《乘法交换律和结合律》教学反思优秀8篇

作为一名教学工作者,时常需要用到说课稿,说课稿可以帮助我们提高教学效果。那么说课稿应该怎么写才合适呢?读书是学习,摘抄是整理,写作是创造,以下是勤劳的小编征途为大伙儿分享的8篇《乘法交换律和结合律》教学反思,欢迎参考,希望能够帮助到大家。

《乘法交换律和结合律》教学反思 篇1

本节课主要是让学生认识到“几个几相加用乘法”,让学生体会到“几个几相加”。通过创设生动有趣的情境来激发学生的学习兴趣,学生的学习积极性较高,他们有的按群数有的逐个数,还有的说出了几个相同数连加的算式。生活中虽然经常见到“几个几”的问题,但很少有同学“几个几用”来进行描述;因此这节课我们要让孩子们意识到几个几相加的数学问题。

在看图数出鸡、鸭的数量时,引导学生怎样数比较方便,然后把自己的方法写出来让大家来进行评比,看谁的方法简单。这样加强学生对“几个几相加”的感性认识,帮助学生逐步理解几个相同数连加算式的含义,加深学生对几个几相加算式的理解。

在现实问题中引入乘法。通过解决“一共有多少台电脑”这个实际问题,在数数、连加等方法后,自然引出乘法,让学生了解乘法产生的背景。至于乘法各部分名称、读、写方法,让学生通过看书自学和交流来解决。数学概念的教学容易陷入枯燥的'泥潭,只有赋予抽象概念一实际含义,并发挥学生已有知识经验和学习方法基础,通过学生自学、讨论、交流,形成“学习共同体”,培养学习兴趣和合作意识与共享精神。

在强烈反差中感知求几个几用乘法写比较简便。由于学生是初次认识乘法,再加上未系统学习乘法口诀,学生暂时尚不能体验乘法计算的简便。教学时通过创设对比强烈的情境,从“3个5”到“6个5”,再到“100各个5”,让学生实际列式并数一数、写一写,让学生在具体的数和写的过程中体会到求几个几是多少,有时用乘法写算式比较简便,为今后进一步感受学习乘法的必要性打下基础。

在应用中培养学生的乘法意识。有效的数学教学应着力培养学生的数学意识,让学生初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和其他学科学习中的问题,增强应用数学的意识。乘法意识作为数学意识的一种,在学生初步认识乘法时就应该进行培养。结合乘法知识的学习,注意培养学生运用生活经验来解决乘法问题,让学生不断联系生活实际,用乘法的眼光去观察生活现象,解决实际问题。

数学内容生活化,让学生学习现实的数学,是新课程的重要理念。所以,在对乘法有了初步的接触后,可以请学生找找生活中的乘法素材,并把这些素材作为数学研究材料,使得学生感到数学亲切、真实,研究的就是身边的事,从而乐于参与到教学的活动中。

《加法交换律和结合律》说课稿 篇2

[教材简解]

《加法交换律和加法结合律》是小学数学第七册第六单元第1课时的内容,这是学生第一次接触运算定律,对于加法交换律的内容,从知识的层面上看,学生学习、理解、运用起来比较容易。而且在以往的学习过程中也已经渗透,让学生积累了一定的感性认识。学习加法的运算定律,为以后学习用字母表示数打下初步基础,同时也为简便运算打下基础。

[目标预设]

1、使学生经历观察、猜想、验证、结论的探索加法运算律的过程,结合具体实例,理解并掌握加法的交换律和结合律,会运用加法交换律进行加法验算。

2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。

3、让学生在数学学习过程中获得探究的乐趣和成功地喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。

4、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

[重点、难点]

1、让学生在探索中经历运算律的发现过程。

2、理解不同算式间的相等关系,发现规律,概括运算律。

[设计理念]

1、尊重儿童的认知规律,注重新旧知识的联系,引导学生在自主、合作、探究中巩固旧知识,发现新知识,掌握新方法。

2、以学生的“最近发展区”为向导,精心设计课堂教学策略,由浅入深,由易到难,循序渐进,预设出合理的教学流程与思维坡度。

3、本着真实有效的宗旨,让课堂焕发生活的活力,让每个孩子在民主、平等的课堂中得到不同的发展。并注重教师与学生对话,学生与学生对话,在对话中加强情感交流,使得课堂真正成为师生互动、心灵对话的舞台,从而让教师与学生都获取丰富的,积极的情感体验,进一步增强学生学习数学的兴趣。

[设计思路]

1、展示生活题材的'数学例题,唤起学生对旧知的回忆,从而初步感受规律。

2、充分感知,让学生在具体的数学活动中观察,比较、不断地思考与建构。得出规律,并能运用规律。

3、帮助学生反思学习过程,并总结数学思想与方法,并让学生尝试,通过小组合作学习,让学生相互启发,相互补充,完成新知识的学习。进一步培养学生的自主探究意识。

4、总结归纳。通过对一节课学习的回顾,让学生谈谈收获,尤其是在数学的思想与方法上做出评价。

[教学过程]

一、创设情境,激趣导入

1、出示高斯小学的故事:1+2+3+4+5+6……+97+98+99+100=?

2、引入新课:高斯为什么能快速的找到答案,计算加法时是不是有什么运算规律呢?我们今天就一起来探索这个问题。

板书:加法运算规律

二、自主探索,寻找规律(加法交换律)

(一)出示情境图

四年级的同学们在开展跳绳和踢毽子的活动,从图中你获得了那些数学信息呢?根据这些数学信息,你能提出用加法计算的数学问题吗?(多指名说)

(二)、解决问题,探究规律

1、出示问题:

(1)跳绳的有多少人?

(2)女生共有多少人?

(3)参加活动的一共有多少人?

2、师生研究解决第一个问题,揭示加法交换律。

(1)指名口头列式:28+17;还可以怎样列式?17+28;说说各算式表示的意思。

(2)这两个式子相等吗?为什么?(计算结果相等)(都是求跳绳的有多少人)那我们就可以用“=”把它们连接起来。教师板书:28+17=17+28,指名读算式。

(3)解答:女生共有多少人?板书等式:17+23=23+17

(4)仔细观察这两组等式左右两边的算式,思考:什么变了?什么没变?你有什么想法?(两个数的位置变了,数据、运算符号、结果没有变)

(5)这只是猜想,这种猜想在其他加法运算中也存在吗?你还能举几个像这样的例子吗?(指名说,教师板书。)这样的例子写的完吗?

(6)仔细观察这些等式,你有什么发现?能找出它们共同的规律吗?用自己的话说一说。全班交流。

(7)师:刚才老师用省略号把无数个这样的等式藏了起来,你还能用自己喜欢的方式比如字母、符号、文字等方式把这个规律简明的表示出来吗?试试看。

交流介绍:数学中一般用字母来表示:a+b=b+a,这里的a可以表示任意一个加数,b可以表示任意的另一个加数。这也是我们刚才通过观察、猜想、验证所得到的结论。这个规律叫加法交换律。这是我们今天要学习的第一个运算律。(板书课题)

3、其实加法交换律对于我们并不陌生,回顾一下,我们以前学习什么知识时也用了加法交换律?想一想加法是怎样验算的?

4、巩固练习,完成自主练习单(一)

自主练习单(一)

1、根据加法交换律填空。

23+35=35+()a+12=12+()

23+()=178+()()+98=()+56()+()=()+()

2、计算下面各题,并用加法交换律进行验算。

《乘法交换律和结合律》教学反思 篇3

《笔算乘法》主要解决笔算过程的书写格式和竖式中每一步计算的含义问题,这是在学生会做表内乘法,整十、整百的数乘一位数的口算以及多位数乘一位数的估算的基础上进行教学的。因为乘法竖式书写与加法相似,加上笔算方法与口算方法有相通性,对学生来说书写格式与算理理解并不是特别困难。因此教学时,我将一环节交给了学生自己去尝试,去探究,最后自己来概括。另外在教学中,我有意识的渗透以下三个方面:

一、让学生体会解决问题策略的多样化。

学生在解决问题时,往往采用正确计算的方法,不会主动的去用估算,甚至要求估算解决的问题,也会忽视而采用正确计算。教参中要求教学笔算前,先让学生对例题进行估算,我觉得有种为估算而估算的味道,不利于学生自觉得应用估算。让学生自觉得应用估算,能体会到做算的应用价值。当然例题中教学新知前也进行了口算方法的巩固,算法交流中进行了口算方法与笔算方法的对比,意在让学生明白,要计算正确的。结果,不仅可以用口算,也可以用笔算,要视数据而定,培养学生灵活计算的能力,

二、培养学生类推迁移的能力。

例题是两位数乘一位数,练习中最多也只是三位数乘一位数,为了让学生真正得掌握多位数乘一位数的笔算方法。我在巩固练习中通过做一做三道题的练习后的对比,使学生明白一位数去乘的次数与多位数有关,这样为学生以后计算更多位数的数乘一位数作了铺垫。这样使教学不再局限于教材中的知识点,而是教给了学生学习的方法与能力。

三、通过练习拓展学生的思维。

其实我们在教学数学时要注意把握两点:

一要充满智慧挑战,也就是数学味,发挥数学的思维价值;

二要有生活味,发挥数学的应用价值。那么要发挥数学的思维价值,在新授课教学时,教师除了要充分暴露学生的思维过程外,练习的设计是非常重要的。特别是像这节这样知识点比较简单的课,适当的设计拓展性的练习有利于学生思维的发展。最后的练习题应该还算算得上吧。

不足之处:

这节课学生的表现还算可以,但自己还有一点做得不到位:幻灯片口算小木棒并没有与黑板呈现的板书做到顺畅的过渡,导致新授时间过长。

《加法交换律和结合律》说课稿 篇4

教学内容:P28例1(加法交换律)P29/例2(加法结合律)

教学目标:

1.引导学生探究和理解加法交换律、结合律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学过程:

一、主题图引入

观察主题图,根据条件提出问题

(1)李叔叔今天一共骑了多少千米?

(2)李叔叔三天一共骑了多少千米?

等等。

引导学生观察主题图

教师根据学生提出的问题板书。

二、新授

练习本上用自己的方法列出综合算式,解答黑板上问题。

教师巡视,找出课堂上需要的答案,找学生板演。

学生观察第一组算式,发现特点。

引导学生观察第一组算式,总结出:

40+56=56+40

试着再举出几个这样的例子。

根据学生的`举例,进行板书。

通过这几组算式,你们发现了什么?

学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。

教师根据学生的小结,板书。

你能用自己喜欢的方式表示出加法交换律吗?

板书:a+b=b+a

学生用多种形式表示。

符号表示:△+☆=☆+△

引导学生观察第二组算式,总结出:

(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。

学生继续观察几组算式。

出示:

(69+172)+28

69+(172+28)

155+(145+207)

(155+145)+207

通过上面的几组算式,你们发现了什么?

学生总结观察到的规律。

教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。

学生用自己喜欢的方式表示加法结合律。

符号表示:(△+☆)+○=△+(☆+○)

教师板书:

(a+b)+c=a+(b+c)

学生根据这两个运算定律,举一些生活中的例子。

三、巩固练习

P28/做一做

P31/4、1

四、小结

学生小结本节课学习的加法的运算定律。

今天这节课你们都有什么收获?

你能把这些运用于以后的学习中吗?

五、作业:P31/3

板书设计:

加法的运算定律

(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?

40+56=96(千米)56+40=96(千米)88+104+96104+96+88

=192+96=200+88

=288(千米)=288(千米)

40+56=56+40(88+104)+96=88+(104+96)

┆(学生举例)(69+172)+28=69+(172+28)

两个加数交换位置,和不变。155+(145+207)=(155+145)+207

这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,

和不变。这叫做加法结合律。

a+b=b+a(a+b)+c=a+(b+c)

《加法交换律和结合律》说课稿 篇5

教学目标:

1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。

2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。

教学准备:

挂图、小黑板

教学过程:

一、教学新课教学加法交换律。

1、一年一度的学校运动会又即将举行了,学校的同学们都在做充分的准备。从这张图片中,你获得了哪些数学信息?

你能根据这些信息,提出几个用加法计算的问题吗?请学生回答。

①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人?

④参加活动的一共有多少人?

2、今天这节课,我们就一起来研究其中的这两个问题:

在黑板上张贴:参加跳绳的有多少人?

参加活动的一共有多少人?

我们先来解决第一个问题:参加跳绳的一共有多少人?

3、你们能马上口头列式并口算出结果吗?

指名回答,教师板书:2817=45(人)追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:1728=45(人)

为什么这两个算式的结果一样?

4、你们能用一个符号把它们连接起来吗?教师继续板书:2817=1728

这是一个等式,仔细地观察一下这个等式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?(同桌交流并汇报)

5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?

6、我们再仔细的观察这几个算式,从中你们发现什么规律?(用自己的话来说一说)你能用自己喜欢的方法、符号或文字来表示你们的发现吗?

教师巡视,并作相应的辅导,板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?

7、同学们都自己用自己喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:ab=ba。

8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书加法交换律),学生齐读一遍。

9、其实加法交换律我们早就会用了,想想看,什么时候我们用过?(在验算加法时用的就是加法交换律)

二、学习加法结合律。

1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究第二个问题“参加活动的一共有多少人?”看看我们有没有新的发现?

2、你们会自己列式解决这个问题吗?学生练习,教师巡视指导。

3、学生回答,教师有意识的板书:

(2817)23=68(人)

28(1723)

(2823)17

28(2317)

(2317)28

23(1728)

交流不同的算法。

下面,我们就来针对这两个算式开展研究:(2817)23 28(1723)

(为了看得清楚,我们给2817添上括号)

4、观察或计算一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:

(2817)23=28(1723)

5、出示:下面的Ο里能填上等号吗?口算或计算一下。

(4525)13Ο45(2513)

(3618)22Ο36(1822)

学生回答,教师板书:(4525)13=45(2513)

(3618)22=36(1822)

6、看着黑板上的板书,你们从中有了什么新的发现?把你的发现在小组内先交流一下。学生小组交流后大堂再交流。

7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。

板书:(ab)c=a(bc)

a、b、c各代表什么?(ab)c表示什么?a(bc)表示什么?

教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。

四、巩固练习。

1、完成“想想做做”第1题。

以游戏的形式进行,女生代表交换律,男生代表结合律。

2、完成“想想做做”第2题(出示小黑板)说说是怎么想的。

3、完成“想想做做”第3题第1行。

4、插入“朝三暮四”的故事,来听个“朝三暮四”的成语故事

战国时代,宋国有一个养猴子的老人,他在家中的院子里养了许多猴子。日子一久,这个老人和猴子竟然能沟通讲话了。这个老人每天早晚都分别给每只猴子四只桃子。几年后,老人的经济越来越不充裕了,而猴子的数目却越来越多,于是他就和猴子们商量说:“从今天开始,我每天早上给你们三只桃子,晚上还是照常给你们四只桃子,不知道你们同意不同意?”猴子们听了,都认为早上怎么少了一个?于是一个个就开始吱吱大叫,而且还到处跳来跳去,好象非常不愿意似的。

老人一看到这情形,连忙改口说:“那么我早上给你们四只,晚上再给你们三只,这样该可以了吧?”猴子们听了,以为早上桃子已经由三个变成四个,跟以前一样,就高兴的在地上翻滚起来。听了这个故事,你们有哪些想法?

让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老人采用了加法交换律。

5、完成“想想做做”第4题。

男生做第一行,女生做第二行。表扬女生快,知道为什么吗?

使学生初步感受应用加法运算律可以使计算简便。

6、完成“想想做做”第5题。

师:你能很快地找出哪两片树叶上的数的和是100吗?

学生在书上连线,同桌相互校对。

师:看来,在计算过程中,要有一双敏锐的眼睛,看到数字就能很快地判断出能不能凑成整百数。

五、课堂总结。

通过本节课的学习,你有什么新的收获?

教学反思:这节课主要教学加法的`交换律和结合律,从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生

的发散性思维,并培养学生

的问题意思。同时也符合新课程“创造性使用教材”理念。在教学中主要通过让学生观察几组算式,从中总结出加法的交换律和结合律。学生能较快的体会出这两种加法的运算律,但在总结、交流加法的结合律时,学生的语言表达能力较差,教师应适当的进行指导和帮助。同时要鼓励学生用自己最喜欢的方法记忆加法的运算律,提高学生掌握能力。学生的记忆方法过于单调,教师应在开发学生思维上多下功夫。几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。在练习“想想做做”第1题第4小题时,注意让学生说清应用的运算律,这样才能为以后教学应用运算律进行简便计算作好铺垫。很可惜,我引导得不是最合适,学生自己发现的不多。整节课,由于新授部分花时较多,显得稍有拖沓,导致了有些练习来不及处理。

《加法交换律和结合律》说课稿 篇6

一、说教材

“加法交换律和结合律”是国标版苏教版小学四年级上册第7单元中的内容。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。然后安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。

二、说教学目标

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

三、说教学重点、难点

教学重点:使学生理解并掌握加法交换律和结合律,能用字母表示加法交换律和结合律。

教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

四、说教学过程

(一)故事导入,激发兴趣:

(播放《朝三暮四》视频)师:同学们,听了这个故事你想说什么?猴子很笨,同学们很聪明,栗子的总颗数有没有变化呢?什么发生变化?

引入:这个故事的名字叫《朝三暮四》,在数学中也有类似《朝三暮四》故事里的规律,同学们想不想研究一下?

设计意图:故事导入激发学生学习的兴趣,初步体验加法交换律,唤起求知欲。

(二)创设情境,联系生活

谈话:天气渐渐转凉,学校要组织大家参加冬季比赛了,看,四年级同学正在操场上开展体育活动。

(课件出示例题情境图)

提问:从图中你了解到哪些数学信息?(指名说一说)

提问:你能提出用加法计算的问题吗?

学生提到的问题可能有:跳绳的有多少人?女生有多少人?参加活动的一共有多少人?

设计意图:创设贴近学生的生活情境,让学生提问可以培养学生的发散性思维。同时学生提出的问题,作为后继探究的学习材料,符合新课程“创造性使用教材”的理念。

谈话:同学们提出的问题都非常好,下面我们先来解决第一个问题。

(三)探索加法交换律,初步感知

课件出示问题(1)要求参加跳绳的有多少人?

提问:应该怎样列式?

指名口答,教师板书:28+17=45(人)

提问:还可怎么列式?板书:17+28=45(人)

提问:这两道算式都是求什么的人数?(跳绳的人数)结果都是多少?

谈话:既然得数相同,我们就可以把这两个算式用“=”连接起来。改写成28+17=17+28

板书:28+17=17+28(学生齐读这个等式)

提问:比较这两个算式,你有什么发现?(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。

提问:你能照样子再写出几个像这样的等式吗?试试看。(学生动笔写,指名学生回答,教师把学生说的等式有序地板书在黑板上,板书三个)。

提问:像这样的等式你能写得完吗?

谈话:既然写不完,可以用省略号表示(板书省略号)

提问:请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?

提问:你能用自己喜欢的方法表示出像这样的等式吗?可以用符号、字母、文字等等表示,试试看。

师:在数学上,我们通常是用字母a、b来表示两个加数,说来说说怎么表示?

生:a+b=b+a

提问:a和b分别代表什么?

小结:两个数相加,交换这两个加数的位置,和不变。这是加法运算律中的一条很重要的规律加法交换律。

设计意图:本环节能紧密围绕并运用问题情境,师生之间积极互动,教师引导学生自己去感知规律,发现规律,并学会用字母表示。整个过程,学生在观察中感知,在模仿中理解,在探索中发现,培养了学生的抽象括能力。

师:下面老师想考考大家。

考考你

(1)您能在()里填上合适的数字吗?

96+35=35+()204+57=()+204

指名回答,为什么?

(2)下面的等式符合加法交换律吗?为什么?

75+25=25+75

46+59=46+59

90+10=5+95

(没有交换加数的位置;等号两边的加数不同。)

(3)同学们学的真不错,接下来我们来玩个游戏,看看同

学们的反应快不快。游戏:对口令

师:83+17=生:17+83=

97+44=35+65=

88+75=300+600=

a+b=785+68=

设计意图:加深学生对加法交换律的理解,知道加法交换律只是交换加数的位置,其余的'不变。

(4)提问:同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?

下面一道题357+218,请同学们计算并用加法交换律进行验算。

(四)探索加法结合律,自主合作

谈话:同学们,刚才我们通过解决“跳绳的有多少人”这个问题,得到了加法交换律,现在我们再来研究同学提到的问题,看看有什么发现。

出示问题(2):参加活动的一共有多少人?

提问:你会列综合算式解决这个问题吗?

指名回答,教师板书:28+17+23

提问:如果老师想突出强调先算跳绳的人数,可以怎么做?

生:添上小括号

教师给28+17加上小括号。

提问:还是这个式子28+17+23,如果要先算参加活动的女生人数,应该怎么办?

学生同桌交流,指名说说。

教师添上括号:28+(17+23)。

提问:比较这两道算式:它们有什么相同点和不同点?(数学符号相同,得数相同,但运算顺序不同)

师:既然得数相同,我们可以写成等式:

板书:(28+17)+23=28+(17+23)

课件出示:算一算,下面的○里能填上等号吗?

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

指名学生口答。

归纳加法结合律:

提问:观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律?和你的同桌交流一下。

提问:你能用字母a、b、c代表这三个加数,把上面的规律表示出来吗?(学生独立写一写)教师板书:(a+b)+c=a+(b+c)

小结:三个数相加,先把前两个数相加,再与第三个数相加;或者先把后两个数相加,再与第一个数相加,它们的和不变。这就是我们今天所学的加法的第二个运算律——加法结合律。(板书:加法结合律)

考考你:运用加法结合律在括号里填上合适的数字

(45+36)+64=45+(□+□)

560+(140+70)=(560+□)+□

总结:这节课我们一起学习了加法的交换律和结合律,知道两个数相加,交换加数的位置和不变,还知道了三个数连加,改变运算顺序和不变。

设计意图:围绕“变与不变”这一关键点,通过比较每组的两个算式,初步感受规律。接着再经过学生个性化的验证及交流,从而确认加法结合律并学会用含有字母的式子来表示。这样发展了学生分析、比较、归纳、概括的能力。

(五)巩固应用,扩展提高

同学们刚才的表现真棒!那现在想不想和老师一起去闯关呀。我们的闯关开始啦!

1、第一关:火眼金睛

下面的等式各运用了加法的什么运算律?

82+0=0+82

47+(30+8)=(47+30)+8

(84+68)+32=84+(68+32)

75+(48+25)=(75+28)+48

2、第二关:大显身手

在途中,小熊遇到了麻烦,它想把树上的苹果摘下来,可是它必须答对问题,才能拿到苹果,你能帮助它吗?

相加等于100?

3、第三关:勇夺第一,想想做做4

38+76+2438+(76+24)

全班男生完成第1题,女生完成第2题。

提问:为什么每组两道题的得数相同?哪种方法简便,为什么?

观察(88+45)+1245+(88+12),哪题运算简便。

小结:可见,合理地运用加法的交换律和结合律可以使计算简便。

设计意图:几个层次的练习,为学生提供了具有价值的学习内容,开放学生的思维空间,提高思维含量,学生在观察辨析中比较,在思考对比中升华,促进学生灵活地理解和掌握知识。

(六)全课总结

今天这节课我们学习了什么知识?应用加法交换律和结合律,有时可以使计算简便。下一节课我们将继续学习。

设计意图:及时总结、巩固所学知识。使学生在自己的整理总结中再次巩固了本节课的重难点。同时为学生以后的学习作好了铺垫。

《乘法交换律和结合律》教学反思 篇7

这节课的教学目的是:让学生通过计算、观察、交流、归纳等活动,经历探索乘法结合律的全过程,理解并用字母表示乘法结合律,能运用乘法结合律进行简便计算。

在新授过程中,我比较注重学生认知规律和探索规律的方法与过程,放手让学生自己去发现,把看到的现象用数据去验证,并引导他们用自己的语言归纳总结。从学生反馈回来的'情况看,学生学得很不错。在学习过程中,我还用大屏幕出示了课本上语言较为严密的乘法结合律,与学生自己归纳总结的乘法结合律作比较,学生当时就把这个规律牢记在心中,效果很好。

改变评价方式,我抓住学生的已有感知,提出“观察这一组等式,你能发现其中的奥秘吗?”等类似的问题,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的评价的多元性也体现了出来。

《加法交换律和结合律》说课稿 篇8

教学内容:

青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

教学目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

4.初步形成独立思考、合作交流的意识和习惯。

教学重点:

理解掌握加法的交换律和结合律,并会用字母表示他们。

教学难点:

引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

教学准备:

课件、投影仪、卡片

教学过程:

一、拟… …定导学提纲,自主预习

(一)创设情境

1.谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?

课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。

以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

请同学们仔细观察,你能获得了哪些数学信息?

学生观察汇报,

生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万平方千米,中游是34万平方千米,下游是2万平方千米;)

教师适时板书相应的信息条件。

2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。

问题(1)黄河流域的面积是多少万平方千米?

问题(2)黄河全长多少千米?

(二)出示学习目标

同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

2.在探索运算律的过程中,发展学生的。观察、比较、抽象、概括能力,培养学生的符号感。

(三)出示自学指导

为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

(自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

(5分钟后,比一比谁汇报得最清楚。)

(四)学生自学

师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

二、汇报交流,评价质疑

(一)调查

师:看完的同学请举手?

(二)全班汇报

1.问题一:黄河流域的面积是多少万平方千米?

学生在列式解答时,可能会出现两种情况:

(1)39+34+2和34+2+39

(2)(39+34)+2和39+(34+2)。

2.问题二:黄河全长多少千米?

学生可能出的情况:

(1)、3470+1210+790和1210+790+3470

(2)(3470+1210)+790和3470+(1210+790)。

今天我们要学的知识就在这两组算式中。

(设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

3.观察、比较、发现规律

(1)观察这些算式,你们发现了什么?

生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

例如:

(39+34)+2=39+(34+2)

(3470+1210)+790=3470+(1210+790)。

(2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

生汇报:

(35+63)+15=35+(63+15)

(325+82)+18=325+(82+18)…

(3)把你的发现告诉大家?(将学生的举例用实物投影展示)

(三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

师指出这条规律叫做加法结合律。

(4)你能用你喜欢的方法表示这加法结合律吗?

学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

(设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)

4.学法迁移,探索加法交换律。

那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

(1)游戏:找朋友。

在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

(2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?

一键复制全文保存为WORD