高中高二数学教案(精选6篇)

随着社会一步步向前发展,我们可以使用讲话稿的机会越来越多,讲话稿可以起到指引或总结会议,传达贯彻上级精神等作用。那么讲话稿一般是怎么写的呢?这次漂亮的小编为您带来了高中高二数学教案(精选6篇),希望可以启发、帮助到大家。

高二数学教案 篇1

平面向量共线的坐标表示

前提条件a=(x1,y1),b=(x2,y2),其中b≠0

结论当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线

[点睛](1)平面向量共线的坐标表示还可以写成x1x2=y1y2(x2≠0,y2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;

(2)当a≠0,b=0时,a∥b,此时x1y2-x2y1=0也成立,即对任意向量a,b都有:x1y2-x2y1=0?a∥b.

[小试身手]

1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)

(1)已知a=(x1,y1),b=(x2,y2),若a∥b,则必有x1y2=x2y1.()

(2)向量(2,3)与向量(-4,-6)反向。()

答案:(1)√(2)√

2、若向量a=(1,2),b=(2,3),则与a+b共线的向量可以是()

A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)

答案:C

3、已知a=(1,2),b=(x,4),若a∥b,则x等于()

A.-12B.12C.-2D.2

答案:D

4、已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在x轴上,则点B的坐标为________.

答案:73,0

向量共线的判定

[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),则λ的值等于()

A.12B.13C.1D.2

(2)已知A(2,1),B(0,4),C(1,3),D(5,-3)。判断与是否共线?如果共线,它们的方向相同还是相反?

[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.

法二:假设a,b不共线,则由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),从而1=2μ,2=-2μ,方程组显然无解,即a+2b与2a-2b不共线,这与(a+2b)∥(2a-2b)矛盾,从而假设不成立,故应有a,b共线,所以1λ=21,即λ=12.

[答案]A

(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),

∵(-2)×(-6)-3×4=0,∴,共线。

又=-2,∴,方向相反。

综上,与共线且方向相反。

向量共线的判定方法

(1)利用向量共线定理,由a=λb(b≠0)推出a∥b.

(2)利用向量共线的坐标表达式x1y2-x2y1=0直接求解。

[活学活用]

已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行,平行时它们的方向相同还是相反?

解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),

a-3b=(1,2)-3(-3,2)=(10,-4),

若ka+b与a-3b平行,则-4(k-3)-10(2k+2)=0,

解得k=-13,此时ka+b=-13a+b=-13(a-3b),故ka+b与a-3b反向。

∴k=-13时,ka+b与a-3b平行且方向相反。

三点共线问题

[典例](1)已知=(3,4),=(7,12),=(9,16),求证:A,B,C三点共线;

(2)设向量=(k,12),=(4,5),=(10,k),当k为何值时,A,B,C三点

共线?

[解](1)证明:∵=-=(4,8),

=-=(6,12),

∴=32,即与共线。

又∵与有公共点A,∴A,B,C三点共线。

(2)若A,B,C三点共线,则,共线,

∵=-=(4-k,-7),

=-=(10-k,k-12),

∴(4-k)(k-12)+7(10-k)=0.

解得k=-2或k=11.

有关三点共线问题的解题策略

(1)要判断A,B,C三点是否共线,一般是看与,或与,或与是否共线,若共线,则A,B,C三点共线;

(2)使用A,B,C三点共线这一条件建立方程求参数时,利用=λ,或=λ,或=λ都是可以的,但原则上要少用含未知数的表达式。

高二数学优秀教案 篇2

教学目标

1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;

2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

教学重点与难点

重点:命题的概念、命题的构成

难点:分清命题的条件、结论和判断命题的真假

教学过程

一、复习回顾

引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?

二、新课教学

下列语句的表述形式有什么特点?你能判断他们的真假吗?

(1)若直线a∥b,则直线a与直线b没有公共点.

(2)2+4=7.

(3)垂直于同一条直线的两个平面平行.

(4)若x2=1,则x=1.

(5)两个全等三角形的面积相等.

(6)3能被2整除.

讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

抽象、归纳:

1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.

命题的定义的要点:能判断真假的陈述句.

在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

例1:判断下列语句是否为命题?

(1)空集是任何集合的子集.

(2)若整数a是素数,则是a奇数.

(3)指数函数是增函数吗?

(4)若平面上两条直线不相交,则这两条直线平行.

(5)=-2.

(6)x>15.

让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.

解略。

引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?

通过对此问的思考,学生将清晰地认识到定理、推论都是命题.

过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?

2、命题的构成――条件和结论

定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.

例2:指出下列命题中的条件p和结论q,并判断各命题的真假.

(1)若整数a能被2整除,则a是偶数.

(2)若四边行是菱形,则它的对角线互相垂直平分.

(3)若a>0,b>0,则a+b>0.

(4)若a>0,b>0,则a+b<0.

(5)垂直于同一条直线的两个平面平行.

此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.

解略。

过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.

3、命题的分类

真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.

假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.

强调:

(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.

(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

判断一个数学命题的真假方法:

(1)数学中判定一个命题是真命题,要经过证明.

(2)要判断一个命题是假命题,只需举一个反例即可.

例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:

(1)面积相等的两个三角形全等。

(2)负数的立方是负数。

(3)对顶角相等。

分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。

三、巩固练习:

P4第2,3。

四、作业:

P8:习题1.1A组~第1题

五、教学反思

师生共同回忆本节的学习内容.

1、什么叫命题?真命题?假命题?

2、命题是由哪两部分构成的`?

3、怎样将命题写成“若P,则q”的形式.

4、如何判断真假命题.

高二数学优秀教案 篇3

1、预习教材,问题导入

根据以下提纲,预习教材P54~P57,回答下列问题。

(1)在教材P55的“探究”中,怎样获得样本?

提示:将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取。

(2)最常用的简单随机抽样方法有哪些?

提示:抽签法和随机数法。

(3)你认为抽签法有什么优点和缺点?

提示:抽签法的优点是简单易行,当总体中个体数不多时较为方便,缺点是当总体中个体数较多时不宜采用。

(4)用随机数法读数时可沿哪个方向读取?

提示:可以沿向左、向右、向上、向下等方向读数。

2、归纳总结,核心必记

(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

(2)最常用的简单随机抽样方法有两种——抽签法和随机数法。

(3)一般地,抽签法就是把总体中的N个个体分段,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(4)随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

(5)简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的。

[问题思考]

(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次被抽到有关吗?

提示:在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,与第几次被抽到无关。

(2)抽签法与随机数法有什么异同点?

提示:

相同点

①都属于简单随机抽样,并且要求被抽取样本的总体的个体数有限;

②都是从总体中逐个不放回地进行抽取

不同点

①抽签法比随机数法操作简单;

②随机数法更适用于总体中个体数较多的时候,而抽签法适用于总体中个体数较少的情况,所以当总体中的个体数较多时,应当选用随机数法,可以节约大量的人力和制作号签的成本

高二数学公开课优秀教案 篇4

教学目标

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4、掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

复习引入:

向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后作业

P107习题2.4A组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

高二数学教案 篇5

一、教学目标

1、知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用文字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2、过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,。用自然语言表示算法,用图表示算法。进一步体会算法的基本思想程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、教学重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,。用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示课题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用文字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解课题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明终端框 算法开始与结束处理框 算法的各种处理操作判断框 算法的各种转移

输入输出框 输入输出操作指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条件进行判断来决定后面的步骤的结构

流程图:

3、用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历课题

1、用流程图表示确定线段A.B的一个16等分点

2、分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结 巩固课题

1、顺序结构和选择结构的模式是怎样的?

2、怎样用流程图表示算法。

(五)练习P99 2

(六)作业P99 1

高二数学优秀教案 篇6

一、学情分析

本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

二、考纲要求

1、会用坐标表示平面向量的加法、减法与数乘运算。

2、理解用坐标表示的平面向量共线的条件。

3、掌握数量积的坐标表达式,会进行平面向量数量积的运算。

4、能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件。

三、教学过程

(一)知识梳理:

1、向量坐标的求法

(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标。

(2)设A(x1,y1),B(x2,y2),则

=xxxxxxxxxxxxxxxx_

||=xxxxxxxxxxxxxx_

(二)平面向量坐标运算

1、向量加法、减法、数乘向量

设=(x1,y1),=(x2,y2),则

+=-=λ=。

2、向量平行的坐标表示

设=(x1,y1),=(x2,y2),则∥?xxxxxxxxxxxxxxxx.

(三)核心考点·习题演练

考点1.平面向量的坐标运算

例1.已知A(-2,4),B(3,-1),C(-3,-4)。设(1)求3+-3;

(2)求满足=m+n的实数m,n;

练:(20xx江苏,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)

(m,n∈R),则m-n的值为

考点2平面向量共线的坐标表示

例2:平面内给定三个向量=(3,2),=(-1,2),=(4,1)

若(+k)∥(2-),求实数k的值;

练:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4)。若λ为实数,(+λ)∥,则λ=(  )

思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

方法总结:

1、向量共线的两种表示形式

设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②。

2、两向量共线的充要条件的作用

判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值。

考点3平面向量数量积的坐标运算

例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

则的值为;的值为。

【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷。

练:(20xx,安徽,13)设=(1,2),=(1,1),=+k.若⊥,则实数k的值等于(  )

【思考】两非零向量⊥的充要条件:·=0?     。

解题心得:

(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.

(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷。

(3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.

考点4:平面向量模的坐标表示

例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的值为(  )

A.6B.7C.8D.9

练:(20xx,上海,12)

在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则的取值范围是?

解题心得:

求向量的模的方法:

(1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解。.

五、课后作业(课后习题1、2题)

一键复制全文保存为WORD