作为一位杰出的教职工,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。那么优秀的教案是什么样的呢?下面是整理的八年级数学上册教案【优秀8篇】,希望可以启发、帮助到大家。
教学目标
1、知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力。
2、过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。
3、情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。
重、难点与关键
1、重点:理解完全平方公式因式分解,并学会应用。
2、难点:灵活地应用公式法进行因式分解。
3、关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的
采用“自主探究”教学方法,在教师适当指导下完成本节课内容。
教学过程
一、回顾交流,导入新知
【问题牵引】
1、分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知识迁移】
2、计算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。
3、分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【学生活动】从逆向思维的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例学习,应用所学
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值。
【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.
三、随堂练习,巩固深化
课本P170练习第1、2题。
【探研时空】
1、已知x+y=7,xy=10,求下列各式的值。
(1)x2+y2;(2)(x-y)2
2、已知x+=-3,求x4+的值。
四、课堂总结,发展潜能
由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在运用公式因式分解时,要注意:
(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解。
五、布置作业,专题突破
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1)。15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 学习目标: 1. 在同一直角坐标系中,感受点的坐标变化与图形的变化之间的关系,并能找出变化规律。 2. 通过坐标的变化探索新旧图形之间的变化。 重点: 1. 对称轴的对称图形,并且能写出所得图形各点的坐标。 2. 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。 难点: 1. 理解并应用直角坐标与极坐标。 2. 解决一些简单的问题。 学习过程: 一、旧知回顾: 1. 平面直角坐标系定义:在平面内,两条垂直且有公共端点的数轴组成平面直角坐标系。 2. 坐标平面内点的坐标的表示方法是(x,y)。 3. 各象限点的坐标的特征: 第一象限:x和y坐标都是正数。第二象限:x坐标为负数,y坐标为正数。第三象限:x和y坐标都是负数。第四象限:x坐标为正数,y坐标为负数。 二、新知检索: 在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用线段依次连接,观察形成了什么图形。 三、典例分析: 例1、(1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢? (2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢? 例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化? (2) 将鱼的顶点的横坐标不变,纵坐标变成原来的一半,并绘制图形。分析得到的`图形和原图形之间有什么不同? 四、习题组训练 1、在平面直角坐标系中,将点(0,0)、(2,4)、(2,0)和(4,4)连接形成一个图案。 (1)将这四个点的纵坐标保持不变,横坐标变成原来的一半,然后依次连接得到新图形。得到的图形和原图形之间有什么变化? (2)将纵坐标和横坐标都增加3,所得到的图形会发生怎样的变化? (3)将纵坐标和横坐标都乘以2,所得到的图形会发生怎样的变化? 归纳得出:图形坐标变化的规律 1、平移规律 2、图形伸缩规律 教学目标 1.掌握等边三角形的性质和判定方法。 2.培养分析问题、解决问题的能力。 教学重点: 等边三角形的性质和判定方法。 教学难点: 等边三角形性质的`应用 教学过程 I、创设情境,提出问题 回顾上节课讲过的等边三角形的有关知识 1.等边三角形是轴对称图形,它有三条对称轴。 2.等边三角形每一个角相等,都等于60° 3.三个角都相等的三角形是等边三角形。 4.有一个角是60°的等腰三角形是等边三角形。 其中1、2是等边三角形的性质;3、4的等边三角形的判断方法。 II、例题与练习 1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么? ①在边AB、AC上分别截取AD=AE. ②作∠ADE=60°,D、E分别在边AB、AC上。 ③过边AB上D点作DE∥BC,交边AC于E点。 2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小。 分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°. 3. P56页练习1、2 III、课堂小结:1.等腰三角形和性质;等腰三角形的条件 V布置作业:1.P58页习题12.3第ll题。 2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形。这样的点有多少个? 教学目标: 知识与技能 1、掌握直角三角形的判别条件,并能进行简单应用; 2、进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型。 3、会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论。 情感态度与价值观 敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。 教学重点 运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论。 教学难点 会辨析哪些问题应用哪个结论。 课前准备 标有单位长度的细绳、三角板、量角器、题篇 教学过程: 复习引入: 请学生复述勾股定理;使用勾股定理的前提条件是什么? 已知△ABC的两边AB=5,AC=12,则BC=13对吗? 创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法。 这样做得到的是一个直角三角形吗? 提出课题:能得到直角三角形吗 讲授新课: ⒈、如何来判断?(用直角三角板检验) 这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系? 就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时) ⒉、继续尝试:下面的'三组数分别是一个三角形的三边长a,b,c: 5,12,13;6,8,10;8,15,17. (1)这三组数都满足a2+b2=c2吗? (2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗? ⒊、直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。 满足a2+b2=c2的三个正整数,称为勾股数。 ⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角。工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗? 随堂练习: ⒈、下列几组数能否作为直角三角形的三边长?说说你的理由。 ⑴9,12,15;⑵15,36,39; ⑶12,35,36;⑷12,18,22. ⒉、已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角。 ⒊、四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积。 ⒋、习题1.3 课堂小结: ⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。 ⒉满足a2+b2=c2的三个正整数,称为勾股数。勾股数扩大相同倍数后,仍为勾股数。 一、加强学习,努力提高自身的素质 一方面,认真学习教师职业的道德规范、,不断提高自己的道德修养和政治理论水平;另一方面,认真学习新课改理论,努力提高业务能力。通过学习,转变了以前的工作观、学生观,使我对新课改理念有了一个全面的、深入的理解,为本人转变教学观念、改进教学方法打好了基础。 二、以身作则,严格遵守工作纪律 一方面,在工作中,本人能够严格要求自己,模范遵守学校的各项规章制度,做到不迟到、不早退,不旷会。另一方面,本人能够严格遵守教师职业道德规范,关心爱护学生,不体罚,变相体罚学生,建立了良好的师生关系,在学生中树立了良好的形象。 三、强化常规,提高课堂教学效率 本学期,本人能够强化教学常规各环节:在课前深入钻研、细心挖掘教材,把握教材的基本思想、基本概念、教材结构、重点与难点;了解学生的知识基础,力求在备课的过程中即备教材又备学生,准确把握教学重点、难点,不放过每一个知识点,在此基础上,精心制作多媒体课件(本学期本人共制作多媒体课件30个),备写每一篇教案;在课堂上,能够运用多种教学方法,利用多种教学手段,充分调动学生的多种感官,激发学生的学习兴趣,向课堂40分要质量,努力提高课堂教学效率;在课后,认真及时批改作业,及时做好后进学生的思想工作及课后辅导工作;在自习课上,积极落实分层施教的原则,狠抓后进生的转化和优生的培养;同时,进行阶段性检测,及时了解学情,以便对症下药,调整教学策略。认真参加教研活动,积极参与听课、评课,虚心向同行学习,博采众长,提高教学水平。一学期来,本人共听课32节,完成了学校规定的听课任务。 四、加强研讨,努力提高教研水平 本学年,本人参加省级教研课题“开放性问题学习的研究”的子课题及县级课题开放性教学课型的研究的子课题的研究工作,积极撰写课题实施方案,撰写个案、教学心得体会,及时总结研究成果,撰写论文,为课题研究工作积累了资料,并积极在教学中进行实践。在课堂教学中,贯彻新课改的理念,积极推广先进教学方法,在推广目标教学法、读书指导法等先进教法的同时,大胆进行自主、合作、探究学习方式的尝试,充分发挥学生的主体作用,使学生的情感、态度、价值观等得到充分的发挥,为学生的终身可持续发展打好基础。 五、正视自我,明确今后努力方向 本次期末考试,我所带班成绩相对其它平行班而言,有一定的差距,本人认真进行了反思,原因主要有以下几个方面: 1、在课堂教学中充分利用多媒体课件,调动了学生的积极性,但对学生基础知识的训练不够,致使课堂教学效率不高; 2、对知识点的检查落实不到位; 3、对差生的说服教育缺乏力度,虽然也抓了差生,但没有时时抓在手上。 4、教学中投入不够,没能深入研究教材及学生。 《梯形》教案 教学目标: 情意目标:培养学生团结协作的精神,体验探究成功的乐趣。 能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。 认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。 教学重点、难点 重点:等腰梯形性质的探索; 难点:梯形中辅助线的添加。 教学课件:PowerPoint演示文稿 教学方法:启发法、 学习方法:讨论法、合作法、练习法 教学过程: (一)导入 1、出示图片,说出每辆汽车车窗形状(投影) 2、板书课题:5梯形 3、练习:下列图形中哪些图形是梯形?(投影) 4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。 5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影) 6、特殊梯形的。分类:(投影) (二)等腰梯形性质的探究 【探究性质一】 思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影) 猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答) 如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C 想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么? 等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。 【操练】 (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影) (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影) 【探究性质二】 如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答) 如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影) 等腰梯形性质:等腰梯形的两条对角线相等。 【探究性质三】 问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答) 问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论) 等腰梯形性质:同以底上的两个内角相等,对角线相等 (三)质疑反思、小结 让学生回顾本课教学内容,并提出尚存问题; 学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。 【教学目标】 知识与技能 会推导平方差公式,并且懂得运用平方差公式进行简单计算。 过程与方法 经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。 情感、态度与价值观 通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。 【教学重难点】 重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。 难点:平方差公式的应用。 关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。 【教学过程】 一、创设情境,故事引入 【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事 【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。 【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗? 【学生回答】多项式乘以多项式。 【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。 【问题牵引】计算: (1)(x+2)(x—2);(2)(1+3a)(1—3a); (3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。 做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。 【学生活动】分四人小组,合作学习,获得以下结果: (1)(x+2)(x—2)=x2—4; (2)(1+3a)(1—3a)=1—9a2; (3)(x+5y)(x—5y)=x2—25y2; (4)(y+3z)(y—3z)=y2—9z2。 【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。 【学生活动】讨论 【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢? 【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。 用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。 【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。 二、范例学习,应用所学 【教师讲述】 平方差公式的'运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。 例1:运用平方差公式计算: (1)(2x+3)(2x—3); (2)(b+3a)(3a—b); (3)(—m+n)(—m—n)。 《乘法公式》同步练习 二、填空题 5、幂的乘方,底数______,指数______,用字母表示这个性质是______。 6、若32×83=2n,则n=______。 《乘法公式》同步测试题 25、利用正方形的面积公式和梯形的面积公式即可求解; 根据所得的两个式子相等即可得到。 此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。 26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律; 等式左边减数的底数与序号相同,由此得出第n个式子;八年级数学上册教案 篇3
人教版八年级数学上册教案 篇4
人教版八年级上数学教案 篇5
人教版八年级数学上册的教学计划 篇6
八年级上册数学教案人教版 篇7
人教版八年级数学上册教案 篇8