作为一名辛苦耕耘的教育工作者,就有可能用到教案,教案有利于教学水平的提高,有助于教研活动的开展。快来参考教案是怎么写的吧!三人行,必有我师也。择其善者而从之,其不善者而改之。该页是编辑为家人们整编的七年级数学下册教案最新7篇,仅供借鉴。
学习目标
1、 理解有序数对的应用意义,了解平面上确定点的常用方法
2、 培养用数学的意识,激发学习兴趣。
学习重点:理解有序数对的意义和作用
学习难点:用有序数对表示点的位置
学习过程
一。问题导入
1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案。
2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。。
你能举出生活中利用数据表示位置的例子吗?
二。概念确定
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)
利用有序数对,可以很准确地表示出一个位置。
1.在教室里,根据座位图,确定数学课代表的位置
2.教材40页练习
三。方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.如图,A点为原点(0,0),则B点记为(3,1)
2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。
例2 如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
[巩固练习]
1. 如图是某城市市区的一部分示意图,对市政府来说:
北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?
结合实际问题归纳方法
学生尝试描述位置
2. 如图,马所处的位置为(2,3)。
(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
[小结]
1、 为什么要用有序数对表示点的位置,没有顺序可以吗?
2、 几种常用的表示点位置的方法。
[作业]
必做题:教科书44页:1题
教学目标:
1、知道有理数加法的意义和法则
2、会用有理数加法法则正确地进行有理数的加法运算
3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法
教学重点:有理数加法则的探索及运用
教学难点:异号两数相加的法则的理解及运用
教学过程:
一、创设情境
展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?
(学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)
二、探求新知
1、甲、乙两队进行足球比赛,
(1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?
(2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?
足球比赛中赢球个数与输球个数是一对相反意义的量。若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?
(学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)
(3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?
(引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的。各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )
2、你能举出一些运用有理数加法的实际例子吗?
(学生列举实例并根据具体意义写出算式)
3、学生活动:
(1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?
(2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?
(3)、你还能再做一些类似的活动,并写出相应的算式吗?
(教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的是让学生从“形”的角度,直观感受有理数的加法法则。)
4、归纳法则:
观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?
(由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)
5、例题精讲:
例1 、计算
(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)
(4)、 5+(-5); (5)、 0+(-2); (学生口答计算结果,并对照法则说说是如何确定和的符号和绝对值的,教师板书解题过程,让学生体会“运算有据”。)
解:(1)、(-5)+(-3)
= -(5+3) (同号两数相加,取相同的符号,并把绝对值相减)
= -8
(2)、(-8)+(+2)
= -(8-2) (异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。)
= -6
(4)、5+(-5);
=0 (互为相反的两数之和为0)
6、训练巩固:
1、 p33练一练2
(学生利用扑克完成本题,通过游戏进一步巩固有理数加法法则,体现“做中学”的新课程理念。)
7、延伸拓展:
(1)、一个数是2的相反数,另一个数的绝对值是5,求这两个数的和
(2)、在小学里,计算两个数相加时,它们的和总是小于任何一个加数,学了有理数的加法法则后,你认为这个结论还成立吗?请你举例说明
(这两题都具有一定的挑战性,第(1)题可让学生进一步体会分类的数学思想方法。第(2)题具有开放性,可让学生在探索的过程中进一步理解法则。)
三、课堂小结:
学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。
四、布置作业:
1、课本p41第1题
2、列举一些生活中运用有理数加法的实际例子,并相互交流。
一、指导思想:
20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
二、教学目标要求:
期中授完第六章,期末授完下册全册。
三、提高质量措施:
1、教师要认真学习新的《数学课程标准》,把新课程的基本理念渗透到教与学的全过程。要重视学生知识的建构和能力的培养;要重视学生的学习过程的展示和学习方法的提炼;要重视学生的学习情感的陶冶、学习态度和价值观的导向。教师要与新课程一同成长。
2、教学中要树立全新的学习观。学习要转向受教育者,突出学生学习的主体地位。即把活跃在教学舞台上的主动权交给学生,让学生真正成为学习的主角。教育的方式要由接受转向“学教”,即提倡学生的探索、求知在先,教师的指导、帮助在后,要给学生“悟”的时间与空间。教师的“教”应由学生的“学”来确定。要倡导自主学习、探究学习、合作学习和研究性学习。
3、教学中要树立全新的知识观。人的知识分显性知识和隐性知识。显性知识是教师灌输给学生的知识,它们是浅层次的知识,是比较易于遗忘的东西。隐性知识是学生发现学习得到的知识,如通过体验、顿悟、自省、直觉而得到的,极易保持的、带有一定感情色彩的东西。教师要摒弃以“量”为主的知识观,树立以知识的“质”和“结构”为主的观念,关注学生的隐性知识的摄取,注意渗透人文知识并努力使“教师”这一隐性课程知识美好地呈现给学生。
4、教师要树立全新的教学观。由教“学答”转变为教“思维”,注重学生的思维训练,注重创造性思维品质的培养。
5、加强七年级几何入门教学
6、科学组织复习备考。要转变以知识立意为能力立意的复习备考策略,突出数学思想与数学方法,注重数学的工具性和应用性。
七年级数学教案
1.2 一元一次不等式组的解法
2.2二元一次方程组的解法
2.3二元一次方程组的应用(1)
第10教案
教学目标
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
教学重点
1.列二元一次方程组解简单问题。
2.彻底理解题意
教学难点
找等量关系列二元一次方程组。
教学过程
一、情境引入。
小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?
二、建立模型。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
三、练习。
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、的方程,
是二元一次方程。求a、b的值。
2.P38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
P42。习题2.3A组第1题。
后记:
2.3二元一次方程组的应用(2)
第11教案
教学目标
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的能力。
3.体会数学的应用价值。
教学重点
根据实际问题列二元一次方程组。
教学难点
1.找实际问题中的相等关系。
2.彻底理解题意。
教学过程
一、引入。
本节课我们继续学习用二元一次方程组解决简单实际问题。
二、新课。
例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?
探究: 1. 你能画线段表示本题的数量关系吗?
2.填空:(用含S、V的代数式表示)
设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
三、练习。
1.建立方程模型。
(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度。
(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?
2.P38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
四、小结。
本节课你有何收获?
五、作业。
教学目标
1、知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2、过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
3、情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
教学重点与难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
教学准备
多媒体课件
教学过程
一、创设问题情境
1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作XXXXXXXXXX,B处记作XXXXXXXXXX。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少表示和的点呢
小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型
1、绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
注意:①与原点的关系②是个距离的概念
2、。练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用+5表示的话,那么下降了5度,就用-5表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)
三、应用深化知识
1、例题求解
例1、求下列各数的绝对值
-1.6,0,-10,+10
2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)
特点:
1、一个正数的绝对值是它本身
2、一个负数的绝对值是它的相反数
3、零的绝对值是零
4、互为相反数的两个数的绝对值相等
3、出示题目
(1)-3的符号是XXXXXXX,绝对值是XXXXXX;
(2)+3的符号是XXXXXXX,绝对值是XXXXXX;
(3)-6.5的符号是XXXXXXX,绝对值是XXXXXX;
(4)+6.5的符号是XXXXXXX,绝对值是XXXXXX;
学生口答。
师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗
5、练习3:回答下列问题
①一个数的绝对值是它本身,这个数是什么数
②一个数的绝对值是它的相反数,这个数是什么数
③一个数的绝对值一定是正数吗
④一个数的绝对值不可能是负数,对吗
⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗
(由学生口答完成,进一步巩固绝对值的概念)
6、例2.求绝对值等于4的数
(让学生考虑这样的数有几个,是怎样得出这个结果的呢对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)
分析:
①从数字上分析
∵|+4|=4,|-4|=4∴绝对值等于4的数是+4和-4画一个数轴
②从几何意义上分析,画一个数轴
因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M
所以绝对值等于4的数是+4和-4.
6、练习(★):做书上12页课内练习1、2两题。
四、归纳小结
1、本节课我们学习了什么知识
2、你觉得本节课有什么收获
3、由学生自行总结在自主探究,合作学习中的体会。
五、课后作业
1、让学生去寻找一些生活中只考虑绝对值的实际例子。
2、课本15页的作业题。
一、教学目标
1、知识目标:掌握数轴三要素,会画数轴。
2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;
3、情感目标:向学生渗透数形结合的思想。
二、教学重难点
教学重点:数轴的三要素和用数轴上的点表示有理数。
教学难点:有理数与数轴上点的对应关系。
三、教法
主要采用启发式教学,引导学生自主探索去观察、比较、交流。
四、教学过程
(一)创设情境激活思维
1、学生观看钟祥二中相关背景视频
意图:吸引学生注意力,激发学生自豪感。
2、联系实际,提出问题。
问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
师生活动:学生思考解决问题的方法,学生代表画图演示。
学生画图后提问:
1、马路用什么几何图形代表?(直线)
2、文中相关地点用什么代表?(直线上的点)
3、学校大门起什么作用?(基准点、参照物)
4、你是如何确定问题中各地点的位置的?(方向和距离)
设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。
问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?
师生活动:
学生思考后回答解决方法,学生代表画图。
学生画图后提问:
1.0代表什么?
2、数的符号的实际意义是什么?
3.-75表示什么?100表示什么?
设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。
问题3:生活中常见的温度计,你能描述一下它的结构吗?
设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。
问题4:你能说说上述2个实例的共同点吗?
设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。
(二)自主学习探究新知
学生活动:带着以下问题自学课本第8页:
1、什么样的直线叫数轴?它具备什么条件。
2、如何画数轴?
3、根据上述实例的经验,“原点”起什么作用?
4、你是怎么理解“选取适当的长度为单位长度”的?
师生活动:
学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。
设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。
至此,学生已会画数轴,师生共同归纳总结(板书)
①数轴的定义。
②数轴三要素。
练习:(媒体展示)
1、判断下列图形是否是数轴。
2、口答:数轴上各点表示的数。
3、在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小组合作交流展示
问题:观察数轴上的点,你有什么发现?
数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。
设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。
(四)归纳总结反思提高
师生共同回顾本节课所学主要内容,回答以下问题:
1、什么是数轴?
2、数轴的“三要素”各指什么?
3、数轴的画法。
设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。
(五)目标检测设计
1、下列命题正确的是()
A.数轴上的点都表示整数。
B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。
C.数轴包括原点与正方向两个要素。
D.数轴上的点只能表示正数和零。
2、画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。
3、画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有XXXXXXX个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是XXXXXXXX。
五、板书
1、数轴的定义。
2、数轴的三要素(图)。
3、数轴的画法。
4、性质。
六、课后反思
附:活动单
活动一:画一画
钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。
思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?
活动二:读一读
带着以下问题阅读教科书P8页:
1、什么样的直线叫数轴?
定义:规定了XXXXXXXXX、XXXXXXXX、XXXXXXXXX的直线叫数轴。
数轴的三要素:XXXXXXXXX、XXXXXXXXX、XXXXXXXXXX。
2、画数轴的步骤是什么?
3、“原点”起什么作用?XXXXXXXXXX
4、你是怎么理解“选取适当的长度为单位长度”的?
练习:
1、画一条数轴
2、在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5
活动三:议一议
小组讨论:观察你所画的数轴上的点,你有什么发现?
归纳:一般地,设a是一个正数,则数轴上表示数a在原点的XXXX边,与原点的距离是XXXX个单位长度;表示数-a的点在原点的XXXX边,与原点的距离是XXXX个单位长度。
练习:
1、数轴上表示-3的点在原点的XXXXXXX侧,距原点的距离是XXXXXX;表示6的点在原点的XXXXXX侧,距原点的距离是XXXXXX;两点之间的距离为XXXXXXX个单位长度。
2、距离原点距离为5个单位的点表示的数是XXXXXXXX。
3、在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是XXXXXXXX。
附:目标检测
1、下列命题正确的是()
A.数轴上的点都表示整数。
B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。
C.数轴包括原点与正方向两个要素。
D.数轴上的点只能表示正数和零。
2、画数轴,在数轴上标出-5和+5之间的所有整数。列举到原点的距离小于3的所有整数。
3、画数轴,观察数轴,在原点左边的点有XXXXXXX个。
4、在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是XXXXXXXX。
教学目标
能确定多项式的公因式,熟练运用提公因式法分解因式。
经历探索提公因式法的过程,培养逆向思维能力。
让学生通过参与探索过程,培养合作意识和创新精神。
重点难点
重点
公因式的定义以及提公因式法分解因式。
难点
准确找出多项式中各项的公因式。
教学过程
一、复习回顾
1、 什么叫做因式分解?与整式乘法有什么联系?
2、 计算:
3、 观察上式运算的结果 ,各项所含的因式有什么特点?
学生观察到各项含有相同的因式m后,教师给出公因式的概念:
几个式子的公共的因式称为它们的公因式。
一个多项式如果各项含有公因式,怎样分解因式呢?
二、探究新知
根据 的计算结果,你能将 分解因式吗?分解的根据是什么?你能说说分解的具体做法是什么吗?
学生思考讨论后,教师引导学生分析分解的根据是乘法分配律,具体的做法是把各项的公因式提到括号外面。 随后给出这种方法的名称。
如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种把多项式因式分解的方法叫做提公因式法。 用提公因式法分解因式时要把所有的公因式都提出,使剩下的多项式因式里不含公因式。
三、典例剖析
例1 把 因式分解。
教师引导学生观察各项的公因式,并板书分解过程。
解:
反思:分解得 对不对,为什么?
例2把 因式分解。
教师引导学生观察各项的公因式,并总结出找公因式的方法:一看各项系数,找出各系数的最大公因数,二看各项的字母因式,找出相同的字母因式。
板书分解过程:
解:
例3 把 因式分解。
引导学生观察各项的公因式,并总结出找公因式的方法:一看各项系数,找出各系数的最大公因数,二看各项的字母因式,找出相同的字母因式,相同的字母取指数最小的作为公因式。
板书分解过程:
解:
四、课堂练习
基础训练:
1、说出下列多项式中各项的公因式:
(1) ; (2) ;
(3) 。
2、 在下列括号内填写适当的多项式:
(1) ;(2) 。
3、 把下列多项式因式分解:
(1) ; (2) ;
(3) 。
学生解答各题,教师组织学生互相批改。 补充说明,当多项式首项系数是负数时,一般要把负号提出括号。
五、小结
请你总结一下如何确定多项式中各项的公因式。
六、布置作业
教材P62第1题,第2题的(1)(2)(3)。