作为一位优秀的人民教师,常常需要准备教案,教案是教学蓝图,可以有效提高教学效率。写教案需要注意哪些格式呢?
1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。
2、提高分析数量关系的能力,培养学生思维的灵活性。
3、在积极参与数学活动的过程中,树立学好数学的信心。
引导学生独立分析问题,找出题目中的等量关系。
在积极参与数学活动的过程中,树立学好数学的信心。
教学光盘
一、复习准备
1、解方程(练习一第6题的第1、3小题)
4x+12=50 2.3x-1.02=0.36
学生独立完成,再指名学生板演并讲评,集体订正。
二、尝试练习
师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。
出示:30x÷2=360
学生独立尝试完成,全班交流。
指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?
三、巩固练习
1、出示练习一第7题。
(1)分析数量关系
提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:s=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。
第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。
(2)学生独立计算,并检验答案是否正确,全班核对。
小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。
2、练习一第8题。
学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)
学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)
3、练习一第9题。
学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。
学生独立解方程再集体订正。
4、练习一第10题。
教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。
5、练习一第11题。
学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)
学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。
6、练习一第12题。
提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢
学生独立列方程解答,同桌同学互相检查,再集体订正。
7、练习一第13题。
学生阅读第13题,理解后独立解决问题,再交流。
教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。
四、全课小结
说一说你这一节课的学习收获及还有什么问题。
五、布置作业
完成配套习题。
知识技能
会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考
1、经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。
2、通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题
能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度
经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点
建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点
分析实际问题中的相等关系,列出方程。
教学过程
活动一知识回顾
解下列方程:
1.3x+1=4
2.x-2=3
3.2x+0.5x=-10
4.3x-7x=2
提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?
教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)
教师追问:变形的依据是什么?
学生独立思考、回答交流。
本次活动中教师关注:
(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究
问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?
教师:出示问题(投影片)
提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?
(学生尝试提问)
学生:读题,审题,独立思考,讨论交流。
1.找出问题中的已知数和已知条件。(独立回答)
2、设未知数:设这个班有x名学生。
3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)
4.找相等关系:
这批书的总数是一个定值,表示它的两个等式相等.(学生回答,教师追问)
5.列方程:3x+20=4x-25(1)
总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?
教师提问1:这个方程与我们前面解过的方程有什么不同?
学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).
教师提问2:怎样才能使它向x=a的形式转化呢?
学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.
3x-4x=-25-20(2)
教师提问3:以上变形依据是什么?
学生回答:等式的性质1。
归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成解答过程。
设问4:以上解方程中“移项”起了什么作用?
学生讨论、回答,师生共同整理:
通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。
教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?
学生思考回答。
教师关注:
学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?
在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。
活动三解法运用
例2解方程
3x+7=32-2x
教师:出示问题
提问:解这个方程时,第一步我们先干什么?
学生讲解,独立完成,板演。
提问:“移项”是注意什么?
学生:变号。
教师关注:学生“移项”时是否能够注意变号。
通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。
活动四巩固提高
1、第91页练习(1)(2)
2、某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?
3、小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。
教师按顺序出示问题。
学生独立完成,用实物投影展示部分学而生练习。
教师关注:
1、学生在计算中可能出现的错误。
2.x�
3、用实物投影展示学困生的完成情况,进行评价、鼓励。
巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。
2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。
活动五
提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?
提问2:本节课重点利用了什么相等关系,来列的方程?
教师组织学生就本节课所学知识进行小结。
学生进行总结归纳、回答交流,相互完善补充。
教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。
引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。
布置作业:
第93页第3题
【教学任务分析】
教学目标
知识
技能:1.用一元一次方程解决“数字型”问题;
2、能熟练的通过合并,移项解一元一次方程;
3、进一步学习、体会用一元一次方程解决实际问题。
过程
方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想。
情感
态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义。
重点建立一元一次方程解决实际问题的模型。
难点探索并发现实际问题中的等量关系,并列出方程。
【教学环节安排】
环节教学问题设计教学活动设计
情境引入
牵线搭桥,解下列方程:
(1)-5x+5=-6x;(2);
(3)0.5x+0.7=1.9x;
总结解“ax+b=cx+d”类型的一元一次方程的步骤方法。
引出问题即课本例3
问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求。
学生:独立完成,根据讲评核对、自我评价,了解掌握情况。
探究一:数字问题
例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?
【分析】1.引导学生观察这列数有什么规律?
①数值变化规律?②符号变化规律?
结论:后面一个数是前一个数的-3倍。
2、怎样求出这三个数?
①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?
②列出方程:根据三个数的和是-1701列出方程。
③解略
变式:你能设其它的数列方程解出吗?试一试。比比较哪种设法简单。
探究二:百分比问题(习题3.2第8题)
【问题】某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%。今年人均收入比去年的1.5倍少1200元。这个乡去年农民人均收入是多少元?
【分析】①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;
②因为今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元。
③根据“表示同一个量的两个式子相等”可以列出方程为________________________.
解答略教师:引导学生分析。
2、本例是有关数列的数学问题,题要求出三个未知数,这需要学生观察发现它们的排列规律,问题具有一定的挑战性,能激发学生学习探索规律类型的问题。
学生:观察、讨论、阐述自己的发现,并互相交流。
根据分析列出方程并解出,求出所求三个数。
备注:寻找数的排列规律是难点,可让学生小组内讨论发现、解决。
变换设法,列出方程,比较优劣、阐述发现和体会。
教师:出示题目,引导学生,让学生尝试分析,多鼓励。
学生:根据引导思考、回答、阐述自己的观点和认识。
根据共同的分析,列出方程并解出,
(说明:此题目数以百分比、增长率问题可根据实际情况安排,若没时间,可在习题课上处理)
尝试应用
1、填空
(1)有个三位数,个位上的数字是a,十位上的数字是b,百位上的数字是c,则这个三位数是:_______________.
(2)有一数列,按一定规律排成1,-2,3,2,-4,6,3,-6,9,接下来的三个数为_____________________.
(3)三个连续偶数,设第一个为2x,那么第二个为_______,第三个为______,它们的和是__________;若设中间的一个为x,那么第一个为_____,第三个为______,它们的和是__________.
2、一个三位数,三个数位上的数字的和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,你能求出这个三位数吗?这是最经常出现的一类数字问题:引导学生分析已知各位上的数字,怎么表示这个数,理解为什么不能表示成cba?这是解决这类问题的基础。
通过(3)题理解连续数的表示法,并感受怎么表示最简单。
通过2题让学生理解怎么设?以及怎么设简单(舍都有联系的一个),并感受用未知数表示多个未知量,顺藤摸瓜,从而列出方程的顺向思维方式。
教师:结合完成题目,汇总讲解,重点在于解法。
成果展示
1、通过本节所学你有哪些收获?
2、谈谈你掌握的方法和学习的感受,以及你对应用方程解决问题的体会。学生自我阐述,教师评价鼓励、补充总结。
补偿提高
1、有一数列,按一定规律排成0,2,6,12,20,30,…,则第8个数为______,第n个数为_____.
2、下面给出的是2010年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,圈出的三个数的和不可能是()。
A.69B.54C.27D.40
通过练习,掌握数字问题的分类及不同解法,巩固、体会用方程解决问题的思路和思维方式,学会用方程解决问题。
题目设置是对前面学生所出现的问题进行针对性的补偿和补充,也可对学有余力的学生拓展提高。
根据学生完成情况灵活设置问题。
作业
设计作业:
必做题:课本4、5、第94页6题。
选做题:同步探究。教师布置作业,并提出要求。
学生课下独立完成,延续课堂。
教学目标
知识与能力:
1、通过对典型实际问题的分析,体验从算术方法到代数方法是一种进步、
2、在根据问题寻找相等关系、根据相等关系列出方程的过程中,培养获取信息、分析问题、处理问题的能力、
3、在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想、
教学目标
过程与方法:
1、能结合实际问题情境发现并提出数学问题、
2、通过学习进一步体会方程是刻画现实世界的有效数学模型,增强从实际问题出发建立数学模型的能力、
情感态度与价值观目标:
1、勤于思考,乐于探究,敢于发表自己的观点;
2、以积极的态度与同伴合作,从解决实际问题中体验数学价值、
教学重难点
重点
会用一元一次方程解决实际问题、
难点
将实际问题转化为数学问题,通过列方程解决问题、
教科书第12~13页,“回顾与”、“练习与应用”第1~4题。
1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。
2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。
一、回顾与
1、谈话引入。
本单元我们学习了哪些内容?
你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?
在小组中互相说说。
2、组织讨论。
(1)出示讨论题。
(2)小组交流,巡视指导。
(3)汇报交流。
你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?
(等式与方程都是等式;等式不一定是方程,方程一定是等式。)
(含有未知数的等式是方程。)
(等式性质:)
(求方程中未知数的值的过程叫做解方程。)
同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。
二、练习与应用
1、完成第1题。
(1)独立完成计算。
(2)汇报与展示,说说错误的原因及改正的方法。
2、完成第2题。
(1)学生独立完成。
(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)
3、完成第3题。
(1)列出方程,不解答。
(2)你是怎样列的?怎么想的?大家同意吗?
(3)完成计算。
4、完成第4题。
单价、数量、总价之间有怎样的数量关系?
指出:抓住基本关系列方程,y也可以表示未知数。
三、课堂
通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?
教学目的
1、使学生巩固等式与方程的概念。
2、使学生掌握等式的性质和灵活掌握一元一次方程的解法,培养学生求解方程的计算能力。
教学分析
重点:熟练掌握一元一次方程的解法。
难点:灵活地运用一元一次方程的解法步骤,计算简化而准确。
突破:多练习,多比较,多思考。
教学过程
一、复习
1、什么是一元一次方程?一元一次方程的标准形式是什么?它的。解是什么?
2、等式的性质是什么?(要求说出应注意的两点)
3、解一元一次方程的基本步骤是什么?
以解方程-2x+=为例,说明解一元一次方程的基本步骤与注意点,并口头检验。
二、新授
1、已知方程(n+1)x|n|=1是关于x的一元一次方程,求n的值。
分析:根据一元一次方程的定义,得|n|=1且n+1≠0,解得n=1。
解:略
2、下列说法中,正确的是( )。
A -3x=0的解是x=-3
B -x+1=4的解为x=-
C-1=的解是x=1
D x2-x-2=0的解是x=2, x=-1(D正确)
3、x等于什么数时,代数式x+5的值比的值小2。
解:(解略,应根据题目的意思列出方程。)
4、根据下列条件列出方程,并求出方程的解。
(1) 某数x的3倍减去9,等于某数的3分之1加上6;
(2) 已知-3m3(x-2)n与25m2+xn是同类项,求x的值;
(3) 已知代数式2[(x-1)+5]+x+1与代数式3[x-8(x-4)]+7的值互为相反数,求x的值。
5根据下列方程的特点解方程。
(题目见课本中P208、16的2,4)
三、练习
P209习题:20。
四、小结
1、略。
五、作业
1、P240 A:1,2,3,4。
2、B:1,2。
教学目标:
1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:
在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用
新知识解决实际问题的能力。
情感态度和价值观:
让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,
认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
教学重点:
建立一元一次方程的概念,寻找相等关系,列出方程。
教学难点:
根据具体问题中的相等关系,列出方程。
教学准备:
多媒体教室,配套课件。
教学过程:
设计理念:
数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。
一、游戏导入,设置悬念
师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。
生1:24,师:2,3,9,10生2:84师:17,18,24,25
师:同学们想学会这个魔术吗?生:想!
师:通过这节课的学习,同学们一定能学会!
【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。】
二、突出主题,突出主体
1、师:看大屏幕,独立思考下列问题,根据条件列出式子。
(1)x的2倍与3的差是5,
(2)长方形的的长为a,宽比长少5,周长为36,则=36
(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180
生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180
师:这些式子小学学习过,它们是()?生:方程。
师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)
【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。】
2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:
(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?
(2)什么叫一元一次方程?
(3)什么是的解?你找到验证的方法吗?
师:在阅读P/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;
用含x的未知数表示这台计算机的检修时间;
用含x的未知数分别表示男、女生人数。
(3)找一个问题中的相等关系列出方程
学生讨论出上述答案后
师:大屏幕显示上述问题的答案
【以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!】
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。
师:(强调)(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。
【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】
四、给学生一个展示自己精彩的舞台
师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?
设任意框出的四个数字的第一个为x,则:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=84
师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。
【题目略,题目设计主要是列方程,并要求学生划出列方程的一个相等关系;检验一个数值是不是方程的解。这次的舞台大展示,教师仍然改掉以前的在学生旁边指手画脚的坏毛病,让学生一口气做完,让他们胆大地出错,暴露问题,然后师生一起纠正答案,效果比以前好了N倍!】
教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点
一元一次方程解简单的应用题的方法和步骤.
课堂教学过程设计
一、从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉.
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x-(5-4),
解这个方程:2x=10,
所以x=5.
其苹果数为3×5+9=24.
答:第一小组有5名同学,共摘苹果24个.
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.
(设第一小组共摘了x个苹果,则依题意,得)
三、课堂练习
1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?
2.我国城乡居民1988年末的`储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.
3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.
四、师生共同小结
首先,让学生回答如下问题:
1.本节课学习了哪些内容?
2.列一元一次方程解应用题的方法和步骤是什么?
3.在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;
(2)以上步骤同学应在理解的基础上记忆.
五、作业
1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?
2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
3.某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?
4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?
5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数
一、说教材
方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。本节课的教学内容是《解一元一次方程》的第3课时。解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的`解法。并通过练习归纳掌握解方程的基本步骤和技能。
1、教学目标
(1)、知识目标:1、掌握解一元一次方程中"去分母"的方法,并能解这种类型的方程·
2、了解一元一次方程解法的一般步骤·
(2)、能力目标:经历"把实际问题抽象为方程"的过程,发展用方程方法分析问题、解决问题的能力,
(3)、情感目标:1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望
2、通过埃及古题的情境感受数学文明。
2、教学重点:通过"去分母"解一元一次方程
3、教学难点:探究通过"去分母"的方法解一元一次方程
二、说教法:
在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。解一元一次方程就成为承上启下的重要内容。因此,它既是重点也是难点。我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。
我的教学设计的指导思想是:
1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。
2、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。授课中通过一系列层层递进的问题,给学生充分的时间和广阔的思维空间,充分表达自己的想法,在此基础上解决问题并得出结论。
三、说学法
教学活动流程图活动内容和目的
活动1列方程解决实际问题创设埃及古题问题情境,列方程解决该问题;发展利用方程方法解决简单实际问题的能力,再次感受方程是刻画现实世界量与量之间关系的主要模型之一·
活动2解含有分母的一元一次方程以学生已有的关于等式性质的数学知识基础,探索利用“去分母"的方法解一元一次方程·
活动3"去分母"的方法解一元一次方程用"去分母"的方法解一元一次方程,掌握"去分母"的方法解一元一次方程应注意的事项;归纳一元一次方程解法的一般步骤·
活动4小结总结本节收获
学习目标
1.了解一元一次方程及其相关概念
2.掌握等式的性质,理解掌握移项法则
3.会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法
4.能够以一元一次方程为工具解决一些简单的实际问题,包括列方程、求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力
5.初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。
重点
重点:解方程、用方程解决实际问题
难点:用方程解决实际问题
教学流程
师生活动时间复备标注
一、结合课本112页知识结构图和回顾与思考中的问题,复习本章的知识点,形成框架,巩固重点知识
二、典例回顾
1.一元一次方程的概念:
例1.试判断下列方程是否为一元一次方程。
(1).x=5(2).x2+3x=2(3).2x+3y=5
2.一元一次方程的解(根):
判断下列x值是否为方程3x-5=6x+4的解。
(1).x=3(2)x=3
3.解一元一次方程的基本思路:
4.解决问题的基本步骤
例5:整理一批图书,由一个人做要40小时。现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率下共同,具体应先安排多少人工作?
解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:
去分母,得4x+8(x+2)=40
去括号,得4x+8x+16=40
移项及合并,得12x=24
系数化为1,得x=2
答:应先安排2名工人工作4小时。
注意:工作量=人均效率人数时间
本题的关键是要人均效率与人数和时间之间的数量关系。
三、基础训练:课本第113页第1.2.3题。
四、综合训练:课本113页至114页4.5.6.7.8
五、达标训练:3.7
五、课堂小结:收获了哪些?还有哪些需要再学习?
学生作业
课件出示问题明确知识要点
学生练习基础上,教师点拨
1.移项法则
(1)定义
把原方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.
例如:
(2)移项的依据:等式的基本性质1.
辨误区移项时的注意事项
①移项是将方程中某一项从方程的一边移到另一边,不是左边或右边某些项的交换;②移项时要变号,不能出现不变号就移项的情况.
【例1】下列方程中,移项正确的是().
A.方程10-x=4变形为-x=10-4
B.方程6x-2=4x+4变形为6x-4x=4+2
C.方程10=2x+4-x变形为10=2x-x+4
D.方程3-4x=x+8变形为x-4x=8-3
解析:选项A中应变形为-x=4-10;选项C中不是移项,只是交换了两项的位置,正确的移项是-2x+x=4-10;选项D中应变形为-4x-x=8-3,只有选项B是正确的.
答案:B
2.解一元一次方程的一般步骤
(1)解一元一次方程的步骤
去分母→去括号→移项→合并同类项→未知数的系数化为1.
上述步骤中,都是一元一次方程的变形方法,经过这些变形,方程变得简单易解,而方程的解并未改变.
(2)解一元一次方程的具体做法
变形
名称具体做法变形依据注意事项
去分母两边同时乘各分母的最小公倍数等式的基本性质2不要漏乘不含分母的项
去括号先去小括号,再去中括号,最后去大括号去括号法则、乘法分配律不要漏乘括号内的每一项,注意符号
移项含有未知数的项移到方程的一边,常数项移到另一边等式的基本性质1移项要变号,不要漏项
合并
同类
项把方程化成ax=b(a≠0)的形式合并同类项法则系数相加,字母及指数不变
系数
化为1两边都除以未知数的系数等式的基本性质2分子、分母不要颠倒
【例2-1】解方程:4x+5=-3+2x.
分析:按以下步骤解方程:
解:移项,得4x-2x=-3-5.
合并同类项,得2x=-8.
系数化为1,得x=-4.
【例2-2】解方程65100(y-1)=37100(y+1)+0.1.
分析:方程中既含有分母,又含有括号,根据方程的形式特点,还是先去分母比较简便.
解:去分母,得65(y-1)=37(y+1)+10.
去括号,得65y-65=37y+37+10.
移项,得65y-37y=37+10+65.
合并同类项,得28y=112.
系数化为1,得y=4.
点评:解一元一次方程,要注意根据方程的特点灵活运用解一元一次方程的`一般步骤,不一定非按这个“一般步骤”的顺序,适合先去分母的要先去分母,适合先去括号的要先去括号,去分母、去括号时,注意不要出现漏乘,尤其是注意不要漏乘常数项,移项时要注意变号.
3.分子、分母中含有小数的一元一次方程的解法
当分子、分母中含有小数时,一般是先根据分数的基本性质,将分数的分子、分母同乘以一个适当的整数,将其中的小数化为整数再解方程.需要注意的是这一步变形根据的是分数的基本性质,而不是等式的基本性质;变形时是分数的分子、分母同乘以一个适当的整数,而不是在方程的两边同乘以一个整数.
【例3】解方程0.4x+0.90.5-0.03+0.02x0.03=1.
分析:原方程的分子、分母中都含有小数,利用分数的基本性质,方程中0.4x+0.90.5的分子、分母都乘以10,0.03+0.02x0.03的分子、分母都乘以100,就能将方程中的所有小数化为整数.
解:原方程可化为4x+95-3+2x3=1.
去分母,得3(4x+9)-5(3+2x)=15.
去括号,得12x+27-15-10x=15.
移项、合并同类项,得2x=3.
系数化为1,得x=32.
4.带多层括号的一元一次方程的解法
一元一次方程,除个别题外,一般都有几层括号,一般方法是按照“由内到外”的顺序去括号,即先去小括号,再去中括号,最后去大括号.每去一层括号合并同类项一次,以简化运算.
有时可根据方程的特征,灵活选择去括号的顺序,从而达到快速解题的目的.
在解具体的某个方程时,要仔细观察方程的特点,根据方程的特点灵活选择解法.
【例4】233212(x-1)-3-3=3.
分析:若先去小括号,再去中括号,再去大括号,然后再运算比较麻烦.注意到32×23=1,因而可先去大括号,在去大括号的同时也去掉了中括号,这样既简化了解题过程,又能避开一些常见解题错误的发生.
解:去大括号,得12(x-1)-3-2=3.
去小括号,得12x-12-3-2=3.
移项,得12x=12+3+2+3.
合并同类项,得12x=172.
系数化为1,得x=17.
5.含有字母系数的一元一次方程的解法
含有字母系数的一元一次方程的解法与一般一元一次方程的解法步骤完全相同:去分母→去括号→移项→合并同类项→系数化为1.要特别注意的是系数化为1时,当未知数的系数是字母时,要分情况讨论.
关于x的方程ax=b的解的情况:
①当a≠0时,方程有唯一的解x=ba;②当a=0,且b=0时,方程有无数解;③当a=0,且b≠0时,方程无解.
【例5】解关于x的方程3x-2=mx.
分析:本题中未知数是x,m是已知数,先通过移项、合并同类项把方程变形为ax=b的形式,再讨论.
解:移项,得3x-mx=2,
即(3-m)x=2.
当3-m≠0时,两边都除以3-m,
得x=23-m.
当3-m=0时,则有0x=2,此时,方程无解.
点评:解含有字母系数的方程要不要讨论,关键是看解方程的最后一步,在系数化为1的时候,当未知数的系数是数字时,不用讨论,当未知数的系数含有字母时,必须分情况讨论.
教学目标:
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
3、进一步体会找等量关系,会用方程表示简单实际问题。
4、体会数学与我们日常生活联系密切,培养学习数学的兴趣。
教学重点:
一元一次方程及方程的解。
教学难点:
寻找问题中的相等关系,列方程。
学习过程:
回顾旧知:方程的概念是什么?
问题1:鸡兔同笼
“今有雉兔同笼,上有四十九头,下有一百足,问雉兔各几何?”(分别用算术方法和方程方法解决)
问题2:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的速度是70km/h,卡车的速度是60km/h,客车比卡车早1小时到达B地,A、B两地间的路程是多少?(客车与卡车之间的时间关系解题)
1、用等号“=”来表示相等关系的式子,叫等式。
2、像这样含有未知数的等式叫做方程
判断:下列各式是不是方程:
(1)-2+5=3 ;
(2)3x-1=0;
(3)y=3;
(4)x+y>2;
(5)2x-5y+1=0;
(6)xy-1=0;
(7)2m-n;
探究新知;
例1根据下列问题,设未知数并列出方程
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少个月这台计算机的使用时间达到规定的检修时间2450小时?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
解:
(1)设正方形的边长为x cm,然后发现相等关系:
4×边长=周长
可以利用这个相等关系,得到方程:4x=24
(2)设x个月后这台计算机的使用时间达到规定的检修时间2450小时,得到方程:1700+150x=2450
(3)设这个学校有x名学生,那么女生数就是0.52x,男生数是(1-0.52)x,可列方程:0.52x-(1-0.52)x=80观察上面三个方程有什么共同特点:
①只含有一个未知数;
②未知数的最高次数都是1。
只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。判断:下列各式是一元一次方程吗?
(1)2x+3y-1;
(2) x2+2x+1=0;
(3)x+2y=3;
(4)1-x=x+1;
(5)x2+3=4;
(6)x+y=5;
(7)1+7=15-8+1;
(8)2χ2-5χ+1=0做一做:
x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?
方程的解:使方程左右两边相等的未知数的值。检验一个数值是不是方程的解的步骤:
1、将数值代入方程左边进行计算,
2、将数值代入方程右边进行计算,
3、比较左右两边的值,若左边=右边,则是方程的解,反之,则不是。
练一练:
请你判断下列给定的t的值中,哪个是方程2t+1=7-t的解?
(1)t=-2(2)t=2 (3)t=1
练习提高:
根据下列问题,设未知数,列出方程:
1、鸟巢里的环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?
2、甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两种铅笔共20支,问各买了多少支?
3、一个梯形下底比上底多2cm,高是5cm,面积是40平方厘米,求上底。
小结:
1、方程的概念
2、一元一次方程的概念
3、方程的解的概念
教学目标:
1、能说出什么叫一元一次方程;
2、知道“元”和“次”的含义;
3、熟练掌握最简一元一次方程的解法及理论依据;
能力目标:
1、培养学生准确运算的能力;
2、培养学生观察、分析和概括的能力;
3、通过解方程的 教学,了 解化归的数学思想.
德育目标:
1、 渗透由特殊到一般的辩证唯物主义思想;
2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习 惯和责任感;
3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;
重点:
1、一元一次方程的概念;
2、最简方程 的'解法;
难点:正确地解最简方程 。
教学方法:引导发现法
教学过程
一、 旧知识的复习:
1.什么叫等式?等式具有哪些性质?
2.什么叫方程?方程的解?解方程?
二、新知识的教学:
观察下列方程: …
想一想:这些方程有什么共同特点?(学生思考后回答)
特点:
(1)只含有一个未知数;
(2)未知数的次数都是一次。
(板书课题,学生总结定义)
定义:只含有一个未知 数并且未知数的次数都是一次的方程叫做一元一次方程。
强调:“元”指什么?(未知数的个数)
“次”指什么?(方程中含有未知数项的最高次数)
想一想:
(1)�
强调:为什么 ?
(2)怎样求最简方程 (其中 是未知数)的解?
三、解下列方程
① ②
③ ④
(学生探讨求解过程及理论依据后板 书解题过程)
解:① 根据等式的基本性质2,在方程两边同除以3,
未知数系数化 为1,得
②③④解法略
强调:检验解的方法。
想一想:
解最简方程 (其中 是未知数)时的主要思路是什么?解题的关键步骤是什么?
(引导学生思考后回答)
主要思路:把最简方程的未知数的系数化为1,变形为 的形 式;
解题的关键步骤:根据等式的基本性质2,在方程两边都除以未知数的系数(或两边都乘以未知数的系数的倒数),使未知数的系数化为1,得到最简方程的解 。
强调:①方程两边都除以未知数的系数的步骤可以进行的条件是什么?( )
②最简方程一定有唯一的一个解。
四、巩固练习
1. 通过练习,请你总结一下,解方程 ( 是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2.检测:
3.课堂小结:
五、本节学习的主要内容
1、一元一次方程定义;
2、最简方程 (其中 是未知数);
3、解最简方程的主要思路和解题的关键步骤及依据。
六、课堂作业
A、解下列方程:
(1) (2)
(3) (4)
B、如果关于 的方程 是一元一次方程,求 的值;
C、解关于 的方程:
(1) (2)
数学思考:
1、学习分析问题找到相等关系并通过列方程解决问题的方法;
2、通过学习移项解一元一次方程,体会到式子变形的转化作用。
解决问题:体会解方程中的化归思想,会移项、合并解ax+b=cx+d型的方程,进一步认识如何用方程解决实际问题。
情感态度:通过学习“合并”和“移项”,体会古老的代数书中的“对消”和“还原”的思想,激发数学学习的热情。
教学重点:
1、找相等关系列一元一次方程;
2、用移项、合并等解一元一次方程。
教学难点:找相等关系列方程,正确地移项解一元一次方程。
教学过程:
[活动1]展示问题、创设情境
把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?
(学生自主分析后,教师提问:)
1、本题怎样设未知数?
2、这批书的总数有几种表示法?它们之间有什么关系?
3、本题哪个相等关系可 )
解:设有x名学生,则可列方程得:
3x+20=4x—25
[活动2]学习“移项”解方程
提问:如何解方程3x+20=4x—25呢?
(学生分组讨论:①解方程的。目标是什么?②利用什么知识可以实现这种转化?)
引导学生分析方程的变化:
3x+20=4x—25
3x—4x=—25—20
观察:上面方程的变形有些什么变化?
归纳:像这样把等式一边的某项变号后移到另一边叫做移项。
[活动3]总结
解这个方程的具体过程:
3x+20=4x—25
【教学目标】
知识与技能
1.理解一元一次方程及解的概念。
2.建立实际问题的方程模型,运用一元一次方程分析和解决实际问题。
过程与方法
通过学生观察、独立思考等过程,培养学生归纳、概括的能力。
情感态度
培养学生由算术解法过渡到代数解法解方程的基本能力,渗透化未知为已知的重要数学思想。
教学重点
体会方程模型的重要性,了解一元一次方程的概念。
教学难点
正确理解方程作为实际问题的数学模型的作用。
【教学过程】
一、情景导入,初步认知
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用方程来解决呢?若能解决,怎样解?用方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们先来了解一下方程。
【教学说明】 引起学生的学习兴趣,激发学生的求知欲。
二、思考探究,获取新知
1.请你表示出下面两个问题中的等量关系。
(1)如图,甲、乙两站的高速铁路长1068,“和谐号”高速列车从甲站开出2.5h后,离乙站还有318,该高速列车的平均速度是多少?
(2)如图,这是一个长方体形的包装盒,长为1.2 ,高为1 ,表面积为6.8 2,这个包装盒的底面宽是多少?
问题(1)的等量关系是:已行驶的路程+剩余的`路程=全长。设高速列车的平均速度是x /h,我们可以用含x的式子表示上述等量关系,即2.5x+318=1 068.
问题(2)的等量关系是:底面积+侧面积=表面积。若设包装盒的底面宽是 ,则等量关系可表示为:1.2××2+×1×2+1.2×1×2=6.8,即:2.4+2+2.4=6.8.
【教学说明】 引导学生分析问题,用文字表示题目中的等量关系式。再根据等量关系式列出式子。
2.观察所列出的两个等式,它们有什么共同特征?
【归纳结论】 我们把含有未知数的等式叫做方程。
像上面这样,把所要求的量用字母x(……)表示,根据问题中的等量关系列出方程,这一过程叫做建立方程。
3.思考:对于2.5x+318=1 068,2.4+2+2.4=6.8方程,有几个未知数,每个未知数的次数是多少?
【教学说明】 组织学生进行全班交流,得出以上方程的特点是:(1)方程中不含分母或分母中不含未知数;(2)只含有一个未知数;(3)未知数的指数都是1.
【归纳结论】 只含有一个未知数,并且未知数的次数是1的整式方程叫做一元一次方程。
4.方程的解。
在方程x+5=8中,当x=3时,方程两边的值相等,我们就说x=3是方程x+5=8的解。
【归纳结论】 能使方程左右两边的值相等的未知数的值叫做方程的解。
【教学说明】 了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左边和右边,看是否相等,相等则为原方程的解。
三、运用新知,深化理解
1.教材P84例1.
2.下列方程中,是一元一次方程的是( B )
A.x2-4x=3 B.x=0
C.x+2= D.x-1=
3.下列方程中解是x=1的方程是( C )
A.2x-2=3xB.x+5=2x-4
C.3x-6=4x-7D.5x+2=4x-3
4.下列各数中是方程4x-5=7的解的是( B )
A.1 B.3 C.-3 D.4
5.某品牌电饭煲成本价为x元,销售商对其定价为350元,若按8折销售仍可获利15元,根据题意,下面所列方程正确的是( A )
A.350×0.8-x=15B.350×8-x=15
C.350×0.8=x-15D.350×8=x-15
6.以x=-3为解的方程是( D )
A.3x-7=2B.5x-2=-x
C.6x+8=-26D.x+7=4x+16
7.在下列方程中:①x+2=3,② -3x=9,③ =+ ,④ x=0,是一元一次方程的有 ③④ (只填序号).
8.已知方程(-2)x||-1+3=-5是关于x的一元一次方程,则= -2 .
9.若方程(2-1)x2-x+8=x是关于x的一元一次方程,求代数式2 006-∣-1∣的值。
解:由一元一次方程的定义可知:
2-1=0
=±1
当=1时,2 006-∣-1∣=2 006;
当=-1时,2 006-∣-1∣=-2 008.
10.检验下面方程后面括号内所列各数是否为这个方程的解。
2(x+2)-5(1-2x)=-13,{x= -1,1}
解:将x=-1代入方程的两边得
左边=2(-1+2)-5[1-2×(-1)]=-13
右边=-13
因为左边=右边,所以x=-1是方程的解。
将x=1代入方程的两边得
左边=2(1+2)-5(1-2×1)=11
右边=-13
因为左边≠右边,所以x=1不是方程的解。
11.建立下列各问题中的方程模型。
(1)小明去商店买练习册,回来后告诉同学:“店主告诉我,如果多买些就可以享受8折优惠,我就买了20本,结果总共便宜了1.6元,你猜原来每本练习册的价格是多少元?”
解:设原来每本练习册的价格为x元
20(1-80%)x=1.6
(2)张强与刘伟参加植树活动,两人共植树75棵,其中张强比刘伟多植了15棵树。那么刘伟植了多少棵树?
解:设刘伟植了x棵,则可列方程
x+15+x=75
(3)甲队有32人,乙队有28人,现在从乙队抽调一些人到甲队,使甲队人数是乙队人数的2倍。问应该从乙队抽调多少人?
解:设应该从乙队抽调x人。则可列方程
32+x=2×(28-x)
(4)某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时,不但完成任务,而且还多生产60件,问原计划每小时生产多少个零件?
解:设原计划每小时生产x个零件,则所列方程为
12(x+10)=13x+60
【教学说明】 对本节知识进行巩固练习。
四、师生互动、课堂小结
先小组内交流收获和感想而后以小组为单位派代表进行总结。教师作以补充。
【课后作业】
布置作业:教材“习题3.1”中第2、3题。
教学
目标⒈通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义。
⒉通过观察,归纳一元一次方程的概念。
⒊体会解决问题的一种重要的思想方法——尝试检验法。
⒋理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程。
教学
重点利用等式的两个性质解一元一次方程。教学
难点一元一次方程的概念和用尝试检验法求方程的'解
教学
方法教学
用具多媒体
教学过程
集体备课稿个案补充
一、创设情境,引入新课
kitty与小熊是一对好朋友!他们决定本月8号要去离家很远的游乐场旅行……
问题1:今天是2号,再过几天是8号呢?
问题2:终于盼来这一天了。坐出租车到车站花了5元,又买了两张去游乐场的车票,总共花去了13元。去游乐场的每张车票要多少元?
问题3:门票的原价是多少?
大家一起来说一说!
同桌为一组,我们一起来找找这些方程有什么共同的特点
1、方程的两边都是整式2、只有一个未知数3、未知数的指数是一次。这样的方程叫做一元一次方程!
二、讲授新课
1、问题4:1、kitty与小熊玩的第一种游戏射击(限一人射2次),第二次射击成绩是9环,问第一次是几环?
只取整数环
由已知得,x为自然数且只能取0,1,2,3,4,5,6.把这些值分别代入方程左边得。这种方法叫尝试检验法
x0123456
使方程左右两边的值相等的未知数的值叫做方程的解。
练习:判断下列t的值是不是方程2t+1=7-t的解:
(1)t=2(2)t=-2
2、课堂练习:见课件
3、小结:
4、作业:见作业本
教学目标
1.熟悉利用等式的性质解一元一次方程的基本过程。
2.通过具体的例子,归纳移项法则
3.掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数),能判别解的合理性。
教学重点
重点是移项法则
教学难点
重点是移项法则
教学流程
1.提出问题:解方程:5x-2=8
2.自主探索、合作交流:
先由学生独立思考求解,再小组合作交流,师生共同评价分析。
方法1:
解:方程两边都加上2,得5x-2+2=8+2
也就是5x=8+2
合并同类项,得5x=10
所以,x=2
3.理性归纳、得出结论
(让学生通过观察、归纳,独立发现移项法则。)
比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于
5x-2=85x=8+2
即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。
教学建议:关于移项法则,不应只强调记忆,更应强调理解。学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性).
方法2;
解:移项,得5x=8+2
合并同类项,得5x=10
方程两边都除以5,得x=2
4.运用反思、拓展创新
[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7
教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。
[例2]解方程:
教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。
②在移项时,学生常会犯一些错误,如移项忘记变号等。这时,教士不要急于求成,而要引导学生反思自己的解题过程。必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。
5.小结回顾:学生谈本节课的收获与体会。师强调:移项法则。
6.布置作业:(略)
第一节:从问题到方程
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:
(1)它是等式;
(2)分母中不含有未知数;
(3)未知数最高次项为1;
(4)含未知数的项的系数不为0.
第二节:解一元一次方程
一元一次方程解法的一般步骤:
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
(1)去分母:在方程两边都乘以各分母的最小公倍数;
(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
(4)合并同类项:把方程化成ax=b(a≠0)的形式;
第三节:用一元一次方程解决问题
(1)审题:认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系。
(2)找出等量关系:找出能够表示本题含义的相等关系。
(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程。
(4)解方程:解所列的方程,求出未知数的值。
(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。
一、教学目标:
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、通过观察,归纳一元一次方程的概念
3、积累活动经验。
二、重点和难点
重点:归纳一元一次方程的概念
难点:感受方程作为刻画现实世界有效模型的意义
三、教学过程
1、课前训练一
(1)如果 || = 9,则= ;如果2 = 9,则=
(2)在数轴上距离原点4个单位长度的数为
(3)下列关于相反数的说法不正确的是( )
A、两个相反数只有符号不同,并且它们到原点的距离相等。
B、互为相反数的两个数的绝对值相等
C、0的相反数是0
D、互为相反数的两个数的和为0(字母表示为、互为相反数则)
E、有理数的相反数一定比0小
(4)乘积为1的两个数互为 倒数 ,如:
(5)如果,则( )
A、互为倒数
B、互为相反数
C、都是0
D、至少有一个为0
2、由课本P149卡通图画引入新课
3、分组讨论P149两个练习
4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:( )
A、+25=310 B、+(+25)=310 C、2 [+(+25)]=310 D、[+(+25)]2=310
课本的宽为3厘米,长比宽多4厘米,则课本的面积为 平方厘米。
5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?
解:设每个练习本要元,则每个笔记本要 元,依题意可列得方程:
6、归纳方程、一元一次方程的概念
七年级数学一元一次方程的教案(优秀19篇)
四、课外作业
P151习题5.1