本文是爱岗的小编帮助大家整理的初中数学相反数教案(5篇),欢迎参考阅读。
(一)知识教学点
1.了解:互为相反数的几何意义.
2.掌握:给出一个数能求出它的相反数.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释相反数的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的相反数,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.
2.学生学法:感性认识理性认识练习反馈总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的相反数.
2.难点:根据相反数的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入新课
1.互为相反数的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5,-5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.
[板书]2.3相反数
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)
师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的相反数.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的相反数()
(2)5是-5的相反数()
(3)与互为相反数()
(4)-5是相反数()
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.
师:0的相反数是0.
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的相反数.
2.分别说出9,-7,0,-0.2的相反数.
3.指出-2.4,,-1.7,1各是什么数的相反数?
4.的相反数是什么?
学生活动:1题同桌互相订正,2、3题抢答.
【教法说明】1题注意培养学生运用数形结合的方法理解相反数的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为相反数.2、3、4题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“的相反数是.”
[板书]a的相反数是-a.
师:的相反数是,可表示任意数—正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号.
提出问题:若把分别换成+5,-7,0时,这些数的相反数怎样表示?
.
.
.
提出问题:前面加“-”号表示的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答.
【教法说明】利用相反数的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的相反数是,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊能答出-(+5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.
巩固练习
(出示投影3)
1.是______________的相反数,.
2.是_____________的相反数,.
3.是_____________的相反数,.
4.是_____________的相反数,.
学生活动:思考后口答.
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.
【教法说明】根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.
巩固练习:
1.例题2简化-(+3)-(-4)的符号.
2.简化下列各数的符号
3.自己编题
学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对相反数概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.
(三)归纳小结
师:我们这节课学习了相反数,归纳如下:
1.________________的两个数,我们说其中一个是另一个的相反数.
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出.
【教法说明】通过问题形式归纳出本节的重点.
(四)回顾反馈
1.-1.6是__________的相反数,
____________的相反数是0.3.
2.下列几对数中互为相反数的一对为().
A.和B.与C.与
3.5的相反数是________________;的相反数是___________;的相反数是________________.
4.若,则;若,则.
5.若是负数,则是___________数;若是负数,则是___________数.
学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.
【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对相反数概念的理解情况,对学有余力的同学是一个提高.
八、随堂练习
1.填表
原数
相反数
3
-7
倒数
-1
2.选择题
(1)下列说法中,正确的是()
A.一个数的相反数一定是负数
B.两个符号不同的数一定是相反数
C.相反数等于本身的数只有零
D.的相反数是-2
(2)下列各组九中,是互为相反数的组数有()
①和②-(-1)和+(-1)
③-(-2)和+(+2)④和
A.4组B.3组C.2组D.1组
(3)下列语句中叙述正确的是()
A.是正数
B.如果,那么
C.如果,那么
D.如果是负数,那么是正数
九、布置作业
(一)必做题:课本第61页A组2、3.
(二)选做题:课本第62页B组1、2.
十、板书设计
2.3相反数
1.只有符号不同的两个数其中一个是另一个的相反数.
2.0的相反数是0
3.的相反数是.例,……
随堂练习答案
1.略2.CBD
作业答案
(一)必做题:
1.(1)1.6,0.2,(2),3
2.16,-20,50,8.07,
(二)选作题:
1.(1)6,(2)9
2.(1);(2).
教案点评:
关键词:数学教学 创造性思维 培养
中图分类号:G633.6 文献标识码:A 文章编号:1673-9795(2013)03(c)-0005-02
创造性思维是人类的高级心理活动。心理学认为:创造思维是指思维不仅能提示客观事物的本质及内在联系,而且能在此基础上产生新颖的、具有社会价值的前所未有的思维成果。创造性思维是在一般思维的基础上发展起来的,它是后天培养与训练的结果。卓别林为此说过一句耐人寻味的话:“和拉提琴或弹钢琴相似,思考也是需要每天练习的。”
数学教学中对学生创造性思维的培养也是很重要的。作为教育工作者,我从事数学教学实践证明:求异度高,求同性好,学生解决新问题,探索新规律的能力就越强,创造性思维的水平就越高,培养出来的学生就越具竞争力。对此,我浅谈数学教学中对学生创造性思维的培养几点体会和做法。
1 培养学生创造性思维的观察力
观察力是人类智力结构的重要组成部分,敏锐的观察力是创造性思维的开端。例如,有这样的一道例题:9+9+9+9+ 13+9+9+9+9+9=?
解这道题学生普遍的方法是直接算出来,我启发学生用简便运算,多数同学提出了9×9+13的方法。而有一位同学建议用9×10+4的解法,这位同学的思维就很有创造性,通过观察,他看到了实际不存在的“9”,他的这种解题方法不是照搬老师,不是死记硬背,可以说是一种高效率的创造性思维能力。数学教学过程中,教师就要经常注意培养学生突破常规固定的解题模式,通过观察寻求更优的解法,从而培养学生的创造性思维能力。
2 培养学生创造性思维的想象力
想象力是创造性思维的“设计师”。想象力是客观现实在人脑中的一种反应,数学教学中培养学生思维的想象力应先让学生掌握基础知识,再根据教材潜在的因素,创设想象情景,提供想象材料,诱发学生的创造想象,从而培养学生的创造性思维能力。
例如:教科书有这样一个问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米,在圆柱的底面A点有一只蚂蚁,它想吃到上底面与A点相对的B点处的食物,需要爬行的最短路程是多少?
直觉判断,不难发现,蚂蚁应该沿着侧面爬行。那么,在侧面上如何爬行,所走的路程最短呢?由于侧面是弯曲的,为此可以试图将弯曲的侧面展呈一个平面,如图1所示。
在课堂上,教师的引导,学生已经比较过多种爬行路径,如(1)AA′B;(2)AB′B;(3)ADB;(4)AB。当然也得出了沿着直线段AB爬行最近。
现在的问题是,对于任意的圆柱,上面的爬行路线是否都最短呢?
想象,在高为1,底面半径为4的圆柱形实木块的下底面的A点处有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,如图2所示,这只蚂蚁需要爬行的最短路程是多少?
如果还是沿着侧面爬行,不难算出最短爬行距离是12.6(米),由于这个圆柱“矮而胖”,如果从上底面沿直径爬过去,可以省得绕侧面爬行那样绕过一段大肚子,可能反而行程可能会少一些,当然,这只是感觉想象,需要具体计算一下。不难算出从A点直接向上爬再沿着直径爬到B点的行程是1+4×2=9(米),确实比沿着侧面爬行短一些。
实际上,这和我们的直觉是一致的。不妨用一个最为极端的圆柱为例加以说明,如果这个圆柱特别矮,以致于接近一个硬币或者接近一个平面上的圆,显然沿着直径走比沿着侧面(圆周)走要近一些。
当然,研究不要局限于此,我们需要进一步思考:什么情况下蚂蚁沿着侧面爬行路程最近(姑且称为线路1),什么情况下蚂蚁先竖直爬到地面上再沿着直径爬行(姑且称为线路2)路程最近?
经验告诉我们,思维的想象与观察常常密不可分,深入观察,大胆想象,从观察中获取信息,储存信息,在外界的诱导,产生联想,刺激想象,从而培养学生的创造性思维能力。
3 培养学生创造性思维的发散性
在创造性思维过程中,发散思维起着主导作用,是创造性思维的核心。
在数学教学中,教师培养学生思维的发散,在引导学生吃透问题、把握问题实质的前提下,关键是要使学生能够打破思维定势,改变单一的思维方式,运用联想、想象、猜想、推想等尽量地拓展思路,从问题的各个角度、各个方面、各个层次进行或顺向、逆向、纵向、横向的灵活而敏捷的思考,从而获得众多的方案或假设。唯有“发散”,才能多角度、多层次地从不同方面去思考,才能深刻地理解、巩固并灵活运用知识,培养学生的创造性思维能力。
例如:正方形的边长为2,建立合适的直角坐标系,写出各个顶点的坐标。
在课堂中,教师引导学生:正方形的四个角都是直角,四条边相等,对角线相等且互相垂直平分。因此,本题的解法很多(图3所示)。
数学题目,由于其内在规律或思考的途径不同,可能会有许多不同的解法。在例题教学中,可叫学生先做例题,引导学生广开思路,探求多种解法,教师再给学生分析、比较各种解法的优劣,找出最佳的、新颖的或巧妙的解法,例题的讲解应该注意一题多解、一题多变,即条件发散、过程发散、结论发散,强调思维的发散,增强思维的灵活性。从而培养学生的创造性思维。
4 培养学生创造性思维的逆向性
在教学实践中,我体会到学生对于概念、定理、公式、法则,往往习惯于正面看、正面想、正面用,极易形成思维定势,而逆向思维相对薄弱。学生面对新问题,往往感到束手无策,寸步难行,所以,在重视正向思维的同时,养成经常逆向思维的习惯,“反其道而行之”,破除常规思维定势的束缚。
为了克服这种不良倾向,我在平时的教学中,有意识的进行逆向思维的培养。我在具体教学中是从以下三个方面培养:
(1)在教学中,重视学生从正、逆两个方面去理解概念;例如:“相反数”教学中,我提问学生“9的相反数是什么、什么的相反数是-0.5、两个数互为相反数有什么特点?”
(2)从正、逆两个方面去掌握公式、法则和定律。强调一些基本方法的逆用:从局部考虑不易,是否能整体处理;一般情况下不好办,考虑特殊情况;前进有困难,退一步如何;正面入手分类太多,对立面如何;“执果索因”与“由因导果”两方面寻找解题途径;直接证明不行,则考虑用间接证法等等。例如:已知:x+y=7,x-y=5,求代数式x2-y2-2y+2y的值?
(3)在解题中注意逆向思维的训练。当常规解法出现情况比较多,其对立面情况又较单一时,采用逆向思维来解决问题,则解题思路更清晰明了。如,当a是什么值时,对于两个关于x方程x2+4ax+3-4a=0,x2+(a-1)x+a=0至少一个有实根。如果从正面求解,会出现三种情况,计算量大且容易出错,而考虑其反面“两个方程都没有实根”,然后求得补集,解法很简洁。
创造性思维的逆向性,从问题的反面揭示本质,弥补了正向思维的不足,使学生突破传统的思维定势,是培养学生创造性思维的关键。
5 培养学生创造性思维的逻辑性
在数学教学过程中,教师不仅要有意识地培养学生的直觉思维,逐步学会猜测、想象等非逻辑思维,而且要加强对逻辑性思维的训练,以培养学生的创造性思维。
例如,在《平方差》的教学中,不必由教师直接给出结论,可设计学生自主活动,尝试发现,大胆猜测的规律。先让学生观察(x+2)(x-2),(1+3a)(1-3a)和(y+3x)(x-3x),后让学生计算其运算结果,再让学生探索发现其规律,最后教师给予严格的逻辑证明。如果直接给出公式结论,也能达到记忆的目的。但两种处理方法,看似一样,实际效果则大相径庭。因为在这个过程中,不仅调动了学生的逻辑思维,而且调动了学生的直觉思维,引导学生经历了由直觉发现到逻辑证明的解决过程,极大地培养了学生的创造性思维。
6 培养学生创造性思维的求同性与求异性
在创造性思维活动中,求异思维占主导地位,也有求同的成分,而且两者是密不可分的。在教学中,只有引导学生从同中求异与异中求同的反复结合,才能培养创造性思维的流畅性、变通性、新奇性。
例如,在证明“三角形内角和定理”时,因三个内角位置分散,大家一致认为必须添加适当的辅助线使角集中起来,这是思维的求同;至于如何添加适当的辅助线,这便是思维的求异点。学生们勇于探索,各抒己见。有同学提出:过一顶点作对边的平行线;也有同学认为:过一顶点作对边的平行线;也有同学认为:过一顶点作射线平行对边;还有同学想到:在一边上取一点后,分别作另两边的平行线。多种方法能够解决问题,学生的求异思维十分活跃。然后通过比较,异中选优,大家认为“过一顶点作射线平行对边”较为简洁!
7 结语
面对21世纪的挑战,培养具有创新型人才,是现代数学教学的主要目标。在数学教学中,培养学生的创造性思维是我们不断探讨的课题。我也将为此不懈努力,培养更多具有创造性思维的创新型人才。
[1] 义务教育课程标准实验教科书七年级[M].北京:北京师范大学出版社,2005.
[2] 义务教育课程标准实验教科书九年级[M].北京:北京师范大学出版社,2008.
[3] 谢鼓平。初中教案与作业设计八年级[M].北京:北京师范大学出版社,2005.
[4] 张新天。创造性思维40法[M].上海:上海大学教育出版社,2005
[5] 边涛,吴玉红。创造性思维[M].北京:中国物资出版社,2005
同底数幂的乘法(二)
一、教学目标(
1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.
2.培养学生运用公式熟练进行计算的能力.
3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志.
4.渗透数学公式的结构美、和谐美.
二、学法引导
1.教学方法:讲授法、练习法.
2.学生学法:勤于练习,在练习中理解同底数幂的适用条件及运算方法.
三、重点·难点及解决办法
(一)重点
同底数幂的运算性质.
(二)难点
同底数幂运算性质的灵活运用.
(三)解决办法
在运算中应强化对公式及性质的形式、意义的理解,同时应加强对符号的判别.
四、课时安排
一课时.
五、教具学具准备
投影仪、胶片.
六、师生互动活动设计
1.复习同底数幂的乘法法则并能正确的判断是否合理使用了该法则,让学生能进一步准确掌握该法则.
2.通过两组举例(师生可共同完成),教师应侧重帮助学生分析解题的方法,并及时提醒学生注意易出错的环节.
3.再通过三组不同形式的题型从不同的角度训练学生的思维能力,以提高学生的辨别能力和运算能力.
七、教学步骤
(-)明确目标
本节课重点是熟练运用同底数暴的乘法运算公式.
(二)整体感知
要准确掌握同底数幂的乘法法则,并会运用它熟练灵活地进行同底数幂的乘法运算,对于运算法则,我们除了应掌握它们的正用:外,还要善于根据题目的结构特征,学会它们的逆向应用:,当然这个难度较大.在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆.乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同.
(三)教学过程
1.创设情境、复习导入
(1)叙述同底数幂乘法法则并用字母表示.
(2)指出下列运算的错误,并说出正确结果.
①
②
③
强调:①中的指数不为0,指数相加时不要漏加的指数.②不是同类项不能合并.③同底数幂相乘,指数相加不是相乘.
(3)填空:
①,
②,,
2.探索新知,讲授新课
例1计算:
(1)(2)(3)
解:(1)原式
(2)原式
(3)原式
例2计算:
(1)(2)
(3)(4)
解:(1)原式
(2)原式
(3)原式
(4)
或原式
提问:和相等吗?
3.巩固熟练
(1)P93练习(下)1,2.
(2)计算:
①②
③④
(3)错误辨析:
计算:①(是正整数)
解:
说明:化简错了,是正整数,是偶数,据乘方的符号法则本题结果应为0.
②
解:原式
说明:与不是同底数幂,它们相乘不能用同底数幂的乘法法则,正确结果应为
(四)总结、扩展
底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题.
八、布置作业
P94A组3~5;P95B组1~2.
参考答案
略.
九、板书设计
投影幂
例1例2练习
小结:
关键词:集体备课;多媒体课件
一、多媒体课件,为集体备课搭建智慧碰撞的平台
在上“有理数的乘法”一课前,年级备课组长要求本年级的所有教师各自备课,然后在此基础上集中交流。由一人主讲,大家围绕主讲人教学设计的主题发表补充意见并开展讨论,再集体商定最终的集体教案。
首先,多媒体课件可以为集体备课搭建一个声色具备的展示平台。在传统形式中,探讨过程中的媒介一般是教科书和主讲人的教案,然而只有文本和语言的讲述显得比较抽象和单调。而课件使主讲人有本可依,主讲人借助课件,将说明“负负得正”的各种数学模型,从北师大的归纳模型,到苏科版的水位模型,浙教版的数轴模型、温度模型,通过生动活泼的页面一一呈现给听众,使主讲人更好的展现了个人对教学内容的理解和设计意图。多角度的观察,也使听者能更为迅速的理解其主题。而鼠标的点击操作代替了主讲人的书写方式,节约了大量的时间,大大提高了集体备课的效率。
其次,多媒体课件为集体备课提供了一个资源丰富的资源平台。在“有理数的乘法”一课的探讨中,就有教师提出,除各种不同版本的教科书之外,网络和杂志上也出现了各种较新颖的说明“负负得正”的数学模型,如相反数模型、分配律模型和好孩子模型等[1 ].丰富的内容对教材进行了更多的拓展,打破了教材作为唯一课程资源的神话[2 ].借助网络和多媒体的力量,教师对教材的探讨又将迈进一步。
再次,多媒体课件同样是集体备课过程中的探讨平台。多媒体课件使讨论有根有据,与会者可以对教学设计的每个环节、内容、细节都进行深入斟酌,提出富有成效的建议和意见。
最后,多媒体课件还是集体备课的检查平台,它“含蓄”地检查了各位教师的备课情况。通过主讲人的讲述以及对课件的熟练程度,可以很容易判断出其课件是有自己的研究思想,还是仅仅依靠网络盲目使用他人的教学资源。这种隐性的检查,也是非常有必要的,因为,集体备课也会增长教师的惰性,如果教师仅依靠集体备课,就会完全失去了自我,其教学“生命”将是没有阳光的。我们认真地钻研教材教法,形成教学设想,带着问题,就能保证为集体备课的“生命”。
二、多媒体课件,为二次独立备课打造展示个性的舞台
在集体交流后, 往往会形成一个较为完善的教学方案[3 ].但是“资源共享”不等于“案”。首先,教学必须是因人而异、以人为本的,教师需要根据各个班级间的差异性,对课件进行相应的调整。其次,由于教师的知识结构、教学经验、个人性格等多方面存在差异性,会形成具有个人特色的教学方法,对教学内容也有各自不同的理解。多媒体的丰富性和交互性使课件成为教师展现其职业个性的舞台。
多媒体课件的丰富性使教师能充分展示个性。集体备课组得出的课件中含有丰富的教学素材和内容,使教师减少了准备素材需花费的时间,使其有更多的时间进行教学设计并钻研教学方法。“有理数的乘法”一课中,单单如何说明“负负得正”这个问题,就有多种不同的模型。教师可以根据遇到的具体问题进行个性的选择,做到集体备课课件与教师个人最大限度的契合,充分展现教师教学的职业个性。
多媒体课件的交互性使教师能充分展示个性。“有理数的乘法”一课中,集体讨论过程中,主要讨论的是采用哪个模型说明“负负得正”更容易被学生接受,而引入、结尾和练习的设计都留下了一定的“空白”,为课件使用者提供了个人思考的空间,方便课件使用者作个性化的修改。在二次备课过程中,使用者可以将个人的新素材添加到课件中,对其不断完善、丰富并扩充。教师还可以通过调整字体类型、改变界面色彩、添加趣味图片、视频以及音频等媒体手段来呈现教师的情感个性[4 ].
三、多媒体课件,为课后反思建筑资源积累的高台
在课堂教学过程中,许多可变因素都会干扰“个性课堂”的具体实施,都会对原有的教学设计提出挑战。有的教师上课选择的是温度模型和水位上升下降模型,借助多媒体展示形象生动。但在实际的教学过程中,规则的复杂性影响到思维活动的有效展开,因为三个量的单位是不同的,必须确定三个基准,并约定三对相对的正、负,特别是关于时间的正负约定。在课堂实践中教师发现,学生转来转去,容易迷惑。同时,各位上课教师也发现,似乎没有一种模型真正说明‘<>负负得正’,那不如选择最容易让学生理解和接受的模型,而通过学生的反馈,发现相对而言,相反数模型被学生自发地使用得较多。像这些收获,在传统教学中,很容易在口口相传中被遗忘。
教学反思是一种教师积累教学经验并取得不断进步的有效途径。将集体教学的反思记录进行整理,才能更好的促使教学思想的成长,为完善教师教学理论水平提供了资源。多媒体恰是资源积累的最好平台,上课教师对自己的教学观念、教学行为、课堂应变能力进行衡量;对学生的表现、自己的教学成败进行理性分析[5 ].在备课小组讨论分析的基础上对原有课件进行修改整理,同时,指定教师对集体的归纳整理撰写“教学反思”,以文档的形式和课件存入电脑内的同一个文件夹,都作为下一次集体备课的重要参考资料。通过反思、总结、记录,各位教师在掌握现在课堂的知识体系的基础上,发展自身教学风格,提高自身教学水平。
总之,通过分析我们发现,以多媒体为平台的集体备课变得更加丰富精致;以课件为主题,集体备课更加连贯流畅。但其中最重要的还是教师的态度,只有教师充分认识到集体备课的作用,发挥每个人的主观能动性,才能使集体备课提高效率,使教育教学水平再上一个新台阶。
参考文献:
[1] 巩子坤。有理数运算的理解水平及其教与学的策略研究。西南大学,2006(5).
[2] 何芳。正确使用教材。 当代教育科学,2005,16.
[3] 王美君。以集体备课促教师专业化发展[J].现代教学。2008(7):106-107.
[4] 李金玲。有效的教师个性特征及其在网络教学中的实现。现代企业教育。2007.
[5] 付燕燕。反思性教学实践之我见。科技信息。2009(2).
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.
1.平方差公式是由多项式乘法直接计算得出的:
与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.
2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.
只要符合公式的结构特征,就可运用这一公式.例如
在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.
3.关于平方差公式的特征,在学习时应注意:
(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.
(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).
(3)公式中的和可以是具体数,也可以是单项式或多项式.
(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.
三、教法建议
1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.
2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即
(a+b)(a-b)=a2+ab-ab-b2=a2-b2.
这样得出平方差公式,并且把这类乘法的实质讲清楚了.
3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),
(1+2x)(1-2x)=12-(2x)2=1-4x2
(a+b)(a-b)=a2-b2.
这样,学生就能正确应用公式进行计算,不容易出差错.
另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.
教学目标
1.使学生理解和掌握平方差公式,并会用公式进行计算;
2.注意培养学生分析、综合和抽象、概括以及运算能力.
教学重点和难点
重点:平方差公式的应用.
难点:用公式的结构特征判断题目能否使用公式.
教学过程设计
一、师生共同研究平方差公式
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.
在此基础上,让学生用语言叙述公式.
二、运用举例变式练习
例1计算(1+2x)(1-2x).
解:(1+2x)(1-2x)
=12-(2x)2
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.
例2计算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)
=(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.
课堂练习
运用平方差公式计算:
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3计算(-4a-1)(-4a+1).
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.
课堂练习
1.口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.
三、小结
1.什么是平方差公式?
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.
四、作业
1.运用平方差公式计算:
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);
2.计算:
(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);