乘法分配律教学反思精选22篇

作为一名人民教师,课堂教学是我们的任务之一,通过教学反思可以很好地改正讲课缺点,那么应当如何写教学反思呢?

《乘法分配律》教学反思 1

《乘法分配律》是整个四年级运算定律中最最重要的一节。理解乘法分配律、并会很好运用他很重要!所以这节课重点就是在于让学生理解乘法分配律的意义。

整堂课基本完成了教学目标,但在环节设置以及细节等方面存在很多问题。

1、概念课亲历过程需精确、严密

本节课是一节概念课,旨在学生通过操作整理式子(多余3)——观察式子——猜测观点——验证观点——总结定理,这样一个过程。如果后面没有反例,就证明存在这种成立的可能。而在整节课程中,学生没有明确的用具体数字验证它是成立的,所以推导出来的不具有说服力。可能会给学生一种不好的印象,猜想后就可以了,不需要验证、或者不需要反证来验证就可以了。所以概念怎么推到出来这个很重要。

2、师生互动评判加强

学生无论是回答好的还是不好的,对的还是不对的,都需要老师带有评判性的语言,这样对于学生的积极性都可以提高。同样的对于典型的问题可以进行当堂解答,这都是课堂生成的一个过程,需要重视学生在整个课程的反映这个很重要。

3、语言表达方面可以优化

在思维拓展的`时候,本来应该是“如果给你一把剪刀,你可以拼吗?用最少的次数去剪,使它拼成一个长方形,你会剪吗?拼有什么要求吗?如果没有相等的两条边,你可以创造吗?”而在课堂上,表达的意思却是:“如果给你一把剪刀,你可以拼吗?拼有什么要求,如果没有,你可以创造吗?”结果导致最终在小组活动中,学生随意乱剪,并不理解活动的意义。数学讲究的是严密性以及逻辑性,所以要求要明确一些,引导性的语言要贴切。整个语言组织,如:相等的两条表而不是相同的两条边

4、注重细节

在整个过程中有同学列出38×(547-347)和(547-347)×38这两个算式,它都可以用乘法分配律来讲,但同时两者也是有差异的。课堂生成的东西需要注意,并且坐好预设。将38放到前面,可以避免出错。这个小的知识点也是需要去让学生通过对比来理解的这很重要。方便他们积累避免错误。

5、试教是一个课堂诊断的过程

在上整堂课前,已经去试教过3个班。虽然每个班情况都不一样,但是试教就是跟孩子的磨合过程,试教过程中发现什么问题,再去改正过来,调整好。如果每个班都出现这样的问题,说明课程设置不合理。需要对教案进行修改。这也是为什么需要试教。希望在试教过程中,能够反思,自己发现问题所在。

总的来说,这个课从制作教案、试教、修改、正式教学过程中,感谢数学组尤其是师傅对我的指点以及磨炼。试教让我明白了课件调整的重要性,一定要符合学生的认知发展规律。让我明白了数学语言是需要逻辑性,针对性以及严密性的。所以未来的路还很长,我还会再修改磨炼的。要相信好课是不断磨出来的!

《乘法分配律》教学反思 2

1、关注学生已有的知识经验

以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境——为树勋中心小学购买舞蹈服装。通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

2、提供自主探索的机会

一堂数学课可以有不同种教法,怎样教才能在数学活动中培养学生

的创新能力呢?我觉得,最重要的是保证学生的主体地位,提供自主探索的机会。在探索乘法运算律的过程中,提出的问题有易到难,层层递进,不仅为学生提供了自主探索的时间和空间,使学生经历乘法运算律的产生和形成过程,而且让学生发现其中的数学规律与奥秘,从而激发学生对数学深层次的热爱。

3、展示知识的发生过程,引导学生积极主动探究

现代教育观认为:课堂教学不只是知识的传授过程,更是学生的发展过程。从数学学科的特点看,学生所学的数学知识是前人思维的结果。学习这些知识,不是简单地吸收,而必须通过自己的思维,把前人的思维结果转化为自己的思维结果。教师的任务是引导和帮助学生去进行再创造,而不是把现成的结论灌输给学生。让学生在探索未知领域的过程中,付出与前人发现这些知识所曾经付出的大体相同的智力代价,从而有效地实现知识训练智力的价值。例如在“乘法分配律”教学中,我先让学生根据提供的问题,用不同的方法解决,从而发现(65+35)×12=65×12+35×12这个等式,让学生观察,初步感知“乘法分配律。然后照样子写出几组这样的等式,引导学生再观察,让学生说明自己

发现的规律、并用不同的方法来表示这个规律。这样学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。不仅要让学生获得了数学基础知识和基本技能,而且让学生学习科学探究的方法,以培养学生主动探究、发现知识的能力。

4.让学生不断在“反思”中学习,“体验”中学习

建构主义强调,学习不是简单地让学习者占有别人的知识,而是学习者主动地建构自己的知识经验,形成自己的见解。在学习过程中学习者不仅要不断监视自己对知识的理解程度,判断自己的进展与目标的差距,采取各种增进和帮助思考的策略,而且还要不断地反思自己的学习过程。由于数学对象的抽象性、数学活动的探索性决定了小学生不可能一次性地直接把握数学活动的本质,必须要经过多次的反复思考、深入研究和自我调整才可能洞察数学活动的本质特征。就小学数学课堂教学而言,反思的内容主要有:对自己的'思考过程进行反思,对解题思路、分析过程、运算过程、语言的表述进行反思,对所涉及的数学思想方法反思等。在数学活动中,当学生在探索过程中遇到障碍或出现错误时,教师可以提出一些针对性的、具有启发性的问题引导学生主动地反思探索过程;当数学活动结束后,要引导学生反思整个探索过程和所获得结论的合理性,以获得成功的体验。在“乘法分配律”教学中,我先向学生我先让学生根据提供的问题,用不同的方法解决,从而发现(65+35)×12=65×12+35×12这个等式,让学生观察,是让学生初步感知这个规律。同时也体现了教学的差异性,给没有发现规律的同学以再次发现的机会。然后照样子写出几组这样的等式,引导学生再观察,让学生说明自己发现的规律、并用不同的方法来表示这个规律,来加深学生的数学体验。又如,学习了“乘法分配律”后,教师可让学生反思:“乘法分配律”是怎样总结出来的?从中你受到了什么启发?什么知识与“乘法分配律”有联系?学了“乘法分配律”后有什么用?这样既丰富了学生的数学体验,又提高了学生的“反思”的意识和能力。

本课中注意引导了学生在数学活动中体验数学,在数学中感悟数学,实现了运算律的抽象化与外化运用的认知飞跃,同时也体验到了学习数学的乐趣。

《乘法分配律》教学反思 3

教材分析:

乘法分配律是北师大版小学数学四年级上册第三单元最后一节的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,教材是按照发现问题--提出假设--举例验证--归纳结论等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的`过程,进而培养学生的分析、推理、抽象、概括的思维能力。

1、上课一开始,我创造性地使用教材,创设了订校服的教学情境,使学生解决非常熟悉的生活问题、

2、在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。

3、本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。

4、以后注意,学生不感兴趣的材料,教师应该想办法使呈现的这个材料变得能让学生感兴趣

教学反思:

乘法分配律是第三单元的一个难点。在理解、掌握和运用上都有一定难度。因此如何上好这一课,让学生真正地理解乘法分配律,并在理解的基础上运用好它?我觉得要注重形式上的认识,更要注重意义上的理解。因为单从形式上去记住乘法分配律是有局限性的,以后在运用乘法分配律的时候,遇到一些变式如:99×24+24会变得难以解决。注重意义的理解,能让学生从更高的层面上去理解乘法分配律,那么将来无论形式上怎么变化,学生都能轻松运用乘法分配律。

北师大版的教材注重学生的探索活动,在探索中让学生自己去发现的规律,才能让他们真正地理解。本课是“探索与发现”的第三节课了,学生已经有了一定的探索能力。因此本课的设计完全围绕着学生的自主活动在进行。

总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。

在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。

乘法分配律教学反思 4

学生在前面的学习中已经学习了一些有关运算律的知识,对加法交换律、结合律、乘法交换律、结合律有一定的了解和认识,这些都为本课的学习奠定了基础。本课的教学环节和前面学习运算律的教学基本相似,所以学生也有一定的学习方法和经验,所以乘法分配律的归纳和揭示还是比较顺利的。我重点是结合练习帮助学生进一步的认识乘法分配律的意义以及它与其他运算律的区别。特别是对几个数字的观察和比较以及等式两边的式子分别表示的意义等,通过这样的引导,加深学生对乘法分配律含义的理解,为后面的简便运算的学习奠定基础。

相对于其他运算律的简便运算,应用乘法分配律进行简便运算,学生在实际的运用方面还是有一定困难的。教学中我是分层进行教学的。首先安排的是最基本,学生直接根据乘法分配律就可以直接进行简便运算。在这个环节,我主要是通过练习加深学生对乘法分配律的理解和运用,特别是逆向的运用。接着,在练习环节进行一定的拓展和变化,通过观察、比较等方式,引导学生发现算式间的联系,从而能够灵活的运用运算律。在这个环节,我发现部分学生仍然是在逆向的运用上出现了一些问题。这可能也与学生的思维定势有关系。

《乘法分配律》教学反思 5

乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律和结合律的基础上进行教学的。在五大运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律进行简便计算。

成功之处:

1、本课在教学情境的设计上没有采用课本上的主题图,而是选取学生熟悉的买校服情境:这学期学校要换新校服。上衣每件28元,裤子每条12元。我们班共需缴校服费多少元?学生独立思考,同位交流,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(28+12)×44=28×44+12×44。

2、加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。通过多种形式的'练习让学生深入理解乘法分配律的意义。

不足之处:

1、在总结乘法分配律时没有把结构说的很透彻,导致学生出现在练习时有一个同学在同步学习的练习题中把连乘算成乘法分配律。

2、学生的语言叙述不熟练,导致学生虽然会背用字母表示的式子,但是不会应用。

《乘法分配律》教学反思 6

这两天学习乘法分配律,孩子们的普遍感觉是比乘法的交换律和结合律应用起来难一些。作业中的错误也很多,主要错在一下几点:

1、78×(100+5)

=78×100+5…………这种错误在于学生没有教好的理解

乘法分配律:括号外面的数要分别乘括号内的两个数,再把两个积相加。

2、85×99+85

=85×(99+85)…………这种错误的原因在于个别孩子

对式子中的数据理解不好,不明白加号后面的

85表示的是1个85,可以看成85×1。

3、104×25

=(100+4)×25

=104×25…………这种错误的原因在于有的孩子对乘法分配律的引用不熟练,变式之后又按照顺序进行计算,回到了原式。

4、76×54+76×47-76

=76×(54+47)-76…………有这种做法的孩子属于对乘法分配律的应用不够灵活,当遇到部分积较多的时候,不能较好的应用分配律进行简便算。

5、25×32×125

=(25×4)+(8×125)…………个别学生在做题时有一种惯性,学完乘法分配律之后,所有的题目都用分配律进行计算,不能灵活的选用运算律进行简便计算。

综合学生出现的错误之处,可见大部分孩子对运算律能够较

好的理解,只是在应用时不能够灵活的应用。直接应用规律进行简便算的能准确理解,而需要变式的题目则不能较好的应用,也有个别孩子因为理解不清而不会应用。根据学生的情况,我采用相应的措施,以便让孩子们真正理解,灵活应用。

一、个别指导。

对分配律不理解的孩子,我进行个别的指导。具体是举一些相关的实际问题,让孩子用两种不同的方法进行解题,在解题、比较的基础上理解两部分积表示的意义,理解括号外的数要分别乘括号内两个数的道理,这样借助具体事例,形象的进行理解、概括,有助于学生对乘法分配律的掌握。

二、对比练习。

针对有的孩子把分配律和结合律混淆的情况,我设计针对性的练习,让孩子在练习中记性比较、分析,从而掌握。如:

25×3×17×4 25×3+17×25

比较两个算式的不同之处,说说算是中分别有什么运算,运用什么运算律才能简便计算,这样在比较的过程中学生能够慢慢区分乘法结合律与乘法分配律的不同,继而再灵活应用规律进行计算。

三、针对练习。

针对学生不能灵活应用规律进行计算的`问题,我设计针对性的练习,让孩子在练习中说说自己的想法,比一比怎么计算更加简便,这样在比较、练习的过程中进一步掌握简便计算的方法。

如:125×48

因为刚学过乘法分配律,学生在计算125×48时,也应用分配律:125×40+125×8,针对这样的情况,我让学生再想一想还有没有其它简便计算的方法,引导学生用乘法结合律进行简便计算:125×8×6,再比一比:哪种方法更简便?这样在比较的过程中引导学生体会:用简便方法进行计算时,一定要先观察题目中各个数的特点,根据题目的特点选择合适的运算律进行简便计算,这样才能保证计算的简便与正确。

通过对孩子错因的分析与相应的指导、练习,孩子们对乘法的运算律理解掌握也越来越好,作业的错误明显减少。看来,只要我们善于分析、引导,只要我们对孩子有耐心、有信心,孩子们就一定能够学会、学好!

乘法分配律教学反思 7

这节课是在学生学习乘法分配律基础上进行教学的。在第一课时学生对于乘法分配律的意义已经有了初步的理解,对于乘法分配律的结构也有了一定的认识,能初步利用乘法分配律进行简便计算。本课内容的教学重点是灵活根据题型应用乘法分配律进行简便计算。

成功之处:

1、课始通过复习乘法分配律的意义,以及应用乘法分配律进行填空的练习,让学生进一步熟悉乘法分配律的结构及特点,加深对乘法分配律意义的理解。

2、分类型进行练习。采用边讲边练相结合的方法,让学生通过专项练习进一步巩固每一类型题目。共分为四类:第一类是a×(b+c);

第二类是a×b+a×c;第三类是a×b+a;第四类是接近整十整百的数乘一个数。整体教学就是稳扎稳打,一步一个脚印,让所有学生都能掌握其中的变式练习,然后再进行综合训练,让学生灵活解决问题。

不足之处:

1、由于分类型讲解练习,导致时间分配不足,个别题型没有足够的时间进行练习。

2、学生的注意力集中不够,导致个别学生对某一类型的题目没有掌握。

再教设计:

1、加强小组合作的学习,能自己解决的问题,就自己解决,能小组解决的问题,就小组解决,充分发挥小组组际间的交流,留给学生更多的时间和空间,发挥学生主体作用。

2、抓住易出错类型题,重点讲解,重点训练。

《乘法分配律》教学反思 8

乘法分配律是第三章的教学难点也是重点,

乘法分配律教学反思。这节课的设计。我是从学生的生活问题入手,利用学生感兴趣的买奶茶展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:

一、引入生活问题,激趣探究

在教学中,我为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题:“一共有多少名学生参加这次植树活动?”,让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。

二、提供学生独立探究的机会

我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。

三、为学生的学习方式的转变创设了条件

为了让“改变学生的学习方式,让学生进行探索性的学习”不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。

四年级乘法分配律教学反思 9

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵

教学中通过解决“济青高速公路全长多少千米”这一问题,结合具体的生活情景,得到了(110+90)x2=110x2+90x2”这一结果,教学中只注重了等式的外形特点,即两个数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解两个算式是相等的,还要从乘法意义的角度理解,即左边表示200个2,右边也表示200个2。所以(110+90)x2=110x2+90x2。

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解

如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8)等。101×89①竖式计算;②(100+1)×89;③101×(80+9)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行简算,乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

4、多练

针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如68×25+68+68×74,32×125×25等。

乘法分配律教学反思 10

一、让学生从实质上理解乘法分配律

在乘法分配律的教学中,如果只求形式把握不求实质理解,一方面从认识的角度看是不严谨的(形式上的不完全归纳不一定得出真理),另一方面很容易造成学生不求甚解、囫囵吞枣的不良认知习惯。如果满足于从形式上掌握乘法分配律,对于学生的后续发展也极为不利。因此,在教学时先出示了这样一道例题:一件茄克衫65元,一条裤子35元。王老师买5件茄克衫和5条裤子,一共要花多少元?学生用了两种解答方法即:(65+35)×5=65×5+35×5。借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。

二、突破乘法分配律的教学难点

相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破教学难点,我设计了一系列的练习。

1、在□里填数,○里填运算符号:如(25+45)×4=□○□○□○□……

2、在相等的一组算式后面打“√”:如16×7+24×7(16+24)×7□……

在这一组题目中教者重点评析了最后一道题:40×50+50×9040×(50+90)□。先让学生说说着一题为什么不能打√,再根据乘法分配律的特征,分别写出与左右算式相等的式子。通过练习学生对乘法分配律有了进一步的认识,又让学生照上面的样子写出的几个这样的等式,最后归纳出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。

实际上课堂时学生对于能否找到反例的活动很感兴趣,可以尝试让学生也提几个反例,经过讨论逐个否决,在这样的过程中,学生的等式变形能力能够得到很大提高,有益于加深对乘法分配律的认识。

《乘法分配律》教学反思 11

新课程如春风化雨,走进了师生的生活。倡导自主探究,关注有效生成,成为新课程改革永恒的主题。在追求有效的教学中我作出了以下几点的尝试:

1、从具体的问题情境出发,有利于学生的自主探索

对于5套运动服一共多少元,这样的问题对于大多数学生来说是驾轻就熟的。结合熟悉的问题情境,便于学生理解两种算法间的联系与区别,

为后叙对乘法分配律的成功探究理好伏笔。最近发展区理论告诉我们,只有找准了学生的知识起点,才能有效的教学,熟悉的问题情境面向全体学生,只有全面参与的探究,才是真正的自主有效的探究。

2、鼓励学生大胆猜想,在验证过程中形成共识。

数学的猜想是在一系列的实验、观察、归纳、类比的基础上获得的,数学活动脱离了猜想就会显得没有意义。本课教学乘法分配律的探究过程分为几个层次:

(1)启发猜想。在解决实际问题的基础上通过比较,引导学生的发散性思维,提出猜想。在具体的问题情境中,让学生插上想象的翅膀,激起创新的火花。

(2)例举验证。让学生围绕猜想,以小组探究为主要形式,以独立思考例举算式与合作学习有机结合,算出得数发现两种算式结果相等,在相互交流中,形成对乘法分配律的共识。在交流、合作中,使学生真正成为学习的主人。

3、设计多层次练习,在层层深入中启迪学生的智慧

在形成对乘法分配律的认识后,分几个层次运用知识训练,首先是基础训练,书本55页第1、2、3题练习从正的两个角度进行,使学生明确乘法分配律是互逆的。从而达到灵活运用真正理解并掌握的目标。其次变式练习,我将书本55页第4题组练习设计成游戏的形式呈现,让学生在国松的氛围中,发现用乘法分配律可使计算方便。最后拓展延伸启迪智慧。练习中再次结合具体的问题情境,通过观察与比较体会到乘法分配律不仅适用于一个数两个数的和,也适用于一个数乘两个数的差。在这层层深入的练习中面向了全体学生,使每个孩子有所进步,有所发现,有所启迪,有所收获。

新课改的脚步在前行,新课扆的理念在深入。作为教师只有不断内化新课程理念,才能使自己的教学面向全体,促使学生真正的自主探究,成为学习的主人。

《乘法分配律》教学反思 12

教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,我认为在教学中应该注意这些问题:

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学中通过解决买水果济青高速公路全长约多少千米?这一问题,结合具体的生活情景,得到了(110+90)2=1102+902这一结果。这时我们往往比较注意了等式两边的外形结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。所以这里我们不仅要从解题思路的角度理解两个算式是相等的,还要从乘法的意义的角度理解,即左边表示200个2,右边也表示200个2,所以(110+90)2=1102+902

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的。和乘一个数或两个积的和。在练习中(40+4)25与(404)25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15(84)和15(8+4);25125258和25125+258;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算12588;10189你能用几种方法?

12588 ①竖式计算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。

10189 ①竖式计算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到用简便算法进行计算成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

4、多练,针对典型题目多次进行练习。

练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如3698+72;6825+68+6874,3212525等。

乘法分配律课后教学反思 13

《乘法分配律》一课是四年级上册第四单元的教学内容,它相对于加法交换律、结合律,乘法交换律和结合律来说会比较抽象,学生较难于理解。因此把本课的教学重点定位为“探索并发现乘法分配律,理解乘法分配律的意义”,让学生经历“观察算式——仿写算式——解释规律——应用规律”的过程。

一、比赛导入 激发探究欲望

课前创设比赛情境:老师能很快说出下面几道题的得数,你信吗?不信的同学敢跟我比一比吗?(出示: 28×70+72×70 (125+10)×8 34×101)在我既对又快的说出结果时,孩子们都很惊讶,于是我因势利导:刚才的比赛老师算得快,是因为老师有一个取胜的秘诀,它可以使计算简便,你们想知道吗?学完这节课,你就能发现其中的秘密。学生个个跃跃欲试,瞬间充满探究的欲望,很好地激发了学生学习的兴趣。

二、自主探索 发现规律

在解决“一共贴了多少块磁砖?”中,学生列出了四个算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在让学生观察四个算式之后,先引导学生将四个算式进行分类并说明分类的标准。通过这个环节,学生对于相等的两个算式的特征有了进一步的了解,知道将3×10+5×10和(3+5)×10分为一类,将4×8+6×8和(4+6)×8分为一类,是因为它们的数字都一样,都是由3、5、10组成或是由4、6、8组成的,了解乘法分配律中有3个数;如将3×10+5×10和将4×8+6×8分一类,将(3+5)×10和(4+6)×8分为一类的,则从中明白一边都是两个积相加,另一边则是两个数的和与一个数相乘。通过这个分类活动,让学生自主发现规律,为理解乘法分配律做了很好的铺垫。接着再让学生仿写算式,总结规律并解释规律,最后再应用规律揭示课前比赛中老师获胜的奥秘。

三、错因分析 防患未然

以往的教学经验告诉我,学生对于乘法分配律的运用经常出错,也很容易与结合律混在一起。为了防患于未然,在教学中创设了“小马虎这样做,你同意吗?

(1)(6+30)×7 = 7×6+7×30

(2) 25×(4+60)= 25×4+60

(3) 16×5×8 = 16×5+16×8

(4) 15×3+15×7 = (15+15)×(3+7)”让学生进行分析、判断并修正。特别是第3题,让学生对比乘法分配律和乘法结合律的数学模型,找出其中的区别,加以比较,从而发现模型左边乘法结合律是两个数的积,而乘法分配律是两个数的和,而模型右边乘法结合律是连乘的形式,而乘法分配律是两个积相加的形式。这样对比,加深对乘法分配律模型的认识和对其意义的理解。分析错因后,还不忘让学生说说:“你想对小马虎说什么?”来提醒告诫学生,除了要养成认真细心的习惯外,还要运用好乘法分配律,注意分配律与结合律的区别,将错误扼制在摇篮里。

不足之处:虽然学生对于乘法分配律的理解比较到位,较好地达成了教学目标,但如能进行适时拓展,让学生通过“两个数的和与一个数相乘来联想到两个数的差与一个数相乘,两个数的和除以一个数及两个数的差除以一个数是否都可以应用乘法分配律这个数学模型?”会使课堂更丰满,更有深度。

《乘法分配律》教学反思 14

乘法分配律运算法则与之前学生学的“交换律与结合律”相比,难度要高一个层次。尽管在周末作业中设计了导学,但多数学生都反映“自学有困难”,按照导学引导也没能完全弄懂“分配律”的意义。

其实分配律在笔算乘法中已有运用,但这节课后,我便以未用学生熟知的笔算入手而后悔着。其实在三年级学乘法笔算时,先用第二个因数的十位乘第一个因数,再用第二个因数的个位乘第一个因数,最后将两次乘积相加,运用的就是乘法分配律。可能事先我也是担心学生们的现实情况:这样的入手方式不太吸引人,比较枯燥,吸引不了学生,又担忧是否会将学生原本认为难的东西与已会的东西混淆,反而将已有基础丢失。

于是,摒弃这一入手方式,并果断放弃学生们也不太感兴趣的数形结合,我从学生理解难� 接下来,我设置了真实的班级情境——植树节,让孩子们在主题图上看到了自己忙碌的身影,并提议“明年植树节每班增加2名同学”,并引导他们提问“明年植树节一共有多少同学参加”,同学们兴致勃勃,用了两种方法解决了问题,并共同分析了两种不同的方法所表示的都是明年参加植树的人的总数,从而再对比、总结规律,进而进行分层练习,让他们的学习不重复且不断有挑战。

整堂课上下来,感觉孩子们很投入,也能在回顾对比中运用分配律,只是计算还不太熟练,需要通过更多的练习来巩固与加强对分配律的理解。同时,还有部分同学听得懂,过后却是一知半解中,也需要在练习中过渡并消化新知。

乘法分配律课后教学反思 15

乘法分配律是学生较难理解和叙述的定律,比起乘法交换率和乘法结合率男掌握的多。因此在本节课教学设计上,我结合新课标的一些基本理念和学生的具体情况,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习新知识。

《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”数学教育家波利亚曾经说过:“数学教师的首要责任是尽其一切可能,来发展学生解决问题的能力。”而我们过去的教学往往比较重视解决书上的数学问题,学生一旦遇到实际问题就束手无策。因此,上课一开始,我创造性地使用教材,创设了一个肯德基餐厅用餐的情境,使学生置身于非常熟悉的生活情境中,极大地激发了学生的学习欲望。学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地证明两式相等。接着要求学生通过观察这个等式看看能否发现什么规律。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。

同时,我还注重学生的合作与交流,多向互动。倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。因此,为了让不同的学生在数学学习中得到不同的发展,我在本课教学中立足通过生生、师生之间多向互动,特别是通过学生之间的互相启发与补充来培养他们的合作意识,实现对“乘法分配律”的主动建构。学生在这样一个开放的环境中博采众长,共同经历猜想、验证、归纳知识的形成过程,共同体验成功的快乐。既培养了学生的问题意识,又拓宽了学生思维能力,学生也学得积极主动。

应用规律,解决实际问题是数学学习的目的所在。在练习题型的设计上,有抢答(填空)题、判断题、连线题、简算题和拓展题,它们并不孤立,而是有机地联系在一起,由基本题到变式题,由一般题到综合题,有一定的梯度和广度。使学生逐步加深认识,在弄清算理的基础上,学生能根据题目的特点,灵活地运用所学知识进行简便运算和拓展练习。不仅要求学生会顺向应用乘法分配律,而且还要求学生会反向应用。通过正反应用的练习,加深学生对乘法分配律的理解。从课堂反馈来看,学生热情较高,能够学以致用,知识掌握的牢固。学生通过自己的努力以及和同学的交流合作,解题速度和准确性都很理想。

本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。以后注意,学生不感兴趣的材料,教师应该想办法使呈现的这个材料变得能让学生感兴趣。另外,在回答问题时,个别学生的语言不够流利、准确。对乘法分配律的叙述稍显罗嗦,不够坚定、自信。在这方面有待今后加强训练和提高。

乘法分配律教学反思 16

乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生在这几个定律中的难点。

新课标强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。

初步的教学设想是这样的:首先举一些学生身边的例题求长方形的周长,然后让学生观察这两组算式有什么样的关系。学生通过计算发现每组两个算式相等。在此基础上让学生完成长方形周长计算这样的例子并在黑板上列出,再出示例题,让学生分组讨论并解答。然后分组讨论这些算式有什么规律,引导学生发现乘法分配律并总结出这一规律。最后做一些练习巩固、拓展对乘法分配律的认识。

在教学之后发现有一些问题。孩子对于乘法分配律的作用及意义没有理解透彻,应用不够灵活,而且在口头上感觉很好,但是落笔后就发现很多类型题孩子根本就不会做,而且错误很多。所以对本节课教学目标进行了一些调整。让一名学生在黑板上板演,其他学生在本子上做,最后总结不同方法,看哪种方法简便。进一步体会乘法分配律的作用。

教学目标定位是

(1)通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

(2)初步感受乘法分配律能使一些计算简便。

(3)培养学生分析、推理、概括的思维能力。

乘法分配律教学反思 17

乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在五大运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律进行简便计算。

成功之处:

1、本课在教学情境的设计上没有采用课本上的主题图,而是选取学生熟悉的买校服情境:这学期学校要换新校服。上衣每件28元,裤子每条12元。我们班共需缴校服费多少元?学生独立思考,同位交流,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(28+12)×44=28×44+12×44。

2、加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。通过多种形式的练习让学生深入理解乘法分配律的意义。

不足之处:

1、在总结乘法分配律时没有把结构说的很透彻,导致学生出现在练习时有一个同学在同步学习的练习题中把连乘算成乘法分配律。

2、学生的语言叙述不熟练,导致学生虽然会背用字母表示的式子,但是不会应用。

再教设计:

1、加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。

2、加强对乘法分配律意义的理解。通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

《乘法分配律》教学反思 18

《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。在设计本教案的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的学习活动过程中实现不同的人的数学水平得到不同发展的教学方式。结合自己所教案例,对本节课教学策略进行以下几点简要分析:

一、教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。

二、让学生根据自己的爱好,选择自己喜欢的方法列出来的算式就比较开放。学生能自由发挥,对所学内容很感兴趣,气氛热烈。到通过计算发现两个形式不一样的算式,结果却是一样的。这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。

三、总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

四、在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。

在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。

乘法分配律教学反思 19

关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:

首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。

其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。

最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。

不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。

《乘法分配律》教学反思 20

小学数学《乘法分配律》教学反思教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,我认为在教学中应该注意这些问题:

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学中通过解决买水果济青高速公路全长约多少千米?这一问题,结合具体的生活情景,得到了(110+90)2=1102+902这一结果。这时我们往往比较注意了等式两边的外形结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。所以这里我们不仅要从解题思路的角度理解两个算式是相等的,还要从乘法的意义的角度理解,即左边表示200个2,右边也表示200个2,所以(110+90)2=1102+902

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)25与(404)25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15(84)和15(8+4);25125258和25125+258;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。

如:计算12588;10189你能用几种方法?

12588 ①竖式计算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。

10189 ①竖式计算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到用简便算法进行计算成为学生的一种自主行为,并能根据题目的。特点,灵活选择适当的算法的目的。

4、多练,针对典型题目多次进行练习。

练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如3698+72;6825+68+6874,3212525等。

《乘法分配律》教学反思 21

《乘法分配律》是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。故而,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证……

1、关注学生已有的知识经验。以学生身边熟悉的情境为教学的`切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。

2、展示知识的发生过程,引导学生积极主动探究。让学生根据提供的问题,用不同的方法解决,引导学生观察,让学生说明自己发现的规律。不仅让学生获得了数学基础知识和基本技能,而且培养学生主动探究、发现知识的能力。

3、出示乘法分配律的几种不同的形式让学生进行练习。

通过这一系列的教学措施,一节课下来,总体感觉良好——觉得同学们掌握得还不错。于是,我布置了让学生们完成练习册中《乘法分配律》这一课的习题。

当我批改练习时我傻了眼,学生的作业大多是中,少部分得良和差(我的作业批改评定标准),为什么会是这样的结果,我进行反思,发现是讲时,例题出示的不多,当时学生都会做了,但是对于熟练掌握这个既是重点又是难的课程的确不是那么简单的,三种题型放在一起学生就很容易受到干扰,结果是张冠李戴,错得让我涕笑皆非。而为了让学生把这个知识点掌握牢固,我整整又用了两节课。

通过这个知识点的教学,我发现数学不多练是不行的。在学生理解之后,必须对其进行及时、有效的练习才可以使知识掌握的更加牢固。

四年级乘法分配律教学反思 22

乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。在教学过程中有坡度的让学生在不断的感悟、体验中理乘法分配律,从而自己概括出乘法分配律。我是这样设计:

一、让学生从生活实例去理解乘法分配律

一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。

通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。

如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。因此得数也一样故成等量关系。然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会

借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。

二、突破乘法分配律的教学难点

让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。

相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破这个教学难点,从生活中的实际问题出发,开放引入的情境,一共25个小组参加植树活动,每组里人负责,人负责。一共有多少同学参加这次植树活动?

学生主动去设计、解决,调动学生的积极性。让学生根据自己的想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。

在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。

乘法分配律教学反思是必要的,所以老师们一定也要好好地去对待。不断的反思,才可以促进不断的进步。以上面的文章,希望与各位同行们共同进步。

一键复制全文保存为WORD