么我的许多小猫都没有了?”(让幼儿发现许多只被分成了若干个1只)这时,配班老师逐一请幼儿回到大镜子前,主班老师问:“几只小猫回来了?”该幼儿答:“1只。”如此反复直至所有幼儿都回到大镜子前,主班老师再问:“每次只回来1只小猫,我这里怎么会有许多只小猫呢?”(让幼儿再次发现若干个1只合起来就有了许多只)。
活动延伸教师还可结合平时的各种生活、游戏活动,让幼儿反复感知“1”和“许多”(元素与集合)的关系,例如分餐具、发点心等。
活动目标:
1.知道数字的序列概念。
2.能跟着音乐模仿鸭子上桥的动作。
活动重点:
知道数字的序列概念
活动难点:
能跟着音乐模仿鸭子上桥的动作
活动准备:
课件,鸭子头饰若干
活动过程:
一、歌曲鸭子上桥
1.教师播放课件,幼儿边看课件边欣赏完整歌曲。
2.教师播放课件第一段,幼儿熟悉歌词内容,跟唱歌曲。
3.教师播放课件第二段,幼儿熟悉歌词内容,跟唱歌曲。
4.教师播放课件,幼儿集体演唱歌曲,鼓励幼儿边唱歌曲边用合适的动作来表现鸭子上桥的动作以及在桥上的动作。
二、复习1-8序数
1.幼儿集体演唱鸭子上桥第一段,再说说鸭子上桥的。顺序。
2.幼儿分组表演鸭子上桥第一段,提醒幼儿边唱边表演,按顺序上桥。
三、学习8以内倒数
1.幼儿集体演唱鸭子上桥第二段,再说说鸭子下桥的顺序。
2.教师:鸭子下桥的时候是从最后一只上桥的鸭子开始的,第8只、第7只、第6只、……第1只,这种方法叫做倒数。
3.幼儿分组表演鸭子上桥第二段,提醒幼儿边唱边表演,按顺序下桥。
教学内容:
义务教育课程标准实验教科书小学数学三年级上册《数学广角——集合》的内容之一。
教学目标:
1.知识技能目标:在具体的情境中使学生感受集合的思想,感知集合图的产生过程。
2.数学思考目标:
能借助直观图理解题意,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。
3.问题解决目标:
(1).能借助直观图,利用集合的思想方法解决简单的实际问题。
(2).渗透多种方法解决重叠问题的意识。
4.情感态度目标:
(1)培养学生善于观察、善于思考的能力。
(2)手脑结合、学中激趣,体验合作乐趣,养成良好习惯。
教学重难点:
1.重点:体会集合思想,利用集合的思想方法解决简单的重叠问题,并且能用数学语言进行描述。
2.难点:对重叠部分的理解;学会用集合图来表示事物之间的关系。
教学方法:观察法、分析法、讨论法、操作法、直观演示法、尝试法。
学法指导:
1.借图观察、分析、讨论、交流、操作。
2.大胆尝试用集合图来表示事物之间的关系,敢于发表自己的见解。
教具准备:多媒体课件、微视频、切换笔、可以活动的姓名卡片、直尺、磁铁、双面胶、5朵红花和5个五角星。一张大白纸。
学具准备:常规学具、彩笔、作业本。
教学过程:
一、创设情境,引入新课
1.激情导入,引出例题
师:上课之前,我们一起来欣赏一段视频,希望同学们认真仔细的观看,随后,要回答老师的提问。请看大屏幕……(课件出示奉献爱心、从小做起的微视频)
师:看完这段精彩而又让人感动的画面后,你有什么想说的吗?在今后的生活中,如果遇到需要帮助的人或事,你应该怎么做呢?(各抒己见)
师:同学们说的真好!那么,我们荔东小学的同学们也是一方有难、八方支援,非常有爱心。请看大屏幕:这是我校三一班其中一个小组同学向灾区“献爱心”的情况。请同学们认真仔细地观察这幅表格,你从中都发现了哪些数学信息?
设计意图:激发学生学习兴趣的同时,渗透奉献爱心、从小做起,一方有难、八方支援的爱心教育。
三一班某小组同学“献爱心”的情况:
捐款
黄娜
董泽
李彤
张阳
任一
捐物
孟涛
李彤
任一
吴越
张恒
张旭
生1:我发现在这次“献爱心”活动中,有捐款的,还有捐物的。
生2:我发现捐款的有5人,捐物的有6人。
师:你能提出一个数学问题吗?
生1:捐款的比捐物的少几人?
生2:捐物的比捐款的多几人?
生3:捐款的和捐物的一共多少人?
2.设问质疑,引发冲突
师:参加捐款捐物的一共有多少人?如何解答?
生:11人、10人、9人。
师:这么一个简单的问题怎么会有这么多不同的答案呢?
生:里面的同学重复了。
师:哪里重复了?(李彤和任一,课件闪动。)
看来这张表格不能让我们很清楚的看出一共有多少人?那你们能不能想想办法,在不改变题意的前提下,将表格中的名字作以调整,让人们很清楚的看出一共有多少人?为此,老师特意为大家准备了一个可以随意活动姓名的表格。请看黑板:(揭示黑板上的活动表格)
师:下面请同学们分组讨论,如何去调整表格?
二、小组交流,探究新知
1.分组讨论、调整表格。(各组代表汇报、操作、展示)
方案一:
捐款
李彤
任一
黄娜
董泽
张阳
捐物
李彤
任一
孟涛
吴越
张恒
张旭
师:你觉得你们组这样摆有什么好处?
生:把重复的两个同学摆在前面,能引人注意。
师:谁都赞同他们的摆法?请把最热烈的掌声送给这个积极探索的小组。你们组的摆法的确不错,可老师还是觉得,有时还会将总人数看成11人,哪一组还有更好的摆法?
(课堂生成:如果学生没有想到这个方案,可以启发:当我们读书的时候,眼睛从左往右看。那么,想引起人们的注意,应该把既捐款又捐物的人名移到左边。)
方案二:
捐款
李彤任一
黄娜
董泽
张阳
捐物
孟涛
吴越
张恒
张旭
师:哇!你们的摆法很独特,说说你们这样摆有什么好处?
生:因为有两个李彤和任一,我们取下来一个李彤和任一,将剩下的李彤和任一放在中间,既表示捐款的人,又表示捐物的人,这样,很清楚的看出一共有9人。
师:你们组的摆法真的很有创意,他们组的摆法你满意吗?(生生评价)授予你们小组为“勇于创新小组”。同学们,掌声鼓励。
设计意图:培养学生的观察能力、分析能力、交流合作能力以及创新能力。积发学生的想象力,拓展学生的思维。
(课堂生成:如果学生没有想到这个方案,可以启发:当你和爸爸、妈妈上街的时候,你既想牵爸爸的手,又想牵妈妈的手,你应该走到什么位置?那么,同样的道理,李彤和任一这两个同学既捐了款又捐了物,他们应该放到什么位置?)
2.圈一圈。
师:请同学们观察这张调整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分别把它们圈出来吗?
设计意图:(不同颜色的粉笔圈出来更明显)为韦恩图的形成奠定基础。
3.探究韦恩图
师:为了让大家看的更清楚、更直观,请看大屏幕:
(1)取消表格。
表示捐款和捐物的人名单我们已经用线圈起来了,底下的表格已经没有用了,可以将它取消。
(2)捐款的移到左边,捐物的移到右边。
(3)线条歪歪曲曲的,将它画好就更美观了。(课件出现韦恩图)
设计意图:感受韦恩图的形成过程,让学生亲身经历知识的形成过程。
(4)介绍韦恩图。
师:在很久以前,就有人给它起了个名字,叫韦恩图。(出现韦恩图三个字)你们知道为什么把它称作韦恩图吗?因为这是英国著名的数学家韦恩在19世纪发明的,后来,就把这样的图叫韦恩图,也叫集合图。今天,我们就一起探究有关集合的知识《数学广角》——集合。(板书课题)
设计意图:介绍课外知识,拓宽知识视野。
师:同学们,我们通过自主探究、动手操作、小组讨论,将一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,经过旋转演变后,转化成这副既科学合理又形象直观的韦恩图,你们真的很了不起!师:请大家仔细观察大屏幕,回答老师的提问。
4.列式计算。
(1)课件分别出示韦恩图的五个部分,学生分别说出每部分所表示的含义,课件一一呈现数学信息。
师:同学们看懂韦恩图了,也真正领悟到了每部分所表示的含义,并且,从中发现了这么多的数学信息,现在,你能计算出捐款和捐物的一共有多少人吗?请同学们独立解答。
(2)计算板演。
方法一:5+6-2=9(人)答:捐款和捐物的一共有9人。(贴答数)
讨论:为什么要减2?(因为有2个人既捐款又捐物)
方法二:3+2+4=9(口答)方法三:5+4=9(口答)方法四:3+6=9(口答)
设计意图:发展学生思维,体现方法多样化。
三、实践应用,巩固内化
师:同学们,通过刚才的学习,我们学会了许多知识和本领,其实,利用韦恩图可以帮我们解决生活中的许多问题,我们来看看:
1.举一反三(4道抢答题)
4.思维训练
三年级有10名同学参加竞赛,其中,参加数学竞赛的有5人,参加作文竞赛的有6人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
设计意图:有梯度的练习题有利于不同层次的学生均有收获。举一反三抢答题强调重点,内化知识;思维训练题求重叠部分,培养学生的逆向思维,培养学生灵活运用知识解决问题的能力。
四、总结质疑,自我提高
1.学生说这节课的收获并质疑
2.互相评价、共同提高(自评互评生评师师评生)
师:同学们,你们课堂上,善于观察、认真思考、踊跃发言、敢于创新。表现得非常出色!通过自主探究、小组交流学到了很多关于集合的知识,下面,有请获得红花和红星奖励的小朋友上台。红花站左边、红星站右边。
引发冲突:两种都有的学生应该站哪?(中间)请观察这一排同学,回答问题:
1.获得红花奖励的指哪些同学?
2.获得红星奖励的指哪些同学?
3.既获得红花奖励又获得红星奖励的指哪些同学?
4.只获得红花奖励的指哪些同学?
5.只获得红星奖励的指哪些同学?
6.获得红花奖励和红星奖励的一共有多少人?
设计意图:内化集合知识;实现评价方法的多元化和评价方式的多样化;渗透养成良好学习习惯的思想教育。
五、作业布置,知识升华
我是小小设计师。(课后作业)
请以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,设计一个集合图。大胆尝试吧!只要我们能在知识的海洋里成风破浪、历练出一身好本领,一定会设计并创造出一个属于自己的精彩人生!
设计意图:给学生一个开放的空间,以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,让学生自主探索,自己设计出集合图。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用,同时,培养了学生的创造能力。
六、板书设计,凸显重点(体现学生的主体地位)
【活动目标】
1.能区分物体的大小,按物体的大小分类。
2.学习用"大"和"小"表述分类的结果。
【活动准备】
(一)经验准备:幼儿已学习过"比较物体大小"。
(二)物质准备:大小两种的灰色鱼若干;大小两种盘子若干;大小两种的花若干;大小两种的袜子若干;贴有大小标记的衣架两个;标有大小标记的圆圈垫两个;花瓶12个;贴纸材料《分大小》。
【活动过程】
一、以"小猫钓鱼"的形式,引导幼儿辨认大和小。
教师出示若干只大小两种灰色的鱼,并提问:它们有什么不一样?
二、以"小猫分鱼"的形式,引导幼儿按大小分类。
(一)教师提出分类任务。
师:现在卞老师给你们两个盘子,一个大的,一个小的,你们把这些鱼分一分。
(二)请个别幼儿展示分类结果,并引导幼儿表述。
师:谁来说说你是怎么分的?
三、以"小猫晒鱼"的形式,让幼儿练习按大小的标记进行分类。
(一)教师在活动室内设置大小标记的圈子,并提出分类任务。
师:小猫要把鱼晒出来,请把小盘子放在标有小圆点标记的圆垫上,把大盘子放在标有大圆点标记的圆垫上。
(二)幼儿操作,教师引导幼儿用"大""小"表述分类结果。
四、幼儿分组操作,巩固按物体的大小分类。
(一)分组的材料:
第一组--"分大小",引导幼儿在《分大小》中分球、棒棒糖、花。
第二组--"晒毛巾",引导幼儿将大小不同的毛巾分别挂在相应标记的。衣架上。
第三组--"插花",引导幼儿将大小不同的花分别插在相应标记的花瓶里。
(二)幼儿操作,教师指导,并鼓励先完成的幼儿继续操作其他组的材料。
(三)展示并交流操作的分类材料。
师:你操作了哪盘材料?你是怎么分的?
【活动延伸】
区域活动:将"分球""分棒棒糖""分花""分鱼"等活动材料投放在数学区,引导幼儿继续操作练习。
家园共育:请家长在家利用整理衣袜等机会引导幼儿按物体的大小进行分类整理。
活动反思:
通过本次教学活动,让我了解了孩子对数学都很薄弱,为了能够使他们对数学感兴趣,我准备在以后的数学活动中多加游戏,做到让幼儿在玩中乐、玩中学的目的。真正让幼儿成为学习的主人,不断提升幼儿的自主探究能力。